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Lie Algebras and Their Representations

1 Introduction

1.1 Motivation

Definition 1.1: A linear algebraic group is a subgroup of the general linear group GL,, of n xn
matrices where the matrix coefficients fulfill certain polynomial equations.

Example 1.2: The upper triangle matrices

1 a2 -+ ain
0

. an—1,n
0 0 1

Other examples are

SL, = {A € Mat,, | det A =1},
SO, ={Aec SL, | AAT =T},
On,={AcGL, | AAT =T},

SPy = {A € GLy, | MTATMA =1}, M— (_(} IO"> .

Remark 1.3: There is an intrinsic characterization of linear algebraic groups as affine algebraic
groups, i.e. groups which are affine algebraic varieties and where multiplication and inverse are
morphisms of algebraic varieties.

Consider G = SL,,. If

1
g = (0 (1)> te <Z Z) + higher order terms € SLs, || < 1,

then

1
1 =detg =det << j;cea 1 j_bg d> + higher order terms)
= (1+¢ea)(1 + ed) — £2¢b + higher order terms

=1+ e(a + d) + higher order terms.

Thus, det g = 1 if and only if a + d = 0.
We can make this notion of vanishing higher order terms more precise by defining the dual
numbers as

E =Cle]/e* ={a+be | a,be C}.

This omits the structure of a ring. Consider G(E) = {A € Mat,(E) | A € G C GL,},
the matrices over the dual numbers which satisfy the polynomial equations defining the linear
algebraic group G. E.g.

o= {(2 )
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1 Introduction

By letting € — 0 we obtain a map F — C which extends to a map

m: G(E) - G, A+ Be— A.

Definition 1.4: We define the Lie algebra of G, denoted Lie(G), as the preimage
g:=7 YI)={X € Mat,(C) | I + X € G(E)}.

Example 1.5: For example sly = {(2%) € Maty(C) | a +d = 0}.

Remark 1.6: [+ Xe represents an ‘infinitesimal change’ at I in the direction X, i.e. the germ
of a curve Spec|[¢]] — G.

Exercise 1.7: Show G(E) = TG, the tangent bundle to G, and g = T7G, the tangent space to
G at I.

Example 1.8:
(i) Let G = GL, = {A € Mat,, | A~! exists}. Then
G(E)= {fl € Mat,(E) | A™* exists}
={A+ Be | A, B € Mat,(C), A" exists},
as (A+ Be)(A™! — A71BA71e) = I. So Lie(GL,) = Mat,,(C).
(ii) Let G = SL,(C). Then
det(l +eX) = det((6s5 + ex4j)i5)
=1+ezx11) .- (1 +ezpn)
=1+ etr(X).
From this we conclude that

sl, = {X € Mat,, | tr(X) = 0}.
(iii) Let G = 0,(C) = {A | AAT =1},

= g={X €Mat,(C) | (I +=X)(I +eX)" =T}
= {X € Mat,,(C) | T+ (X + XT) =1}
= {X € Mat,(C) | X + X" =0}.

Notice, that as 2 # 0, we have tr(X) = 0, so this is also the Lie algebra of SO,,, denoted
by so,,.

Remark 1.9: This leads us to the question, what structure we have in g coming from G being
a group? Note that in E we have (I 4+ Ae)(I+ Be) = I+ (A+ B)e, which has nothing to do with
multiplication. Multiplication is a map G x G — G. Consider instead the map G x G — G given
by to commutator in a group, (P, Q) — PQP~1Q~!. If we look at this infinitesimally, we obtain
a map 177G x TrG — TG, write P = I 4+ ac and Q = I + B6, where €2 = 62 = 0 but €§ # 0.
Remember that (I + ag)~! = I — Ae. Then we have PQP~'Q~! = I + (AB — BA)&j, which
is the “shadow” of multiplication we will use. So for the Lie algebra of an algebraic groups, we
define [A, B] = AB — BA, the Lie bracket of g.
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Lie Algebras and Their Representations

Exercise 1.10: Show that:

(i) Show that (PQP~'Q~1)~! = QPQ~1P~! implies [A, B] = —[B, A], for all A, B € g (skew
symmetry).

(ii) Multiplication in G is associative implies

0=[X,Y],Z]+ Y, Z],X]+ [[Z, X],Y] (Jacobi identity).

Solution:
(i) Take P, @ as in 1.9, then as before

[B,A] < QPQ'P~! = (PQP'Q™Y) ™' = (I + (AB — BA)ed) ™!
=1+ (—(AB — BA))ed <+ —[A, B],

and so [A, B] = —[B, A].
Remark: Since we already have [A, B] = AB — BA, we have the much easier and more
obvious proof [4, B] = AB — BA = —(BA— AB) = —[B, A].

(ii) By simple calculation, we obtain

=XYZ-YXZ-ZXY+HZYX+YZX -ZYX
—XYZ+XZY +ZXY - XZY - YZX +YXZ = 0. O

1.2 Definition of Lie algebras and basic properties

Definition 1.11: Let k be a field, chark # 2,3. A Lie algebra g is a k-vector space equipped
with a bilinear map [-,-]: g X g — g, the so-called Lie bracket, such that

(i) [X,Y] = —[Y, X], skew symmetry, and
(i) [[X,Y],Z]+ (Y, Z], X]+[[Z,X],Y] =0, the Jacobi identity.
A subspace h C g is a Lie subalgebra if [p,h] C b, i.e. for all z,y € b, [z,y] € b.

The previously defined Lie algebras of an algebraic groups satisfy these properties, as shown
in 1.10.

Example 1.12: We have the following examples of Lie algebras:

(i) For any vector space V, we can let [-,:] be the zero-map, i.e. [u,v] =0 for all u,v € V.
This defines an abelian Lie algebra (named like this because for the matrix commutator,
we have [A, B] = 0 if and only if A and B commute).

(ii) gl,, = Mat(n x n), or, for V' a vector space, gly, = End(V).

(iii) sl, = {A € gl, | tr(A) = 0} (where tr denotes the trace). Observe that for X,Y € sl,
we have tr(XY) # 0 in general, but since tr(XY) = tr(YX) we get tr([X,Y]) = 0. So
[A,B] = AB — BA has [, ] : A%sl,, — sl,,.

(iv) so, = {Aegl, | A+ AT =0}.
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1 Introduction

(v) spy, = {A € gly, | JATJT + A =0}, where

—1

(vi) b, the upper triangular matrices in gl,, (b stands for Borel).

(vii) b, the strictly upper triangle matrices in gl,,.

Exercise 1.13:
(i) Check directly that gl,, is a Lie algebra.

(ii) Check that the examples (iii)-(vii) are Lie subalgebras of gl,,.

Note that, for example, (I ;) is not a subalgebra of gl,,.

Exercise 1.14:
(i) Find algebraic groups, whose Lie algebras are those above.

(ii) Classify all Lie algebras of dimension 3 (or 2) as vector spaces. Note that the 1-dimensional
Lie algebras are all abelian algebras.

Definition 1.15: A representation of a Lie algebra g on a vector space V' is a homomorphism
of Lie algebras ¢: g — gly, i.e. amap ¢: g — End(V), such that

o[z, y]) = w(@)e(y) — p(y)e(r), Y,y g.

We say g acts on V.

Example 1.16: If g C gly,, then g acts on V, so the Lie algebras from Example 1.12 act
faithfully on k.

Definition 1.17: If z € g, we define ad(x): g — g by ad(x)(y) = [z, y], this defines ad : g —
End(g).

Lemma 1.18: ad is a representation, called the adjoint representation.

Proof: The identity ad[x,y] = adx ad y — ad y ad x follows from skew symmetry and the Jacobi
identity. O

Definition 1.19: The center of gis Z(g) :={z € g|Vy € g: [z,y] = 0} = kerad. So g has
trivial center if and only if g embeds via ad into gl,.
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Lie Algebras and Their Representations

0 =
00
faithful representation by definition.

Example 1.20: § = ( > is abelian, so maps to 0 in gly via ad, but h C gl, also admits a

Theorem 1.21 (Ado): Any finite-dimensional Lie algebra over some field k is a Lie subalgebra
of gl,, for some n (i.e. admits a faithful finite-dimensional representation).

Example 1.22:

{2

a,b,ce C} has a basis

01 10 00
=) =6 ) =00,

with relations [e, f]| = h, [h,e] = 2e, [h, f] = —2f. So a representation of sly on k" is a triple
E, F, H of n X n-matrices, such that [F,F| = H, [H, E] = 2E, [H, F] = —2F. This leads to the
question how we can obtain such representations?

Definition 1.23: If (G is an algebraic group, then an algebraic representation of G on a vector
space V is a homomorphism of groups p: G — GLy defined by polynomial equations in the
matrix coefficients of G C G L,,.

Again, we can substitute £ = kl[e]/e? for K. Thus, we get a homomorphism of groups
G(E) — GLy(E). As p(I) = I, we have p(I + Ae) = I + e(some function of A). Call this
function d p, so p(I + Ae) = I +ed p(A), which defines a map d p: g — gly,. This gives a functor

AlgRepg — Repyie), p— dp.

Exercise 1.24:
(i) dp is the derivative of p, evaluated at I, i.e. dp: T1G — T;GLy .
(ii) p: G — GLy is a group homomorphism. Therefore, dp: g — gly, is a Lie algebra homo-

morphism, i.e. V is a representation of g.

Example 1.25: Let G = SLy and let L(n) be the set of homogeneous polynomial of degree n

n—1

in variables z and y. Then L(n) has the basis ", 2" 'y, ..., y", so dim L(n) = n+ 1. SLy acts
on L(n) by

pn: SLy = Aut(L(n)) = GLnt1, (pn(9)f)(2,y) = flaz + cy, br + dy),
if g=(9Y) € SLy, f € L(n). In particular, we have
po the trivial representation,
p1 the standard 2-dimensional representation on k2,

p2 here (2%) acts, w.r.t. the above basis of L(2), by the matrix

a? ab b2
2ac ad+ bc 2bd
2 cd d?
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1 Introduction

It is left as an exercise, to verify that SLs acts on L(n) via p,. Let us now compute represen-
tations of sly on L(n):

Remark 1.26: GLy acts on P!, and on O(n), hence on I'(P!, O(n)) = S™k?, and that is where
these representations come from.

If we take the basis element e = (), then p, (I +ee)-2'y! = 2'(ex+y) = a'y/ +ejai Ty 71,
which says d pp(e) - 2y = jx'tly/=1if j > 1 (dp, = 0 if j = 0). This proves the first equation
in the following exercise:

Exercise 1.27:

(i) For d py, with p, as in 1.25, we have:

o il il i >
0 if j =0,

- iyt if i > 1
flz'y?) = o
0 if i =0,
ha'y’) = (i — j)z'y’.
Hence d pp(e) = -, dpa(f) =y, dpn(h) =z —y&.

(ii) Check directly that these formulas give representations of sl on L(n).

(iii) Check directly that L(2) is the adjoint representation.

(iv) Show that the formulas e = :ca%, f= ya%, h = xa% — ya% give an (infinite-dimensionall)

representation on k|x, y].

(v) Let chark = 0. Show that L(n) is an irreducible representation of sly, hence of SLs.

Example 1.28: Let G = C*, then g = Lie(G) = C with [z,y] = 0. A representation of g = C
on V corresponds to A € End(V), as a linear map p: C — EndV is determined by A = p(1).
W C V is a submodule if and only if AW C W, and p is isomorphic to p': g — End(V")if and
only if A and A’ are conjugate as matrices. Hence, the classification of representations of g is
given by the Jordan normal forms of matrices.

As any linear transformation over C has an eigenvector, there is always a 1-dimensional
subrepresentation of V. Therefore, V is irreducible if and only if dimV = 1. Also, V is
completely decomposable (i.e. breaks up into a direct sum of irreducible representations) if and
only if A is diagonalizable.

01
01
Let A= , then the associated representation to A is indecomposable, but not
.
irreducible. The invariant subspaces are (e1), (e1,e2), ..., (e1,€2,...,e,), but their complements

are no subspaces.

What about algebraic representations of G = C*? Here, the irreducible representations
are pp,: G — GL1 = Aut(C), z — (x — 2z"z), n € Z. Moreover, every finite-dimensional
representation is a direct sum of these representations.
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Exercise 1.29: The functor p — dp takes p, to multiplication by n in C, and this is an
irreducible representation of C, but there are other irreducible representations, as we have seen
before.

Notice that g = (C, ) is also the Lie algebra of G = (C,+), so it is not surprising that its
representations are different from the representations of C*. What is surprising, is the following:

Theorem 1.30 (Lie): The functor p — dp is part of an equivalence of categories AlgRep =
Repy,c(q) if G is a simply connected simple algebraic group. (E.g. for G = SLy, SOy, SPay).

Remark 1.31: Note that for algebraic groups, there is a different definition of simplicity. An
algebraic groups is simple if it does not contain any proper nontrivial normal connected closed
subgroup. Note for example, that for G a simply connected and simple algebraic group, the
center does not have to be trivial, but it is finite, e.g. Z(SL,) = C,, the cyclic group with n
elements.

Exercise 1.32: If G is an algebraic group, and Z is a finite central subgroup of G, then
Lie(G/Z) = Lie(G). Le. the tangent space does not change if we identify central elements of an
algebraic group.

We have now also seen that the map AlgGp — LieAlg, G — Lie(G) is not injective.

Exercise 1.33:

(i) Let G,, = C* x C, where C* acts on C by t -\ = t"\, i.e. (£, \)(t',N) = (t',([t")"X+ X)).
Show that G,, & G,, if and only if n = +m.

(ii) Show that Lie(G,) = Czx + Cy, [z,y] = y which is independently of n.
Moreover, the map AlgGp — LieAlg is not surjective, Lie algebras in its image are called
algebraic Lie algebras. This is really obvious in characteristic p. Take for example sl,/Z(sl)).
This cannot be the image of an algebraic group. In general, algebraic groups have a Jordan

decomposition — every element can be written as a sum of a semisimple and a nilpotent element
— and therefore the algebraic Lie algebras should have a Jordan decomposition as well.

2 Representations of sl

2.1 Classification of sl, representations

From now on, all Lie algebras and representations are over C. For sly we have the following

0 1 00 10
=) =G0 =G5

subject to the relations [e, f] = h, [h,e] = 2e, [h, f] = —2f.

basis:

Theorem 2.1:

(i) For every n > 0, there is a unique (up to isomorphism) irreducible representation sly of
dimension n + 1.

8 Robert Laugwitz & Henning Seidler



2 Representations of sly

(ii) Every finite dimensional representation of sl is a direct sum of irreducible representations
(i.e. the category of finite-dimensional representations of sl, is semisimple, or every finite-
dimensional sly representation is completely reducible).

We now start proving part (i):
Let V be a representation of sls. Define the A-weight space for V to be

W={veV|h v=Av},
the eigenvectors of h with eigenvalue A.
Example: L(n)y = C-aiy/ if i —j = \.
Suppose v € V). Consider ev
h(ev) = (he — eh + eh)v = ([h, €] + eh)v
= 2ev + e\v = (24 Nev,

so v € V) if and only if ev € V) y5. Similarly, one shows that v € V) if and only if fv € V)_s.

Definition 2.2: If v € V), Nkere, i.e. ev = 0 and hv = Av, we say that v is a highest weight
vector of weight .

Lemma 2.3: Let V be a representation of sly. If v € V' is a highest weight vector of weight A,
then
W = <U,f’l),f2’l},"'>

is an sls-invariant subspace of V, i.e. a subrepresentation.

Proof: We must show fW C W, hW C W, eW C W. Well, fW C W is obvious. We already

know that f*v € Vy_ak, so KW C W. Show eW C W by proving ef*v € W, Vk. Claim:
e-ffo=nA—n+1)f""lveW. (1)

We prove this formula by induction on n:
The formula holds trivially for n = 0 since v € kere. Assume that the formula holds for n > 0.
Then

e "y = (ef — fe+ fe)f'w
=hf"+ fefTv
=A—=2n)f"v+n(A—n+1)f"v, by induction hypothesis
=(n+1)A—n)fv. O

Lemma 2.4: Let V be a representation of sly and v a highest weight vector with weight A. If
V' is finite-dimensional, then A € IN.

Proof: The vectors fiv all lie in different eigenspaces of h, and hence if non-zero are linearly
independent. But if V is finite-dimensional, then it must be f*v = 0 for some k, so f*t7v =0,
for all f > 0. Choose k minimal such that f¥v = 0. So f*~1v # 0, but then

O=effv= _k A—k+1) o,

N——
#0 #0

soA=k—1,ie A€ Ng. O

Robert Laugwitz & Henning Seidler 9
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Proposition 2.5: If V is a finite-dimensional representation of sly, then there exist a highest
weight vector.

Proof: Let v € V be some eigenvector for h with eigenvalue A (exists as C is algebraically
closed). As before, v, ev, e?v, ... are all eigenvalues for h, with respect to the distinct eigenvalues

A A — 2, ... Hence, v, ev,e?v, ... are linearly independent unless they are zero. But V is finite-
dimensional, so there exists a k s.t. €*v # 0, but then e**lv = 7y = 0, Vr > 1. Hence, efv
is a highest weight vector with weight A + 2k. O

Corollary 2.6: If V is irreducible, then dim V = n + 1, for some n > 0. We have seen that we
can find a basis vy, v1, ..., v, with

hv; = (n — 2i)v;,

Vit1, if1 <n
foi =

0, ifi=n

ev; =i(n —1i+ 1)v;_1,

i.e. there is precisely one irreducible representation of sl of dimension n + 1. In particular, this
representation is given by L(n).

This finishes the proof of part (i) of Theorem 2.1. We now prove part (ii). Notice, that the
statement implies, in particular, that h acts diagonalizable on every finite-dimensional represen-
tation. First, another exercise:

Exercise 2.7: We have seen that C[z,y] = ,>; L(n) is a representation of sly, a direct sum
of irreducible representations L(n), show that z#y* € C[z/y,y/z] is a representation of sly for
all A\, € C (using the given formulas) and describe its submodule structure.

Definition 2.8: Let V be a finite-dimensional representation of sly. Define
L.y
Q:=ef+ fe+ §h € End(V). (2)

Q) is called the Casimir of sls.

Lemma 2.9: The Casimir € is central, i.e. eQ2 = Qe, fQ = Qf, hQQ = Qh as elements of
End(V).

10 Robert Laugwitz & Henning Seidler



2 Representations of sly

Proof: For example,

eQ=ce(ef + fe+ %hz)
=eh + 2efe + %eh2
=eh + 2efe + %(eh — he)h + %heh
= 2efe+ %heh
=2efe — he+ he+ %heh
=2efe— (ef — fe)e + %h(he —eh) + %heh

1
=efe+ fee+ §h26 = Qe,

and similar calculations show that € also commutes with f and h. O

Corollary 2.10: If V is an irreducible finite-dimensional representation of sly, then 2 acts on
it by a scalar.

Proof: Since § is central, pg: V — V, v +— Qu defines an sly-linear map, then Schur’s Lemma
gives that po = Aldy, for some A € C. O
Lemma 2.11: Let L(n) denote the irreducible representation with highest weight vector v, of

weight n, then Q acts on L(n) by 3n(n + 2).

Proof: We have ev = 0, hv = nv, Q = (3h% + h) + 2fe, so Qu = 3n(n + 2)v by Schur’s
Lemma. Notice, that Schur’s Lemma is actually not needed here. One can simply apply that

Qfv = fiQu, and {f'v | i € N} span L(n). O

Observe, if L(n) and L(m) are two irreducible finite-dimensional representations of sly, and
Q) acts on them by the same scalar, then n = m.

Proof: () acts by %n2 +2= %mQ +m, but f(z) = %3:2 + x is a strictly increasing function for

z > —1. O

Let V be any finite-dimensional representation of sly, set
VAdi= eV | (Q- NIV =0,

the generalized eigenspace of  with eigenvalue A. Using Jordan decomposition, we can decom-

Robert Laugwitz & Henning Seidler 11
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pose V =&, VA, and write Q in Jordan normal form

A1

A1
Ay 1

A2

An

for some generalized eigenvalues Ai,...A, € C. The Jordan blocks correspond to generalized
eigenspaces V.

Claim 2.12: Each V* is a subrepresentation of sls.
Proof: Let x € sly, v € V*, then

(Q _ )\)dime,U _ x(Q - )\)dim\/v
=20 =0,

so zv € V* also. O

If VA #£ 0, then A\ = %n2 + n for a unique n > 0, and we can show, that each V* is ‘glued
together’ from copies of the representation L(n). This can be formulated more precisely using
composition series.

Definition 2.13: Let W be a finite-dimensional g-module, for a Lie algebra g. A composition
series for W is a sequence of submodules

0=Wy<Wi <..<W,=W,

such that each quotient W;/W;_; is an irreducible module.

Example 2.14:

(i) If g = C, W = C", where 1 € C acts as the matrix , then there is a unique

o
o, . . 0
comp051t10n series

0< <€1> < <€1,€2> < ... < <61,62,...,er>,

and the subquotients are all C (the trivial module).
(ii) f g=C, W = C", 1 € C acts as 0, then any chain
O<Wi<...<W,.=W,

with dim W; = i, is a composition series and again, the subquotients are C.

12 Robert Laugwitz & Henning Seidler



2 Representations of sly

Claim 2.15: Composition series exist for any finite-dimensional g-module W.

Proof: By induction on dim W. Take any irreducible submodule W; < W, then W/W is of
smaller dimension, so has a composition series

0<Wy<W3<..<W,=W/W,
by induction, then
O< Wi <Wi+Wo<Wi+W3<..<Wi+W,_1 <W,=W,
is a composition series of W. 0

Lemma 2.16: Let V* #£ 0, then \ = %n2 +n for a unique n, and V> has a composition series,
such that all quotients are isomorphic to L(n).

Proof: Let W be an irreducible submodule of V*, Q still acts on W by A, but W is L(n), for
some unique n > 0, and so A = %nQ + n. Now consider V*/W. If this space is non-zero, Q still
acts on VA /W with only one generalized eigenvalue A\. We can repeat this procedure as long as
the quotient is non-zero. This shows that V* has a composition series with L(n) as the only
module which appears as a quotient, i.e. W;/W;_; = L(n), for all i. O

Corollary 2.17: h acts on V* with (generalized) eigenvalues in {n,n —2,...,2 —n, —n}.

Proof: If h acts on W, W/ < W a subspace s.t. hW' < W', then
{gen. eigenvalues of h on W} = {gen. ev. of h on W'} U {gen. ev. of h on W/W'}. (3)
If we apply this to V*, we obtain
{generalized eigenvalues of h on V*} = {eigenvalues of h on L(n)}. O

Lemma 2.16 says that the action of h on V* has the following form:

Using Jordan normal form, L(n) has diagonal form with eigenvalues {n,n — 2,...,—n + 2, —n}
on the diagonal. So these are the only generalized eigenvalues of V?, ie. (VA),, = 0 if m ¢
{n,n — 2,...,—n + 2,—n}. Further, h acts on ker(e: V* — V?) with only one generalized
eigenvalue, namely n, i.e. if 2 € kere, then (h — n)4™ VY2 =0. To see this, apply (3) to the
composition series given by W; = W; Nkere, if the W; come from the composition series of V*,
developed in Lemma 2.16.

Robert Laugwitz & Henning Seidler 13
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Lemma 2.18: For the endomorphisms given by elements of sly acting on V?, the following
identities hold:

(i) hf™ = f"(h—2n)
(i) ef™! = fle + (n+ 1) f"(h —n)

Proof:

(i) By induction on n:
For n =1, we have hf =hf — fh+ fh==2f+ fh = f(h — 2).
Assume, the formula holds for n > 1. Then
RS = (B = 2n)f = ["Rf 20"
— _2fn+1 4 fn+1h _ 2nfn+1
= " (h=2(n+1))

(ii) By induction on n:
For n =0, observe ef = ef — fe+ fe = h+ fe.
Assume, that the formula holds for n > 0, then
ef"? = (f"e+ (n+ 1) f"(h—n))f
= f"lef+ (n+1)f"hf —n(n+ 1)
= f"Mh+ 2o — 2+ DM 4 (n 4+ D) h — n(n 4+ 1) 1
= f"Pe+ (n+2) "M (h— (n+1)) O

Proposition 2.19: h acts diagonalizable on ker(e: VA — V), i.e.
kere = (VY), = {z € V* | hx = nz}.

Proof: “2”: If ha = nx, then ex € (V)12 =0, so x € kere.
“C”: Let x € kere. We showed in Corollary 2.17 that in this case

(h — n)dim Vi =o. (4)
Now, by part (i) of Lemma 2.18:
(h—n+ 2k)dimwka =0,

i.e. fFz lies in the generalized eigenspace for h with eigenvalue n — 2k (). On the other hand,
if y € kere, and y # 0, then f*y # 0 (x*). To prove this, let

0=Wo<W1 <..<W,=V>*

be a composition series for V. There exists an i s.t. y ¢ W;, but y € Wi_1, put g =y + W;_1.
Note that g # 0 € W;/W;_1 = L(n). Then 7 is a highest weight vector for L(n), so f"y # 0
in L(n), so ffy #0in V*. Now, f**ly lies in the generalized eigenspace for h with eigenvalue
—n — 2, by (x), but this is the zero space. Hence, f""!y = 0. Now, by applying Lemma 2.18,
we can conclude
O=ecf™ly=(n+1)f"(h—n)y+ " ey,
~—
=0
so f"(h—n)y = hf"y =0, but if (h — n)y # 0, this would contradict (*x), so hy = ny. O
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Now we can finish our proof of Theorem 2.1. We can now choose a basis wy, ..., w; of
ker(e: VA — V) s.t. hw; = nw; and ew; = 0, by Proposition 2.19 (i.e. kere = (kere),. This
gives a direct sum composition of VA, using the basis wi, fwi, ..., fPwi, ..., Wy, fWg, ..., frwg. h
acts diagonalizable on V* with respect to this basis, and hence on the whole of V (using Jordan
decomposition). To convince ourselves, that this is true, consider

hffw; = f*(h — 2k)w;
= f¥(n — 2k)w;
=(n— Zk)fkwi,

i.e. fFfw; € (VM)p_ok, and h acts diagonalizable on the whole of V*. This concludes the proof
of Theorem 2.1.

Exercise 2.20 (fun!): Show that, if chark = p, then
(i) irreducible highest weight representations of sly(IF),) are parametrized by n € N, and

(ii) arbitrary finite-dimensional representations of sly(IF},) do not need to break up into a direct
sum of irreducibles.

2.2 Consequences

Let V, W be representations of a Lie algebra g.

Claim 2.21: The map g — End(V @ W) = End(V) @ End(W) given by z — 2 ®@ 1 + 1 ®@ z is
a homomorphism of Lie algebras.

Proof: This map is obviously linear. To see that it is a Lie algebra morphism, consider

2@1+1Qz,y®1+10y]=2®1+102)(yol1+10y) - (¥01+1ey)(ze1+1Q1)
=ryR1l+2zy+tyRr+lery— (rol+yr+ry+1®yr)
=(zy—y2x)®1+1® (zy — yz) dJ

Remark 2.22: This comes from the group homomorphism G — G x G, g — (g, g) by differ-
entiating.

Corollary 2.23: If V,W are representations of g, sois V@ W.

Remember that if A is an algebra, V, W representations of A, then V ® W is a representation
of A® A. To make it a representation of A, we need an algebra homomorphism A -+ A® A
(such a map is called coproduct of a Hopf algebra).

Now, take g = sly. This gives rise to the question how L(n) ® L(m) breaks up into a direct
sum of irreducibles L(i) (using Theorem 2.1). One method to answer this question is to find all
the highest weight vectors.

Exercise 2.24: Find all highest weight vectors in L(1) ® L(m), ..., L(n) ® L(m).
Easy start: L(n) ® L(m). Write v, for the highest weight vector in L(n), we claim that v, ® vy,
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is a highest weight vector in L(n) ® L(m). To prove this, consider

h - (vp ® vy) = (hvy) ® vy, + vy @ (hoy,)
=(n+m)vy, ® U, and

e (Up @ vp) = (evy) @ Uy + vy @ (€vy,) = 0.
From this, we can conclude that L(n) ® L(m) = L(n +m) + X, but since

(n+1)(m+1) =dim L(n) ® L(m)
=dim L(n +m) + dim X
=n+m+ (nm+1),

there is still “lots of stuff” remaining, if we quotient out by the submodule L(n 4+ m). One
strategy to find this “other stuff” is to write down explicit formulas for all the other highest
weight vectors. These are complicated, but mildly interesting.

However, to determine the summands of L(n) ® L(m) we do not have to do this.

Definition 2.25: Let V be a finite-dimensional representation of sly. The character of V is
defined as

chV =) dimV,z" € N[z,27'].
nez

Lemma 2.26: Let V, W be sls-representations, then

(i) chV],_, =dimV,

Zn+1_zf(n+1)
z2—z1

(i) chL(n) = 2"+ 2" 24+ .. 42 "2 4" = , sometimes denoted as [n + 1],
(ili) chV =chW <«— V=W,
(iv) chV @ W = chV - chW.
Proof:
(i) h acts diagonalizable with all its eigenvalues integers, i.e. V = €, .5 Vi by Theorem 2.1.

(ii) Follows from Theorem 2.1.

(iii) The characters ch L(0) = 1,chL(1) = z + 27 !,ch L(2) = 22 + 1 + 272, ... form a basis of
Zz, 2~1)%/?, the symmetric Laurent polynomials. Clearly, they are linearly independent
and span this space (by inspection). On the other hand, by part (ii) of Theorem 2.1
(complete reducibility), we have

V= @anL(n), W= @an(n)v

n>0 n>0

and V = W if and only if a,, = b, for all n € IN. But now, as {ch L(n)},, forms a basis,
chV =3 <panchL(n) determines ay,.
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(iv) Since for v, € V,,, vy, € Vi, we have h(v, @ vy,) = (n+m)v, @ vy, we see that V,, @ V,,, C
(V ® W)TL-H’TL: S0

nfmn;p

= dim(VeW),= Y (dmV,)(dimV,)

n,m

n+m=p
= chVeaW=> > (dmV,)(dimV,)z"
peEZ
= (chV)(ch W),
since this is how we multiply polynomials. O

Example 2.27: Decompose L(1) ® L(3).

chIL(M)@LB)=(z+2z N +2z+271+279)
= +2 41422+ (PP 14272

hence L(1) ® L(3) = L(4) ® L(2).

We can use the Clebsch-Gordon-rule

n+m

L)@ Lm)= @  Lk). (5)
k=|n—m|

k=n—m (mod 2)

Without giving a formal prove, the formula can be verified by drawing diagrams:

2" 2" 2 - H—n+2 5—n
. i ¥ i . ¥ ¥ ~ L(n)
L(ky)
2" ' . . ° . ° . .
M2 ¢ . . . . . ° * ¢
' . . ° . . ’ ]
P ®
L(ky)
27 . . . ° (]
L(m)

Here, L(k1), ..., L(k;) are the components of the direct sum composition of L(n)® L(m), and
k1, ..., k; refer to the respective length of the lines in the inner square of the diagram.
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Example 2.28: Compute L(3)®L(4),ch L(3)®L(4) = (3424271 +273) (24 + 22 +272 4+ 277).
Since 2z appears as the highest coefficient in the product of the characters, L(7) appears in the
decomposition. Subtracting ch L(7), the highest coefficient is 2° and thus L(5) appears as an
summand. Continuing in a similar manner, we conclude

L(3)® L(4) = L(7) ® L(5) ® L(3) ® L(1).

This can also be seen by considering the diagram

Here L(7) refers to the line of length 7, L(5) refers to the line of length 5,...

In the following chapters we will look at other Lie algebras including sl,,, 50, sp5,,. We will

e see that the categories of representations are semi-simple,
e parametrize irreducible representations,
e compute the character of the irreducibles and their dimensions,

e see how to decompose ® using picture crystals.
In order to do this, we need

e linear algebra characterizations of such Lie algebras, and

e the structure theory of roots and weights.

3 Structure and Classification of Simple Lie Algebras

3.1 Linear algebra preliminaries

Definition 3.1:

(i) A Lie algebra g is simple if the only ideals of g are 0 and g and dimg > 1 (<= g is
non-abelian). g is semi-simple if it is a direct sum of simple Lie algebras.

(i) [g,g] is the span of {[X,Y]: X,Y € g}, the derived algebra of g.

n—1

(iii) The central series of g is defined by g° = g and g" = [g" !, g], i.e

929,02 1lg. 0l 0] 2.
The derived series is: g < (0) = g and g™ = [g»=1) g(»=1)] ie.

g2 [g,0] 2[g 0802
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(iv) g is nilpotent if g" = 0 for some n > 0, solvable if g™ = 0 for some n > 0.

Remark 3.2: g nilpotent implies g solvable since we always have g™ C g".

Exercise 3.3: Show g, g] is an ideal, and g/[g, g] is abelian.

Solution: [g, g] is an ideal since [g, [a, b]] € [g, g], for all g, a,b € g. To see that g/[g, g] is abelian,
consider

la+[g,0],0+ [g,0]] = [a,b] + [g, 0]
= [g,9]. O

Example 3.4: The Lie algebra h of strictly upper triangular matrices is nilpotent, the Lie
algebra b of upper triangular matrices is solvable.

Exercise 3.5:
(i) Compute the derived and the central series of h and b and check the above claim.

(ii) Compute the center of h and b.

Let W be a symplectic vector space, i.e. a vector space with an inner product ( , ) (that is
an non-degenerate antisymmetric bilinear form). For example, take L to be any vector space,
set W = L+ L*, and define (L, L) = (L*,L*) =0, (v, v*) =v*(v) = —(v*,v), Yv € L,v* € L*.

Exercise 3.6: Define the Heisenberg Lie algebra 4y := W @ Cc as a vector space, [w,w'] =
(w,w')e, for w,w’ € W, and [¢, w] = 0. Show that J#y is a Lie algebra that is nilpotent.

Solution. |, ] is bilinear and skew-symmetric since ( , ) is. Note that [, | € Ce. Thus, the
Jacobi identity follows immediately from [c¢, w] = 0. Because of the same property, we have that
A = [y, Hy], Hy] = [(W,W)e, #y] = 0. This proves that Sy is nilpotent, and thus
also solvable. O

Example 3.7: Let L = C, then sy = C, + C, + C,, [p,q] = ¢,[c,p] = [c,q] = 0. Show that

this has a representation on Clz| by ¢ — =, p — a%, cr— 1.

Solution: We need to check that the defined map preserves the relations [p,q] = ¢,[c,p] =
0,[c,q] = 0:
o 1 ., 0 o\ .,
7,%_ r = (axx—l'&[:)x
=(n+1)2" —nz"=1-2",
[0 ] 0 0
Zlan=(Z1-12)a" =0
T . <8x 8x> v ’

[z,1]2" = (z — x)z" = 0.

This shows that the defined map is a representation of Sy . O
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Proposition 3.8:

(i) Subalgebras and quotient algebras of solvable (resp. nilpotent) Lie algebras are solvable
(resp. nilpotent).

(ii) Let g be a Lie algebra, h an ideal. Then we have g solvable <= bh and g/h are solvable.
(So solvable Lie algebras are built out of abelian Lie algebras, it exists a refinement of
derived series s.t. the subquotients are 1-dimensional).

(iii) g is nilpotent if and only if the center Z(g) # 0 and g/Z(g) is nilpotent. (Indeed: if g
nilpotent g D gt > ... D g" ! Dg?"=0. But 0 =g" = [g" !, g] = g" ! lies in the center
of g.)

(iv) In particular, g is nilpotent <= ad(g) C gl(G) is nilpotent (as 0 — Z(g) — g — ad(g) =
9/Z(g) — 0 is an exact sequence).

Theorem 3.9 (Lie’s Theorem): Let g C gly, be a solvable Lie algebra over an algebraic
closed field k with chark = 0. Then there exists a basis v1,...,v, of V such that w.r.t. this
basis the matrices of all elements of g are upper triangular, i.e. g C by .

Equivalently, there exists a A\: g — k linear and v € V st. xv = A(x)v for all x € g (that is
v is a common eigenvector for g, i.e. a one-dimensional subrepresentation of V).

Exercise 3.10:
(i) Show these are equivalent.

(ii) Show it is necessary that K = K and char K = 0. For example, take g = Jfy =
(p,q,c),char K = p and show K|[z]/K is an irreducible representation of g, contradicting
Lie.

Solution:

(i) Assume first statement of Lie’s Theorem. Fix basis vy, ..., v, such that all elements of g act
as an upper triangle matrix. Note that for any h € g we have hv; = Ay for some A\, € K.
Define common eigenvector by h — Ap.

Conversely, if we have a one-dimensional subrepresentation V; of V', take 0 £ vy € V; as
first basis vector. Assume, we have found vy, ..., vy basis vectors such that every h € g
acts as an upper triangular matrix on Wy := (vy,...,vx). Then V/W} is still solvable,
and we again find a one-dimensional subrepresentation V1. Take 0 # vgpy1 € Viir.
Then (hviy1) N Wy = 0 and therefore h acts as an upper triangular matrix on Wy 1 =
(Wg, vk+1). Thus, the claim follows by induction. O

Corollary 3.11: Let chark = 0, g a solvable finite-dimensional Lie algebra, then [g,g] is
nilpotent.

Proof: Apply Lie’s theorem to the adjoint representation ad : g — End(g). Then — w.r.t. some
basis — ad(g) C b, but [b,b] C b, so [ad g, ad g is nilpotent. Moreover, [ad g,ad g] = ad[g, g, so
[g, g] has to be nilpotent (by property (iv) of Proposition 3.8). O

Exercise 3.12: Find a counterexample to the previous corollary for char k = p.
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We call a endomorphism ¢: V' — V nilpotent if all its eigenvalues are zero. Or, equivalently,
if 9™ = 0 for some n > 0.

Theorem 3.13 (Engel’s Theorem): Let k be an arbitrary field. g is a nilpotent Lie algebra
if and only if ad(g) consists of nilpotent endomorphisms of g. Or, equivalently, if (V,7) is a
finite-dimensional representation of g such that 7(x): V' — V is a nilpotent endomorphism for
all x € g, then there exists 0 # v € V st. 7w(z)v = 0 for all z € g (i.e. V has a trivial
subrepresentation). This again, implies the existence of a basis such that all matrices m(z) are
strictly upper triangular.

Exercise 3.14: Show that the two formulations of Engel’s Theorem are equivalent.

Solution:
«: Claim: For V exists a series
o=VwcWVic..cV,=V

s.t. dimV; = ¢ and gV; C V;_1. Note that from the claim it follows that we can find a basis
for V' s.t. g acts as an strictly upper triangular matrix, for all g € g. Setting V' = ad(g)
gives that ad g is nilpotent and therefore g is nilpotent.

Proof of the claim by induction on n = dimV: If dimV = 1, we have that V = kv is
abelian. In this case, set V3 = V. Now, let dim V' > 1, then we find an one-dimensional
subrepresentation V4 of V. Consider V' = V/V; with canonical projection 7, then dim V' <
dim V' and we can apply the induction hypothesis to obtain a series

0=Vy<Vi<..<V,_,=V

with the claimed properties. Now, the series defined by V; = 7= 1(V/ ), i = 1,...,n — 1
and V,, = V gives the claim as g(V;) = gr }(V/ ;) c 7 Y (V/,) = Vi1.

=: First, show that if (V,7) consists of nilpotent endomorphism, then also ad does. Assume
m(x)" =0, z €g. O

Definition 3.15: A symmetric bilinear form (-, -): gxg — k is invariant if ([x,y], z) = (x, [y, 2])
for all z,y,z € g.

Exercise 3.16: If a C g is an ideal, (-,-) an invariant form on g, then a* = {z € g : (z,a) = 0}
is an ideal.

Solution: To check: for a € at | [a,g] C at, i.e. ([a,g],a) = 0. But since (-,-) is invariant, we
have ([a, g],a) = (a,[g,a]) = (a,a) = 0, where we use that a is an ideal. O

Definition 3.17: Let V be a representation of g via p: g — gl(V'), then we define

(z,y)v = tr(p(z)p(y): V = V),

the trace form of V.
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Exercise 3.18: Check that p is a representation implies that (-,)y is symmetric, bilinear and
invariant.

Solution: The trace form is symmetric as tr(AB) = tr(BA). Bilinearity follows from linearity
of p and tr. Check that the trace form is invariant:
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Example 3.19: Define (-, -),q the killing form, to be the trace form attached to the adjoint
representation, i.e. (z,y),q = tr(adz -ady: g — g).

Theorem 3.20 (Cartan’s Criterion): Let g C gly,, char k = 0, then g is solvable if and only
if for all € g and y € [g, g] we have (z,y)y =0, i.e. [g,9] C g

Exercise 3.21: Observe that Lie’s theorem implies Cartan’s criterion immediately. If g is
solvable and non-abelian, then all trace forms are degenerate.

Solution: If g is solvable, use Lie’s theorem to find a basis of a representation (V) p) such that
pg C b. Then [pg, pg] C b, the set of upper triangular matrices with only zeros on the diagonal.
Now it is clear, that tr(p[z,y]pz) is 0. O

Corollary 3.22: A Lie algebra g is solvable if and only if (g, [g, g])aq = 0.

Proof: =: is Lie’s Theorem.
«: Cartan’s criterion gives that ad(g) = g/Z(g) is solvable. But the center is abelian and so it
is always solvable. Therefore g is solvable, too. O

Warning: Not every invariant form is a trace form.

Exercise 3.23: Let 7 = C(p,q,c,d) with e, %Z] =0,[p,q] = ¢ [d,p] = p,[d,q] = —q. Con-
struct a non-degenerate invariant form on J#. Show that ¢ is solvable. Extend the represen-
tation of C(c,p,q) on k[z]| (given in 3.7) to a representation of J#.

3.2 Structure of semisimple Lie algebras
Definition 3.24: Let R(g) denote the maximal solvable ideal in g, the radical of g.
Exercise 3.25:

(i) Show that the sum of solvable ideals is solvable, i.e. R(g) is the sum of all solvable ideals.

(ii) Show R(g/R(g)) = 0.

Definition 3.26: A derivation is a linear map D : g — g satisfying D[z,y] = [Dx,y]
[z, Dy| (e.g. ad(x) is a derivation (follows from Jacobi identity and skew symmetry of [-, -])).

> +

derivation of the form ad(x) is called inner.
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Theorem 3.27: Let char k = 0, then the following are equivalent:
(i) g is semisimple
(i) R(g) =0
(iii) The Killing form (-, -).q is non-degenerate (killing criterion).

Moreover, if g is semisimple, then every derivation D : g — g is inner. (But not conversely, i.e.
this does not characterize semisimple Lie algebras.)

Proof: First notice that R(g) = 0 < g has no non-zero abelian ideal. “=" clear since abelian
ideals are always solvable; “<": if some ideal p C g is solvable, then the last term of its derivated
series is abelian.

Therefore, (i)=-(ii) clear (if g is semisimple, it does not have non-zero abelian ideals).
(iii)=-(ii): We will show: If a is an abelian ideal, then a C g = { € g : (z,a) = 0} where
(,)) = (+,")ad- Write g = a + b, h a vector space complement to a. If x € a, then ad(a) has

matrix
a 0 =
h 0 0

as a abelian and an ideal. If z € g, then ad(z) has matrix
* ok
0 =

0 =
r(ada,ad x) r(o 0)

as a is an ideal, so

o (a,9)ad = 0.
(ii)=(iii): Let i = g, which is an ideal. Suppose i # 0, then ad: i — gl(g) has (z,9)aq = 0 for
all z,y € i. Now, by Cartan’s criterion i/Z(i) is solvable, so i is solvable.
(ii),(iii)=(i): Let (-,-)aq be non-degenerate. Let a C g be a minimal ideal.
Claim: (-, -)ad|, is either 0 or non-degenerate.
Proof: {z € a: (z,a) =0} = ana' is an ideal. But a is minimal, so aNa‘ =0 or a. O
But Cartan implies a is solvable if (-,-)aql, is zero. But R(g) = 0, so it must be (-,)aqa|, non-
degenerate. Hence g = a®at, as (-, “)ad|, and (-, -)aq are non-degenerate, with a simple. As this
is a direct sum of Lie algebras, any ideal of a* is an ideal of g. Inductively repeating this with
at instead of g gives g = @ a; where a; are simple Lie algebras (minimal and ideals).
(i)=(ii): Claim: If g is semisimple, then g is a direct sum of its minimal ideals in a unique
manner. To prove this, note first that all the components of the direct sum are ideals in g.
Write g = € a;. Assume that v C g is an minimal ideal. Consider v N a;. These are either 0 or
a;, since the a; are minimal. Hence, find j s.t. a; =t O
Now, by Cartan’s criterion, we have a is solvable if and only if (-,)ad|, is zero. But that would
contradict the direct sum composition into minimal ideals (since then a C a*). Hence, R(a) = 0.
Finally, let D : g — g be a derivation, g semisimple. Consider the linear function [ : g — K
with @ — trg(D(adx)). As g is semisimple, (-,")aq is non-degenerate, so there exists y € g, st.
l(x) = (y,2)aq for all x € g (this follows from x +— ad(z) being an isomorphism g — g* (as a
linear map with trivial kernel)). So we will show E = D — ady is zero, i.e. D = ady. (Note F
is a derivation). So to prove Fa = 0 for all a € g, it is enough to show (Ex, z),q = 0 for all z, 2.
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Assume (+,)aq is non-degenerate. Observe that ad(Fxz) = F-adx —adx-E =[F,adx]: g — ¢
(as ad(Ex)(y) = [Ez,y] = Ex,y] — [z, Ey| as E is a derivation), so

(Ex,2)aq = trg(ad(Ex) - ad 2) = trg([E,ad 2] - ad 2)
= trg(Elad z,ad z]) = trg(E - ad[z, 2]) = 0,
as by the definition of E: tryg(E - ad(a)) = trg(D - ad(a)) — l(a) = 0. O

Exercise 3.28: Show that [R(g), R(g)] C g+ C R(g).

Remark 3.29: If g is any Lie algebra, then
0— R(g —g— g/R@ —0
—— ——
solvable ideal semisimple
is an exact sequence with maximal semisimple quotient.
Theorem 3.30 (Levi’s theorem): If chark = 0, this exact sequence splits, i.e. there exists a
subalgebra s C g isomorphic to g/R(g) (this algebra is not canonical), so we have g = s X R(g)
(semidirect product). This is false in characteristic p.
Exercise 3.31:
(i) Let g = s, (Fp). Show that R(g) = F,I, but there is no complement.
(ii) A nilpotent Lie algebra always has non-inner derivations.

(iii) Let g = (a,b) with [a,b] = b. Show that g has only inner derivations. Note that for this
example (-, -)aq = 0, so this is an example showing that the condition that all derivations
are inner does not imply that the Lie algebra is semisimple.

(iv) Let g be a simple Lie Algebra above field a k, (-, )1 and (-, )2 two non-degenerate invariant
bilinear forms. Show that there exists a A € k* st. (+,-)1 = A(+, )2

(v) Let g = sl,,(C) (assume this is simple). Define (A, B) = tr(AB), so (A, B) = A(A, B)ag-
Compute .
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4 Structure Theory

In this section, we consider finite-dimensional Lie algebras.

Definition 4.1: A torus t C g is an abelian subalgebra s.t. for all t € t, adt = [t,-]: g — ¢
is a diagonalizable (i.e. semisimple) linear map. A maximal torus is a torus not contained in a
bigger torus. A maximal torus is also called a Cartan subalgebra.

Example 4.2: Let T = (S')" < G a compact Lie group (or T = (C*)" < G a reductive
algebraic group). Then t = LieT C LieG is a torus, and maximal if T is.

Exercise 4.3:

(i) g C sl or gl,,, t be the set of diagonal matrices (or the matrices of trace 0 if in sl,), then
t is a maximal torus.

(ii) (J8) Csly is not a torus.

Proof:

(i) Case t C gl,, first: Clearly, t is an abelian Lie subalgebra of gl,,. Moreover, if we choose
the basis {E;j, Eyy — Exi, | © # 7,1 < k} of sly, we notice that for D = Diag(A1,...,\,) we
have ad D(E;j) = (A — \j)E;; and therefore ad D is represented by a diagonal matrix. t
is maximal since if t contains any other matrix (w.l.o.g. take Ej;j,i # j) then [t, E;;] =
(ti —t;)Eij # 0, for a suitable choice of t. Hence, t is not abelian.

0 00
1
(ii) ad <8 0) is represented by the matrix | 0 0 2| which is not diagonalisable as the
1 00
eigenspace of the only eigenvector 0 is 2-dimensional. 0

Let ti,...,t,: V. — V be pairwise commuting (t;t; = t;;) diagonalizable linear maps. Let
A= (A1, .., \) €C". Set Vy ={v eV |tiv=\v, Vi=1,...,r} simultaneous eigenspaces of all
t;.

Lemma 4.4: V =& Ae(Cr) Vy, i.e. V breaks up into a direct sum of simultaneous eigenspaces.

Proof: Induction on r. If r = 1, this is clear by requiring that t; is diagonalizable for all 3.

If r > 1 consider tq,....t,—1, V. = @ V), ., by induction hypothesis. Now decompose

VA1, into eigenspaces for ¢, (possible since t, diagonalizable). ]
Set t to be the r-dimensional abelian Lie algebra with basis t1,...,¢,. Then V is a semisim-

ple (that is completely reducible) representation of t, by Lemma 4.4, and V = V), is its

decomposition into isotypical (i.e. direct sums of isomorphic summands) representations.

Exercise 4.5: Show that every irreducible representation of t is one dimensional.

Solution: If a subrepresentation W is not one-dimensional (as a vector space) then take 0 #
v € W and (v) is a t-subrepresentation of W. O
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Set Cy to be the one-dimensional representation of t, where ¢; - w = M\w, for all 7. Then
V) is a sum of dim V) copies of Cy (a direct sum), and A # p implies Cy 2 C,. Really, X is
a linear map t — C, i.e. A € t, where A(t;) =: A\;. So, one-dimensional representations of t
correspond to irreducible representations of t which are in 1-1 correspondence to elements of
t* = Homvee (t,C), and V = @ Vi, Vi = {v € V [ t-v = A(t)v, VL € t} is called the weight
space decomposition of V. Now, let g be a Lie algebra, t a maximal torus. The weight space

decomposition of g is

9:90+@9>\7

Aet*
A#£0

where go ={x € g | [t,z] =0}, gx ={z € g| [t,z] = A(t)z Vt € t}.
Definition 4.6: R = {\ € t* | g\ # 0, A # 0} are the roots of g.

Example 4.7 (Essential): g = sl,, t the diagonal matrices in sl,. If

t1 0
t= v By = (0 1650) ks
0 tn

then [t,EU] = (ti — tj)Eij. Define Ei(t) =t;,s0¢;:t— C,ie g €t and 1,
€1+ ...+ep, =0 (as t Csly). So [t, Ej;] = (s — €5)(t)Ey; and so

R={ei—¢cj|li#j}, go=t

R are the roots of t. (This shows also that t is a maximal torus), and g, .

j
sl, =t® @ Hei—¢;

Ei—EjGR

one-dimensional. So

is the root space decomposition of sl,,.

(6)

..., En span t*, but

= (DE@']', 1 7& j, is

Exercise 4.8 (Exam!): Compute the root space decomposition for g = 502, 509,41, $Pa,,

where t = {diagonal matrices} N g, and

so, ={Aecgl, | JA+ATT =0}, J= ,

spy, = {A € gly, | MA+ATM =0}, M=

-1

In particular, show that t is maximal torus and the root spaces are one-dimensional.

(i) Show A € s0,(C) <= A is skew-symmetric w.r.t. side diagonal.
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(ii) Show A = (ﬁ; ﬁi) € Py, (C) <= Aa, A3 symmetric w.r.t. side diagonal, and Ay is
— Ay transposed with side diagonal.

(iii) b = {Diag(ay,...,an,0, —an,...,—a1) | a; € K} is a Cartan subalgebra in both cases.
(iv) son: C(Eijj—En—jt1n—it1), i+j <n+1, i # j are the root spaces for so,,. If n = 2[, roots
are R={te; £¢;|1<4,j <l,i#j}. lf n=20+1, the roots are R = {£e; £ ¢, £, |

1<4,5<li+#j}.

(V) 5p2n(®): root spaces are (D(EZJ — En,jJan,Z;H), 1 < ’i,j < l, (D(EZJ + Enfj+1,n7i+1), <
i<2l,j<lori<ll<j<2l androots are R = {+e; £e;,4+2¢; |1 <i,j <1,i # j}

(vi) Show spy; (I > 2) and so,, are simple (n > 4,n = 3).

(vil) Show so4 = so03 @ s03, $03 = sly, and s02 = sp, = C. Further, we have the isomorphisms
505 =2 spy, 506 = sly.

Remark: all these root spaces are one-dimensional.

Solution:

(i) Consider the ij-th element:

(JA+ AT ) = Z JikAgj + AgiJr;
k=1
= An—it1j + An—j+1,, = 0,

i.e. A is skew symmetric w.r.t. the side diagonal.

(i) MA+ATM =0 = MAMT = AT 1f A= (41 42) this means that

JAsJ —JAsJ\ _ [ —AT —AsT
—JAxJ JA1J _A%" AZ“ )

looking at the four squares gives the claimed identities.

(iii) Note that JDiag(ay, ...,a;,0, —ay, ..., —a1)’J = Diag(—ay, ..., —a;,0,a;,...,a1). Thus, t C
§09,4+1. For n = 2l consider the diagonal matrices of the form Diag(ay, ..., a;, —ay, ..., —a1).
Also MDiag(ay, ..., a;, —ay, ..., —a1)' MT = Diag(—ax, ..., —aj, ay, ...,a1) and hence t C sp,,;.
Clearly, b is abelian (diagonal matrices commute). Further, for any diagonal matrix ¢t =
(t1, .. tn), [t, Eyj] = (t; — tj)E;ij. Hence, ad t is diagonal for all h € h. It remains to show
that b is maximal; this follows from the fact that the diagonal matrices form a maximal
torus in gl,,.

(iv) Consider so,. We have a basis {E; j — Ey—j11n—it1 : @ + j < n} for so,. First, consider
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5097, then

[t,Eij — En_jrin—iv1] = [t, Bij] — [t, En_ji1n—it1]
= (tz‘ —t)Eij — (th—jt1 — tn—it1) En—jt1n—it1

a; —aj)E;j — (—aj + a;) En_ji1n—it1 ifi,j <l

a; — ay) i, — (—(lj - ai)EnfjJrl,nfiJrl ity <li>I
a; + a;)E; j — (aj + ;) En—ji1n—it1 iti <lj>1
a; — )( 1,5 Enfj+l,n7i+l) if 1,7 < l

a; — )(Ezj - EnfjJrl,nfiJrl) 1f] < l,i >1.

+a;)(Eij — En_jiin—it1) ife<lj>I

((
(=
L (
(
(=
(s

This gives root spaces of the claimed form, with roots {+e; £¢; :i4+j <mn,i < j}. If we
consider 509,41, we have the additional equations

[t Eiii1 — En—in—iv1] = £(a; £0)(Ei 11 — En—in—it1),
giving the roots {e;,7i = 1,...,1}.
(v) For spy, we have the following basis:

Eijj —Eyjiin—iv1, 11,5 <1,
Eij+ En_jiin—it1, 1<l j>lori>1j<I, andi+j <2l

Ei,n—i—i—l’ 1= 1)"'7”
Then a similar calculation as in (iv) shows that
t,Eij — Enjrin—iv1] = (@i — a;)(Eij — En_ji1n—it1),

giving the root spaces C(E;j — En—jtin—it1), (W.r.t. root £e; £¢;), 1 < 4,5 <10 # j.
Further,

[t Ezg + En —Jj+1n— z+l] ( + )E’Lj + ( n—j+1 + tn7i+l)En7j+1,n7i+l
(ti + 1) (Eij + En—jt1n-i+1),

this gives the root spaces C(E;; + Epn—jtin—it1) (W.r.t. root g +¢;), for i < 1,5 >
L,i+j <2, and for i > [,j < l,i+ j < 2l we obtain the roots —(g; + €;). Finally,
[t, Bin—it1) = 2B n_it1 = €i(t) Ei i1 ]

Proposition 4.9: The Lie algebra sl,, is simple, for n > 2.

Proof: Recall sl;, = t® @ cpba, R ={ci —¢j : i # j}, 9e,—; = CEj;. Suppose a C sl is a
non-zero ideal. Choose r € a,r # 0, s.t. if we write r =t + ZaeR eq With e, € g, then the
number of non-zero terms is minimal.

Now suppose ¢t # 0. Choose ty € t, st. «a(ty) # 0 for all @« € R (i.e. ty has distinct
eigenvalues). Consider [tg,7] = > cpa(lo) - €a € a, as a is an ideal. This, if non-zero, has
fewer terms than r, contradicting our choice of r, hence must be zero. Therefore e, = 0 for all
ac Randsor =t et t#0. Now this implies that there exists an o € R with a = ¢; — ¢;
s.t. at) =: ¢ # 0. Hence cE;; = [t, Ej;] € a, as a is an ideal with ¢ # 0, so E;; € a. But now

28 Robert Laugwitz & Henning Seidler



4 Structure Theory

{Eijank] = By if ¢ 7& k and [EsiyEij] = Esj if j #£ s, s0 Eij € a implies Ey, € a, for all a # b.
But now Ej; — Eit141 = [Eiit1, Pit14] € a also, but {Ey, Ejj — Eijt1441} forms a basis for
sl,, so a = sl,.

If t =0, write r = ) _cp€a, and if there is only one non-zero term, then r = cE;;, ¢ # 0,
argue as before, to get a = sl,,. Sor = cE, + dEg + Z'yER\{aﬁ} ey with «, 3 distinct. Choose
to € ts.t. alty) # B(to). Then a suitable linear combination of [ty,r] and r has fewer terms
than r, contradicting our choice. O

Proposition 4.10: Let g be a semisimple Lie algebra. Then maximal tori exist, i.e if t is a
maximal torus, then t # 0. Moreover go = {x € g | [t,z] =0} =t.

Proof: omitted O

This means that the root space decomposition of a semisimple Lie algebra g is

g:t+@ga-

Theorem 4.11 (Structure theorem for semisimple Lie algebras): Let g be a semisimple
Lie algebra, t C g maximal torus, write g = t + @ 9o Then:

(i) CR = t*, i.e. the roots span t*,
(i) dimga =1,
(iii) If o, € R and a + B € R, then [go, 98] = gats. fa+ 5 ¢ R, and a # —f, then

[9a,95] = 0.
(iv) [8a,8-a] C tand is one-dimensional, and g,®[ga, §—a|Pg—q is a Lie subalgebra, isomorphic
to 5[2.
Proof:

i) If not, there is some t € t, t # 0 with «(t) = 0 for all & € R. But then for x € g, we have
(i) g
[t,x] =0, i.e. [t,g4] =0 for all & € R. But [t,t] = 0, as t is abelian. So ¢ is in the center
of g. But g is semisimple, so it has no abelian ideals and therefore no center.

Next we will prove several properties, which lead to the proof of the theorem, but will not be
directly assigned to its statements.

(a) [gx, 9u] € grgp forall A\, p € t*
Proof. By the Jacobi identity for all t € t,z € g\,y € g, we have

t, [, y]] = [[t, ], y] + [, [t, y]] = AO)[z, y] + p@t)[z,y] = (A + 1) (#)[z, y] O

(b) (9x:8p)aa = 0 if A # —p. Moreover, (+,")adly, 44, is non-degenerate.

Proof. Let x € gy, y € g, By (a) (ad(z)ad(y))Vga C GatNOtp)s but A+ p # 0 and g
is finite-dimensional. So for N sufficiently large, we have o + N(A + ) ¢ R and then
Ba+N(+p) = 0. So ad(z) ad(y) is nilpotent and therefore

trg(adzady) = (z,9)ad = 0.
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On the other hand, (-,-)aq is non-degenerate (by (3.27) as g is semisimple) and g =
D) ce- 9n, so it must be that (-,-)
is non-degenerate.

is non-degenerate, so in particular (-,-)

ad‘g>\+9u ad|9>\+97/\
O

In particular, (-,-)adl; is non-degenerate (t = g
so it defines an isomorphism v: t = t*, v(t)(t)
inner product, i.e. (v(t),v(t))aq := (¢, )aq-

0) (warning: this is not (-, -)aqt, which is 0),
= (t,t')aq and equippes t* with the induced

If « € R, then —a € R

Proof. (+,")aq is non-degenerate on g, + g—o- But by (b) (ga,8a)aq = 0 if @ # 0. This
implies g_, is non-zero (and isomorphic to (gq)*). O

Ifx € ga, y € g—q, then
[xay] = (xay)ad ! V_l(a) et (7)

Proof. v([z,y]) € t¥, so it is determined by ([z,y],t)aqa (7) follows from

V([:Uay])(t) = ([$,y],t)ad (;) (ta [x7y])ad = (x7y)ad ’ a(t)>

() as (v, +)ad is an invariant form. O

Let eq € go be non-zero, and pick e_,, € g_q s.t. (€q,€—q)ad # 0 (possible as (-, ')ad’ga+g,a
is non-degenerate), so [eq,€_a] = (€a,€—a)ad? (), by (7). This implies
v Ha), exa] = £a(v Ha))eta = £ Ha), v Ha))eq = £(a, a)eq.

Claim: (o, a) # 0.
Proof. Suppose (a,a) = 0. Put m := {eq,e_q, v (a)). Then [m,m] = Cv~!(a), and so

m is solvable. But then Lie’s Theorem implies that ad[m,m]| acts by nilpotent operators
on g, i.e. adv~!(a) is nilpotent (<= all eigenvalues are 0). But v~!(a) € t, so acts

diagonalizable, by definition. Hence v~!(a) = 0, i.e. a = 0, contradiction. O
Therefore, we can define h, = 2'2;7165)0‘) € t and rescale e,, so that (e, €_q)ad = @Tza)

Exercise: Check that the linear map m — sls defined by e, — e,e_o — f, ho — h is an
isomorphism of Lie algebras.

dimg_, =1,Va € R.
Proof. Pick my = (eq, ha,€—q) as above, so m, = sly, and suppose dimg_, > 1, then
g o — Cv (), 2+ [eq, 2]

must have a non-trivial kernel, i.e. there exists v € g_, s.t. ad(en)v = 0, i.e. v is a highest
weight vector with weight -2 as ad(hqe)v = —a(hq)v = —2v (by definition a(hy) = 2), but
dim g < oo, so contradiction (highest weights of finite-dimensional sly representations are

in IN). O
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Note that the proof of part (iii) is still incomplete. It will be proven in the following theorem,
which continues the structure theorem. O

Exercise 4.12: Check Theorem 4.11 for the classical Lie algebras sl,,, 502, 502,41, 5o,

Theorem 4.13 (Structure Theorem continued):

(v) If o, B € R, then 229 ¢ 7.

(a,@)

(vi) If @« € R and ka € R, then k = £1.

(vii) ez 98+ka is an irreducible module for (sl2)o = (ea, ha,e—o). In particular, the set

{ka+ B |ka+p € R, keZ}U{0}

is of the form 8 —pa, B — (p—1)a, ..., f+ qa, where p—q = 2((5;5)), the a-string through 5.

Proof:

(v) Let ¢ = max{k | B+ ka € R}, v € gg1ga; v # 0. Then [eq,v] € gg4(g+1)a = 0, and
[hasv] = (B + qa)(hg)v. But

2 () _ 2(6,a)

2qg =: N,
W+ Taa) = (o) T
———
ha
so v is a highest weight vector with weight N € IN, as ¢ € IN, this implies % cZ.

(vii) Structure of slp-modules tells us that (ade_,)" # 0, if 0 < r < 2((55)) +2¢ = N, and

(ade_o)V 1o = 0. Tt follows that {8 +qa — ka : 0 < k < N} U {0} are all roots. So
B+qo, B+ (qg—Day, ..., 0 — (q + %) « are roots. So, we show that there are no more
roots.

Let p = max{k | f — ka € R}, and w € gg_pa, w # 0, then [e_o,w] = 0, [hq,w] =
<2(O"ﬂ) - 2p> -w is the lowest weight vector of an (sly),-module, so we get that

(o)
2
B_paaﬁ_(p_l)aawg—i_ pb— (CM?ﬁ) a
(a, )
are all roots. Put p’ = ¢ + 2((;75)), so p' < p by definition of p, i.e. g+ 2((55)) < p, and by
definition of ¢, p — % < q. Hence equality.

(vi) If ka is a root, then as is (v) (QIEZ%% =2 €7, and 2%2'23) = 2k € 7, so it is enough to
show that a € R implies 2a ¢ R. If not, let v € g_o4, v # 0. Then ade,v € g_,, but this
implies ad(eq)v = 0, as (-, -)aq is non-degenerate on g, + g—o = Ceq + Ce_q, SO v € g_24

is a highest weight vector of weight -4, a contradiction.

(iii) Finally, we prove that [ga, 93] = gatp if o, 8,0+ 3 € R. We have just shown that
Drez 95+ ka is irreducible my-module, i.e. ad(eqa): gs1ka — 9+ (k+1)a 1S an isomorphism
if k < ¢q. But go+p # 0 implies ¢ > 1, so ad(eq )98 = 98+a O

Robert Laugwitz & Henning Seidler 31



Lie Algebras and Their Representations

Definition 4.14: For a € t*, define the reflection at o as
2
(v.0)

(@, @)

Sq: tF =t sa(v) =v—

Claim 4.15: Property (vii) of Theorem 4.13 says s,(8) € R, for all o, 8 € R.

Proof: Put r = 20B) ¢ 7, Ifr>0,p=q+r>r.Ilfr <0, q=p—r > —r. In both cases, we

get 8 — ra in the (giz)tring through 3. O
Proposition 4.16: Recall that R spans t*.
(i) If o, B € R then (o, ) € Q.
(ii) If we pick a basis (1, ..., 5 of t* with 8; € R and 8 € R, then 8 =3 ¢;8; with ¢; € Q, i.e.
dimg R = dimg t.
(iii) (-,-) is positive definite on QR.
Proof:

(i) Since 2((5"5)) € Z, it is enough to show (5,3) € Q if 8 € R. Now let h,h’ € t. Then by

structure theorem

(7, B)aa = trg(ad had B') = )~ a(h)a(h))
aER
So if A, u € t*, we have

(M) = @ N ()aa = Y alrT A)alv ™ (w) = Y (A a)(p,a)

aER a€ER

80 (675) = Za€R<Oé,B)2. Dividing by %(ﬁjﬁy we get

1 (2eB))
(&@‘%%@@m)ezjwﬁmQ'

(ii) Let f1,..., 5 be a basis of t* consisting of roots and let B = ((5;, 5;)i; be the matrix of
the bilinear form. Since (,-) is non-degenerate, det B # 0. Now if 8 = > ¢;8; € R, we

have (8, 8;) = >_; ¢j (85, Bi) but

C1 (/87 Bl)

=BT f e

q (ﬁvﬁl)

(iii) If A € QR, then A = > ¢;8; with ¢; € Q by (ii), so (A, ) € Q for all « € R, by (i). But
then
A=) (L)’ >o0.
a€R

And if (A\,\) = 0, then (A\,a) = 0 for all & € R, hence A = 0 as R spans t* and (-,-) is
non-degenerate. O

Exercise 4.17: Let (-,-) be a non-degenerate, bilinear, symmetric form and let B defined as
in 4.16. Show that det B # 0.
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5 Root Systems

Definition 5.1: Let V be a vector space over R. Let (-,-) be an inner product (here it is a
positive definite, bilinear, symmetric form). If « € V, a # 0, write a¥ := ((30;). Note that
(a,a") = 2.

Define s, : V. — V by s4(v) = v — (v,a")a (which is a linear map).

Lemma 5.2: The linear map s, is the reflection in the hyperplane orthogonal to «. In particu-
lar, all of its eigenvectors are 1, except of one which is —1. So 82 =1 (<= (sa+1)(s4—1) = 0),
and s, = O(V, (-, -)) the orthogonal group defined by (-, -).

Proof: V = Ra @ ot where o = {v € V : (a,v) = 0}. Furthermore, we have
sal@d) =a—(a,a") -a=a—2a=—a.

And for each v € at we have

s5a(v) =v—(v,aY)-a=v— 2 “(v,a) =w O
(v, @) —

Definition 5.3: A root system R in V is a finite set R C V s.t.
(i) 0 ¢ Rand RR=V (i.e. V =span(R)),
(ii) for all o, 8 € R we have (o, V) € Z,
(iii) sqR C R for all o € R.
A root system is called reduced if
(iv) ,ka € R = k= =+1.

Note that (iii) implies that s,(a) = —a € R.

Example 5.4: If g is a Lie algebra and g = t + P, cp ga is its weight space decomposition,
then (R, RR) is a reduced root system.

Definition 5.5: Let W := ({so : @ € R}) C GL(V'). The group W is called the Weyl group of
R.

Lemma 5.6: The Weyl group W is finite.

Proof: Since the s, are invertible, and s, R C R by 5.3(iii), each s, permutes the elements of
R which is finite. So there exists an embedding W < Sym(|R|). But by 5.3(i) this map is an
injection since RR = V and therefore, if s,, sg act equally on R, they coincide on the whole of

V. O

Definition 5.7: The rank of a root system R C V is defined as dimpy V' as a vector space.
An isomorphism of root systems (R,V) — (R, V') is a bijective linear map ¢: V — V' s.t.
©(R) = R'. Note that ¢ is not required to be an isometry (i.e. does not have to preserve the
inner product).
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If (R,V) and (R, V') are root systems, so is (R][ R,V & V’). A root system which is not
isomorphic to a direct sum like this is called #rreducible.

Example 5.8:

rk 1: A; : The only rank 1 root system is V' = R with inner product (z,y) = xy and roots
R = {a,—a},a # 0. Its Weyl group is given by W = Z/2. We call this root system Aj.
This is the root system of sls.

tk 2: Ay x Ay : Take V = R? with the usual inner product. Then R = {e1, —e1, ea, —e2} with
the standard basis vectors is a root system. Note that this is A; x A; and therefore not
irreducible. Here W = 7./2 x 7./2.
Ay i Let a =aV, B=pY, (a,8) = —1. Then W = S3. We call this root system A, it
appears as the root system of slg.
By :Leta=ey, (a,a) =1, =exy—e1, (8,5) =2, a,a+ [ are short roots, 3, 2a+ 3 long
roots. Then W is the symmetry group of the square, i.e. W = Dg, the dihedral group of
order 8. This is the root system of sp, and sos.
G : Also D15 appears as Weyl group of a root system, called Gs.

€2
g a+p
€1
[0
(a) A1 ><A1 (b) A2
3a+ 28
B a+B 2a+p g a+p
«
|
‘(C)BQ (d)Gz

Figure 1: rank 2 root systems

Exercise 5.9: Check that all the above examples are root systems and that As, Bo, G2 are the
only irreducible roots systems of rank 2.

Lemma 5.10: Let R be a root system. Then R = {a" | « € R} is an root system.

Proof: Clearly, 0 ¢ RY. Also, since " has the same direction as «, we get that RR = V.
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Notice (a¥)" = a. Thus, for a, 8 € R, (a,(8Y)Y) = (B,a") € Z. Lastly,

5qv (V) = v — (v,a)a”
2c
=vm oy
2a
=v— (v, (a,a))a
= 54(v)
Hence, s,vR = s R C R. ]

Definition 5.11: R is simply laced if all the roots are of the same length (e.g. Ay, A; X Ay, Ag,
not Bs, GQ)

Exercise 5.12: If R is simply laced, then (R, V) is isomorphic to a root system (R’, V') with
(a,a) =2, for all « € R’ (i.e. a =aV).

Solution: Say |(a,a)| = /(a, ) = A, for all @ € R as R is simply laced. Now define @ := %a
(if this is an root system, then it is isomorphic to R via multiplication by a scalar). Then
(@,a) = 2, and @ = @. R := {a | a € R} is also a root system. Clearly, 0 ¢ R,RR = V.
Further,

NAREY

Wﬂ)=<A>2WﬁW=mﬂW€%

where we apply that R is simply laced. Lastly, notice that sz = sq4. O

Definition 5.13: A lattice L is a finitely generated free abelian group (= Z!) with bilinear
form (+,-): L x L — Z s.t (L ®z R, (+,+)) is an inner product space. A root of L is an o € L
with (o, o) = 2. Write

Rp={leL|(l,)=2y={leL|lY=10}

for the set of roots of L. Note that a € Ry, implies so(L) C L.

Lemma 5.14: The set of roots Ry, is a root system in RR;. Moreover, it is simply laced.

Proof: Everything is obvious, except: Ry is finite. But Ry, is the intersection of a compact set,
the sphere {v € RL | (v,v) = 2}, with the discrete set L, so it is finite. O

We say L is generated by roots if ZR;, = L. Note, this implies that L is an even lattice, i.e.
(I,1) € 2Z for all | € L.

Example 5.15:

(i) Let L = Za, (a,a) = A. If A = 2 and R = {z*a}, then L is generated by roots. If
@ # 1, for all k € Z, then Ry, = 0).

(ii) Ap: Consider Z"! = @?;1 Ze; and (e, e;) = d;; as a square lattice. Define

n+1
L= {ZEZ"H c(ler+ ...+ ent1) :0} = {Zaiei:ai EZ,Zai—O} >~ 7",
i=0
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Now, R, ={e; —ej:i# j}and so |Rp| =n(n+1), ZRy = L. If a = ¢; — ¢; then
n+1 n+1 n+1 n+1
Sa <Z xkek> = Zxkek — ((ei, Ziﬁk@k) - (ej, Zxkek)) (ei —ej)
k=1 k=1 k=1 k=1
= e — (z; — ;) (ei — €))
k=1
=x1e1 + ...+ rje; + ... + Tie; + ... + Tnt1€n41,
L.e. Se;—e; SWaps ith and jth coordinate. Hence

W= (s¢;—¢; 11,5 =1,...,n) = Spy1,

the symmetric group of n 4 1 letters. Call (R, RL) root system of the type A,, where n
is the rank of the root system. Note that A, is irreducible.

Exercise: Check these statements, then draw L C Z"t! and Ry, for n = 1,2, check that
these agree with A, A, as defined before. E.g. the roots system A; is:

T2

r1

Moreover, show that the root system of sl,,; is of type A,.

(iii) Dy: Consider the square lattice Z" = @', Ze1, with (e;,ej) = 0;;. Then Rzn = {£e; £
ej | i# j}. Set

L:ZRzn = {l:iaiei

i=1

a; € Z,Zai €27 (ie. even)} ,

then se, ., swaps the i-th and j-th component as before, and
Seite; (T1€1 + oo + Tnen) = 1121 + oo — Tj€ie. — Ti€j... + Tpen,

L.e. Se;te; swaps the i-th and j-th component and changes signs of these components. If
L has this form, we say (Rp,ZRy) is of type D,,. In this case, |D,| = 2n(n + 1) and

W = (Z/2Z)" x S,

where (Z/2)" ! is the subgroup with even number of sign changes.
Exercise: As before, check all these statements. But D,, is only irreducible if n > 3. We
have the identities Rp, = Ra,, Rp, = Ra, [[ Ra,. These are the root systems of sogy,.

(iv) Eg: Let

Ty o= {(k1, ... kn) | > ki € 27 and either all k; in Z or all in Z + 3}.
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Consider a = (4, ..., 1), then (o, @) = 2, using the usual inner product. If o € I';, and I,
is an even lattice, then 8 divides n.

Exercise:

(a) T'sy, is a lattice.
(b) If n > 1, the roots of I'g, are a root system of type Dsg,.

(c) Rrg = {%e;i+ej, i<, %(:i:el + ...+ eg), with even number of minus signs} is a root
system, the root system of type Eg. Note, |Rr,| = 85—74 + 128 = 240.

(d) Can you compute |[W|? (It is 2'4-3%.52. 7).

Remark: A Lie algebra with root system Rp, should have dimension 8 + 240 = 248,
as dimt = dimg RR, and every root space has dimension 1. The smallest non-trivial
representation of such a Lie algebra would also have dimension 248 (adjoint representation).

Exercise 5.16: If R is a root system, a € R, then a" N R is a root system.

Definition 5.17: We can apply this to Rr,. Take a = %(1, 1), B =e7+es:

(i) a N Ry, is a root system, the root system of type Er.

(i) ot N B+ N Rr, = (o, B)* N Rr, is a root system, the root system of type Fg.
Exercise 5.18: Show |Rg,| = 126, |Rg,| = 72 and describe the corresponding lattices.
Theorem 5.19:

(i) “ADE?” classification: The complete list of irreducible simply laced root systems is

A’VL?nZ 17 Dn7n247 E67E77E87
and no two root systems in this list are isomorphic.

(ii) The remaining irreducible (reduced) root systems are denoted by

BQ = 027 Bn,Cn,’I’L > 37 F4a GQ?

where
Rp, = {*e;,*e; ej,i > j} CZ" (root system of s02,11),
R, = {+2e;,te; £ ej,i > j} CZ" (root system of sp,,,),
Rén = Rp,,
Wpg, =We, = (Z)27)" x S,.

F4: Put

1
Qn = {(k1, s kn) | Vi, i € Z 01 Vi, by € Z+ 5}, and define
Rp, ={a € @Qn|(a,a) =2o0r (o,a) =1}

1
= {:I:ei,:lzei + €j,i > 7, 5(:&61 +eytest 64)}.
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G5: Consider the lattice L = {(z,y,2 € Z> |2 +y + 2z = 0)}, and define

Rg, ={a € L|(a,a) =2 or 6}
:{:I:(el — 62), :|:(€1 — 63), :|:(€2 — 63),
+ (27 —ea —e3), £(—e1 + 2e2 — e3), =(—e1 — e + 2e3)}.

Exercise 5.20: Check that Fy as defined in Theorem 5.19 is a root system.

We want to choose a “good” basis for V. Assume, we have f: V — R linear, s.t. f(«a) # 0,
for all @ € R. Define o € R positive if f(a) > 0, and negative if f(a) < 0. Denote

Rt :={a€eR| f(a) >0}, and R~ := —R™.

Definition 5.21: A root a € R™ is simple if it is not the sum of two positive roots, i.e.

a# B+, for all B,y € RT. Write Il = {ay, ...,y } for the set of simple roots. Note that using
a different function f may give other simple roots.

Example 5.22:

Ay, : Here, R = {e; —e; | i # j}. Choose f(e1) = n+ 1, f(e2) = n,..., flent1) = 1, s0
Rt ={e;—e; | i < j}. f(R") C N, soif f(a) = 1, @ must be simple, thus IT =
{e1 —ea,e0 — €3, ..., — €nt1}.

B, : R ={te;,xe; te; | i< j}. Put fler) =n,..., f(en) =1, then RT = {e;,e; £e; | i < j}
and IT = {e; — eg,...,en—1 — €n, €}

Cn: R={%2e;,te; e |i < j}. Using the same f as for B,, we obtain RT = {2¢;,e; + ¢; |
i<jland Il = {e; —eg,...,en_1 — €n,2e,}.

D, : R={te;+e;|i<j} Using the same f as for B,,C,, we obtain R™ = {e; ;| i < j}
and IT = {e] —e9,...,en—1 —€n,en_1 + €}

Eg : Consider Eg with f(e1) =28, f(e;) =9—14,i=2,...,8 (note 28 =14+2+3+4+5+6+7),
then

1
RT = {e; £ ej(i < j), 5(61 +e9 + ... £ eg) (with even number of minus signs)},

1
II={ez —e3,...,er — es; 5(61 +eg—ey—...—e7)er +eg}).

f=1 P f=3

Exercise 5.23: Check all theres examples, pick nice functions f and also do Eg, E7, Fy, Go.
Proposition 5.24 (Dynkin):
(i) If a, B €11, then a« — B ¢ R.
(i) If o, B € I, @ # 3, then («, BY) < 0.
(iii) Every a € R™ can be written as o = Y k;a;, with o; € IT and k; € Z>o.
)

(iv) Simple roots are linearly independent (i.e. the sum in (iii) is unique). Remark: This shows
that II is the desired “nice” basis for V.
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(v) If « € RT \ I, then there exist 8 € I, s.t. « — 3 € RT.
(vi) R irreducible <= II is indecomposable, i.e. II # II; [ [ Iz with (II;,II3) = 0.
Proof: Exercise. Either case by case checking, or finding an uniform proof from the axioms of

a root system (see e.g. (Kac, 2010, Thm 17.1)). O

Definition 5.25: Let IT = {a1,...,a;}. Define a;; = (o, ), A = (aij)i<ij<i is the Cartan

matriz.
Proposition 5.26: The Cartan matrix A = (a;j) of a root system satisfies the following
properties:
(i) aij € Z, for all 4, j, a;; = 2, a;; <0 if i # j;
(i)
(iii) det A > 0;
(iv) all principal subdeterminants of A have positive determinant.

aij:() < (lji:(];

Proof: (i), (ii) have been proven before.
(iii):
2 0

(a1,01)

A= (v, a5))
2
(al,Oé[)

where det((a;, oj)) > 0 as it is the Gram matrix of a positive definite bilinear form. For (iv)
notice that the principal subdeterminants are matrices of exactly the same form, thus also
have positive determinant (or argue that the restriction of the bilinear form to (aq,...aq_g),
k=0,...,1—1, is also positive definite). O

We can draw A as a graph using so-called Dynkin diagrams. In these diagrams, vertices are
simple roots, and edges are given by a;ja;; lines joining simple roots «; and «;. Note that for
irreducible root systems on the following values appear:

—

, if simply laced,
a;jaj; = § 2, appears in By, Cp, Fy
3, appears in Gs.

If a;ja;; = 2 or 3 put an arrow in the direction of the short root. The Dynkin diagrams of all
the root systems (classification in Theorem 5.19) are shown in Figure 2.

Exercise 5.27: Show that the Dynkin diagrams are as claimed in Figure 2.

Exercise 5.28: If (R, V) is an irreducible root system with positive roots R and simple roots
I1, then there exists an unique positive root § € R™, s.t. for all ; € IT 6 + a; ¢ R. 0 is called
the highest root. Note, as so0 € R, (a;,0) < 0, Vi.

Solution: Examine the roots systems one by one (later, we will give a uniform proof of this
statement). E.g. for A, take 6 :=e1 — e,41. O
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e O—0O==0—0
G2 O=0
Figure 2: Dynkin diagrams

Define the extended Cartan matriz A by setting ag = —0, A = (aij)o<i j<i, where a;; =
2(as,05) _ (i, oY)
(oj,a5) — NG

Example 5.29:

Ay A= (2), take 6 = «, as this is the only positive root, then A= (32 _22).
2 —1 -1
-1 2 -1
A, : The extended Cartan matrix is A, = -1 , if n > 1. The Dynkin diagram

of fln is

Corollary 5.30: Notice that A satisfies:
(1) CLijEZ, for all 4, j, (IZJSOIfZ#],
(ii) Q5 = 0 <— aj; = 0;

(iii) det A = 0, and all principal subdeterminants A of A have det A > 0.
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Proof: (i) and (ii) follow directly from the properties of A. For (iii) notice that II U {6} is not

linearly independent. O
Bn, ag=—e1—€e2 O—QO------ O0—O0=0
Cn, a9 = —2e1 O>=0—0------ O0—0=<0
Dy, g = —€1 — €3 } —————— ﬁ
Eg

I O0—0—0=0—0
G O=0—0

Figure 3: Extended Dynkin diagrams A

Exercise 5.31: Write down the highest root  and the extended Dynkin diagram A for all
types of root systems.

Solution: See Figure 3. O

Exercise 5.32:

(i) Show the corresponding Dynkin matrix to

also has determinant 0. We call this matrix twisted A,, denoted by 1217(12).

(ii) The Dynkin diagram of AT is the Dynkin diagram of A with the arrows reversed.

Theorem 5.33: An irreducible (i.e. connected) Dynkin diagram, and hence an indecomposable
Cartan matrix is one of A, By, Cy, Dy, Eg, E7, Es, Fy, Go.

Proof:

(i) Classify the rank 2 Dynkin diagrams. These have a Cartan matrix of the form

A:<2 —a) = detA=4—ab>0

—b 2
ab = (070)7 (17 1)7 (27 1)7 (17 2)7 (37 1)7 (17 3)
N e ~
A1xAr Az B Ga,
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are the only possibilities, as a;ja;; € {0,1,2,3}.

Observe that any subdiagram of a Dynkin diagram is a Dynkin diagram (follows from the
fact that the principal subminors have determinant > 0).

Dynkin diagrams contain no cycles. To prove this, let ag, ..., a, be distinct simple roots
and consider

€V, then

a—Z X
OCZ,OCZ

2(ay, )
0< (a,a) =n+ E )
(0, ;) (v, o)

1<J
=n—- E QijQji,
1<j

by definition of a;; = (e, ) and the fact that (a;, ) <0 if i # j.
So ZK]- V/@ija;; < n. But now if there is a cycle on ai,...ap,, we must have n or more
edges, i.e. Zi<j \/@ijaj; > n, a contradiction.

The Dynkin diagram does not contain any extended Dynkin diagrams.

If the diagram is simply laced (i.e. no 2 or 3 bonds), then it is of type A, D or E. To
prove this, suppose such a diagram is not of type A, D or E. As Dy is not contained in
any Dynkin diagram, we only have triple branch points. Denote by T}, the diagram

Tp7q77”

having 3 branches with p, ¢, and r edges (e.g. Eg = T532). Exercise: finish the proof by
(a) arguing that, as a Dynkin diagram does not contain Eg, Er, Eg, we are left with
D, (n>4)or E, (n=6,7,8),
(b) showing that det T, 4, = pq+ pr+ gr —pgr by induction on p+ ¢+, and hence argue
that D,,, Fg, E7, Eg are the only possibilities for this. E.g. det Fg = 15+10+6—30 = 1.

Consider the case if the diagram is not simply laced.
Exercise: If Gs is a subdiagram, then the diagram is Go. Hint: We have seen

O—C)EC) does not appear, show
C=(C==xD also do not appear.

1(2)

Finally, if a 2 bond occurs, only one of such as C,, and A}’ are not contained in a Dynkin
diagram, and then no branches occur as B, is not contained. If the double bond is in the
middle, the diagram has to be Fy (otherwise, it contains F4). If the double bound is not
in the middle, we have B,, or C,,. ]

42
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Exercise 5.34: Compute the determinant of all the Cartan matrices. For example:
A1: A1 = (2) has det Al = 2,

Ag: Ay = (31 _21) has det Ay = 3, etc.

Remark 5.35: Notice that SL,41 = {X | det X = 1} has center isomorphic to the cyclic
group of order n+ 1. The order of this is the determinant of the Cartan matrix. In general, the

order of the center of the simply connected group with Lie algebra g whose Cartan matrix is A
is det A.

6 Existence and Uniqueness

Setting: For a semisimple Lie algebra g, we chose a maximal torus t and obtained a direct

sum composition
g=1teo @ Ja-
acR

Further, we chose f: RR — R, giving us R", and thus the simple roots IT = {ay, ..., }. From
this we defined the Cartan matrix A.

(A) Independence of choices

Theorem 6.1: Let chark = 0 and k = k. All maximal tori are conjugate, i.e. if t and
t' are maximal tori of g, then there exists some g € (Autg)° = {g € GL(g) | g: g —
g is a Lie alg. homomorphism}°, such that gt = t". Note that Aut(g) is an algebraic group
(with Lie(Aut(g)) = g). Aut(g)° is defined as the connected component which contains
the 1 € Aut(g).

Theorem 6.2: All choices of positive roots R™ are conjugate. Let (R,V) be a root
system. For f1,fo : V. — R (s.it. fi(a) # 0 Va € R) denote the corresponding sets of
positive roots by R, R; . Then there exists a unique w € W (the Weyl group), such that
wRy = R; Hence wll; = Il and thus they have the same Cartan matrix.

Corollary 6.3: g determines the Cartan matrix, regardless of the choices of the maximal
torus and the function f.

(B) Uniqueness
Theorem 6.4: Let g; for i = 1,2 be semisimple Lie algebras with respective t;, R;, R;“, I1;, A;.

Assume that after reordering of indices, we have A1 = As. Then there exists some isomor-
phism ¢ : g1 = g2, such that p(t1) = t2, ¢(R;) = R, etc.

(C) Existence

Theorem 6.5: Let A be a Cartan matrix. Then there exists a semisimple Lie algebra
with A as its Cartan matrix.
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Remark 6.6: We already know this, except for Go, Fy, Fg, E7, Es.

Let g be a semisimple Lie algebra. Choose some non-zero E; € g,, and F; € g_,,, such that

(Ei, Fi)aa = ﬁ (this is possible as (-, )|, is non-degenerate (4.11) and (ga, go) = 0) and let

20 )

HZ' _ Z(ai,aj)
(viy ;)

et, aij= (o)) = .
Qg (az aJ) (aiaai)

We have [H;, H;] = 0 (since the H; are in the torus, thus commuting), [E;, Fi] = H;, [E;, Fj] =0

if i # j (since [Ej, Fj] € ga;—a,, which is no root for i # j, making ga,—o; = 0) and

aj(2v (o))
(v, ;)

2(aj, a;)

[H;, Ej) = aj(H;)Ej = (0, o)

. Ej = . Ej = aijEj and so [Hi,Fj] = —aiij

Let nt =@ cpt ga and 0~ =P cp-0a- Sog=n" @ tdn".

Lemma 6.7: The E; generate n™ and the F; generate n~. Hence, {E;, F;} generates g (as a
Lie algebra).

Proof: Let a = > kja; € RY, so k; > 0. Define the height of a as ht(a) = >_ k; > 0. Induct
on ht(«) that g, is spanned by linear combinations of the FE;. If ht(a) = 1, then o = o; € 11
for some i, so go, = CE;. If ht(a) > 1 we know that there exists some «a; € II, such that
B =a—a € R (by 5.24(v)). But we know [gq,, 98] = ga by structure theorem, as o, «, 8
are all roots. So by induction hypothesis, g, g3 are generated by some F;, and thus also g,.
Inductively, this proves that the E; generate n* as a Lie algebra. The argument for n= = (F}) is
similar. Finally [E;, F;] = H;. But t = (H; :i=1,...,1). So E;, F; generate g =n" +t+n~. [

Now let A be a generalized Cartan matriz, i.e. a; =2, a;; =0 < aj =0, a;; € —INif ¢ # 7.

Definition 6.8:

(i) Let g denote the Lie algebra with generators E;, F;, H;, where i = 1,...,[, and the relations

as above. (Remark: so g is basically a “bunch of sly glued together.”)

(ii) Let g be the quotient of g by the additional relations
(ad E))17%E; =0 and (ad Fj)'7% F; = 0, if i # j,

the so-called Serre relations (though discovered by Harish-Chandra, Chevalley). (Note
that if a;; = 0, then these relations become [E;, E;] = 0; if a;; = —1, [E;, [E;, E;]] = 0.)

Exercise 6.9: Check that the Serre relations hold for the classical groups sl,,, 502, §02p+1, §p9,,-
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Theorem 6.10:

(i) If A is indecomposable, then g has a unique maximal ideal and g is its quotient, i.e. g is
simple (not necessarily finite-dimensional).

(ii) Hence, if g is a finite-dimensional semisimple Lie algebra with Cartan matrix A, then the
map g — g (E; — E;, F; — F;) factors through g, is surjective and gives an isomorphism
a9

Remark: (i)=(ii) follows from Lemma 6.7, (ii) implies uniqueness as stated in (6.4).
The above theorem shows that existence is equivalent to the following theorem:
Theorem 6.11: g is finite dimensional if and only if A is a Cartan matrix.
Definition 6.12: In general, g is called a Kac-Moody algebra.
Theorem 6.13 (Presentation of W): Write r; = s,,, then
W= (r1,...,r | r? =1, (ryr;)™i = 1)

is a presentation of W, where

A ;A5 ‘ 01 2 3
mij |2 3 4 6
Example 6.14: Consider the simple cases

i

O O rry=nn

t J
TZ'T'jTi = Tj?“ﬂ’j

For A,, we have the relations r;r;y17; = riy17i741 and ryr; = rjr; if j # @ + 1, visualized as

0%

Exercise 6.15: Check for each root system that the relations claimed do hold. (Hint: it is
enough to show this for all rank 2 root systems).
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7 Representations of Semisimple Lie Algebras

7.1 Classification of finite-dimensional representations

From now on, let g be a semisimple Lie algebra, so
1=t0Po.=ton"on".
acR

Furthermore, let V' be a finite-dimensional representation of g.

Proposition 7.1: In the above setting, we have:

(i) V = @ycpr Vi, where V) = {v € V : tv = A(t)v Vv € V'}, the weight space decomposition
w.r.t. t (i.e. t acts semisimply on V).

(ii) If V) # 0, then A(hy) € Z for all &« € R. (Recall that we had (sl2)q = (eq,ha,e—a),
he = v~ 1(aY), for all a € R).

Proof: AsV is a finite-dimensional representation, it is also a finite dimensional representation
for (sl2)a, SO he acts diagonalizable on V' by the sly-theory and A(h,) € Z. As the h, span t,
(i) follows immediately. ]

Definition 7.2: Let R be a root system with simple roots ag, ..., q.
(i) Set Q = ZR = @._, Zay, the lattice of roots of R.
(i) Set P={y € QR |Va € R: (y,a") € Z} = {y € QR | Vi : (v,)) € Z}, the lattice of

weights of R.

Remark 7.3: Note, if 8,a € R, then (8,a") € Z, so Q C P. Notice also (v,a") = v(hq), so
if V' is a finite dimensional-representation of g and V) # 0, then A\ € P by Proposition (7.1ii).

Exercise 7.4:
(i) Show |P/Q| < oo, in fact |P/Q| = det A, where A is the Cartan matrix of g.
(ii) Show that the Weyl group W acts on t*, and W - P C P, hence W acts on P.

Example 7.5: Consider sly with R = {£a}. Then @ = Za. Since (a, ) = 2, this means
P =17Z%. So here we have |P/Q| = 2 = det(2) = det A.

Definition 7.6: If V is a finite-dimensional representation of g, define the character of V

chV =" dimVye* € Z[P]
AeP

A

where e is a formal symbol, basis for Z[P], with e* - e# = e M*,

(0%
Example 7.7: For sly, we have P = Z5. Write z = e2, then

n+1 —(n+1)
chL(n) =" 4. g = D2
Z+ 2z
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Now look at the adjoint representation of V = g for slg. Put w = e*! and z = e*2. Then

chV=2+4z+w+zt+wt+zw+2z"tw ™t

For the root lattice we have the following picture:

(o) a1 + Qo

° 1@ 1@ °

O (65}

e ,0 ,0 O ¢
° 1. 1. °

where the numbers next to the roots indicate the dimensions of the root spaces. Note that this
picture is S3 invariant.

Proposition 7.8: Let V be a finite-dimensional representation of g, then dim V) = dim V)
for any w € W, i.e. chV is W-invariant (ch V € Z[P]").

Proof Sketch 1. If G is an algebraic group with g = Lie(G) and T is the subgroup with
t = Lie(T') (e.g. g = 8py,,, G = SPyy,, T are the diagonal matrices in SPs,), then W = N(T')/T
(we do not prove this result; for example in sl,, T is the set of diagonal matrices, N(T') are
the basis matrices E;; (monomial matrices) and N(7')/T = S,), so for any w € W there exists
w € N(T), such that wT = w. Now if G acts on V (always if G is simply connected), then
Ww(Vy) = Vi as t(v) = ww Hw - v = w(MN(w™ Htw)v) = Mw™Hw)iv. O

Example 7.9: s = (_01 é), §2 = <_01 _01> € T\ {1} shows that you cannot embed W — G

in general and W itself does not act on V. Instead we have a small 2-group (= (Z/2)" at worst),
that intervenes. So W is the normalizer of the maximal torus modulo the torus.

Proof Sketch 2. Mimic this in g. How to see
0 —1 1 0\ /1 =1\ /1 O x™
= = — ? f— JR—
<1 0 ) (1 1) (0 . > (1 1) exp(f)exp(—e) exp(f)? where exp(x) Z py
n>0
This is only easy for nilpotent matrices. So for each not «, define
$a = exp(fa) exp(—ea) exp(fa).

The following steps (exercise) finish the proof:
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(i) If V is a finite-dimensional representation of g, then e,, f, obviously act nilpotently on
V,s0 §q : V — V is a well-defined finite sum.

(ii) 82 = e4: Vi — Vi, where €2 = 1. g, is multiplication by a scalar. Determine it explicitly

in terms of A (denote the scalar by s,).

(iii) Then $,V) = Vi, . O

Remark 7.10: We do not need V to be finite-dimensional for this, just need that each e,, f,
acts locally nilpotent (some z: V — V acts locally nilpotent if for all v € V' there exists N € IN
s.t. Nv =0).

Exercise 7.11: Show that this is equivalent to V splitting up — as an (sly),-module — into a
direct sum (possibly infinite) of finite-dimensional (slz),-modules, for all & € II. Such a V is
called integrable.

In the following, all the statements for Lie algebras and their proofs also work in the case
of Kac-Moody algebras if whenever the assumption of finite dimension of V' is made, this is
replaced by the condition of V' being integrable.

Proof Sketch 3. The statement is actually obvious from the slo-theory: Consider V' as a rep-
resentation of (sly)q X t, then V breaks up into a direct sum of strings, each of which is of the
form

MA—a,...,A—ma,

where m = A(hq). Such a string is obviously s, invariant. O

Definition 7.12:  For p, A € t* write p < X to mean A — u = > k;ay, k; € IN. Graphically,
this means that Q<) = {u € P | p < A} is the set of lattice points in an obtuse cone.

Definition 7.13: Let V be a representation of g, we say
(i) The weight of a vector 0 # v € V is defined as A if v € V), write wt(v) = X in this case.
(ii) A € P is a highest weight if V) # 0 (i.e. X is a weight) and if V, # 0, then p < A.

(iii) Say v € V4 is a singular vector if v # 0 and eqv = 0 for all @ € RT. Note that wt(eqv) =
a+p > B, if equ # 0. (This follows from goV\ C Viiq, as for € g we have hgav =
([hg, ] +zhg)v = (a(hg) +A(hg))v). Soif v is a highest weight, all 0 # v € V,, are singular
vectors.

(iv) A weight p is an extremal weight if wp is a highest weight for some w € W.
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(v) Set

Pr={ eP|(\a")>0VYae R}
={AeP|(\&)) >0,V €I}

and call PT the cone of dominant weights.

In the picture for the sl; root lattice, all points of the outside hexagon are extremal weights,
and a1 + ag is highest weight. Note that if V' is finitely-dimensional, then highest weights exist,
what implies that singular vectors exist.

Theorem 7.14: Let g be a semisimple Lie algebra over C.

(A) (Complete reducibility) If V' is a finite-dimensional representation of g, then V is a
direct sum of irreducibles.

We have P = {irreducible f.-d. representations of g} via A — L(\). More precisely:

(B) Let V be a finite-dimensional irreducible representation of g, v € V) a singular vector,
then:

(i) VA =C- v, ie. dimV), = 1.

(ii) If V, # 0, then X\ < p, so v is a highest weight vector (we say V' has highest weight
A).

(iii) AM(h;) e Nforalli=1,...,l,i.e. A € PT.

Moreover, if U is another irreducible finite-dimensional representation of g with highest
weight A, and u € Uy, then there exists a unique isomorphism V' — W sending v — w.

(C) Given A € P*, there exists a finite-dimensional irreducible representation with highest
weight A, denoted by L(\)

(D) We will later give a closed formula for ch L()), the so-called Weyl character formula.
Corollary 7.15: chL()\) = e* + > u<raue! € Z[P], and hence {ch L()) | A € PT} are linearly
independent. Write ch L(A) = my+3_ ,_\ duamy, € Z[P], where m;, = 3.y, €7, the so-called
monomial symmetric functions. As the m, clearly form a basis of Z[P]", this shows that
ch{L(\)} is a basis of Z[P]".

Corollary 7.16: If VW are finite-dimensional, then V =2 W if and only if chV =ch W.

Proof: Apply complete reducibility and the previous corollary. ]

Remark 7.17: Define w; € P to be the dual basis to the simple coroots hg,, i.e. (w;, aJV) = 0;j,
for i =1,...,l. These w; are called the fundamental weights. Using this notion, we can write

l l
P+:@Z20wi: {anw, m§0}
1=1 1=1
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Exercise 7.18:

(i)
(i)

Compute Pt for sl,, 509, 502,11, 5Ps,,, - . - and draw the picture for As, Bo, Go.

If A € P, then A = >, A(hi)w;, where h; = v~1(a)) as always.

7

Example 7.19:

(i)
(i)

(iii)

For any Lie algebra g over C, we have the trivial representation C = L(0).

For g we have the adjoint representation g as a representation of itself, g = t + @ . ga-
Here, a highest weight \ is a root s.t. A+ «a; ¢ R, for all i. Then X\ = @ is the highest root
in RT. Now Theorem 7.14 implies that 6 is unique as promised (as g is simple if and only
if ad g is irreducible).

Take e.g. A,_1 as an concrete example. Then 0 = ¢y —¢,, hy = By — E —i+1,i+1,
Q; = &; — Ej41, SO 9(h1) = 1, 9(h2) == O, PN ,G(hn,g) = O, H(hn,l) =1.

Exercise: Compute 6(h;) for all simple Lie algebras.

Examples of representations of sl,. P = Z"/7Z = 7" !. Take C" as standard rep-
resentation, with basis v,...,v, and weights ej,...,e,, > e; = 0. Then the highest
weight is e; (as e; > ey > -+ > e, since e; = (e; — e3) + €2, etc.) Then L(w;) = C",
chC"™" = et + ... + ef. If we write z; = e, this becomes chC"™ = z; + ... + z,, and
ZIP) = Z[5" 2 (2 = ).

rTn

Recall that if V, W are representations of g, then so is V®W , where x € g acts by z®1+1®x.
Hence, V ® V is a representation, but c: V@V -V ®V, a ®b+— b® a, commutes with the
g-action, so its eigenspaces are g-modules. 02 = 1, so the only eigenvalues are +1, i.e. S2V (the
symmetric algebra V®V/(v@w—w®v | v,w € V) with product vw := : (v@w+w®v)) and A2V
(the exterior algebra V@ V/{(v®@w+w®v | v,w € V), with product v Aw := (v @w —w®v))
are g-modules. In general, these must not be irreducible, but for sl,, they are.

Example 7.20: Let V = C" as sl,-module as above.

(1)

Consider A*V, s < n — 1, this space has a basis {vi; A ... Av;, | i1 < -+ < ig} (if
{v1,...,v,} is a basis of V). Further, A’V has weights e;, +...+¢€;, (as z(wi A... Aw;,) =
TWi, ANWiy ... AW, + ...+ wip Ao Aw;, , ANzw;, ), and check that E; - (v, A...Av;,) =0,
for all 4, if and only if v;; A ... Av;, = vi Ava A ... Awg, ie. this is the only singular
vector. So A°C" is an irreducible sl,-module with highest weight ws = e; + ... + e5 (the
s-th fundamental weight), as (ws,e; — €;4+1) = d;5. Thus, A°C™ = L(ws). For example,
A”_l(D" o~ (@n)* — L(wn,l).

Consider S™C", the m-th symmetric power of C" with basis {v;, -... v, | i1 <+ <iip}.
These are weight vectors with weights e;; + ...+ ¢€;,,.

m

Ei-(vil-...-vim):OVi <~ Vjy .- Vi, =V1 ...Vl =Vq,

m

so S™C™ is irreducible and isomorphic to L(muw;).

Exercise 7.21:

(i)

Check all the statements in the above example, compute ch A’C", and ch S™C".
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(ii) Find closed formulas for
Z ch S™C" - ¢™, and
m>0
> chATC™- g™

m>0
Exercise 7.22:

(i) Let V be finite-dimensional g-module, then V* @ W = Hom(V,W) as g-modules via
v*@w = (u = w-v*(u)) and Hom(V,V) # 0 as it contains Idy. Note that V* is a
g-representation by defining (g - f)(v) = —f(g - v) for all f € V*. (This comes from
differentiating the group action (¢f)(v) = f(g~'v).)

(ii) Show if V = C", g = sl,,, then V ® V* = sl,, & C (the sum of the adjoint and the trivial
representation). In contrast, V ® V = S2V @ A%V (in general).

Exercise 7.23: Let g = s0,, or spq;, 2l = n, V = C™ as g-representation in the obvious manner.

(i) Compute the highest weights of V.

(ii) V = V* via the form defining g, so V ® V has at least three summands (since it must have
the trivial subrepresentation). Show that it has exactly three summands, describe them
and find their highest weights.

In the following, we will prove Theorem 7.14. Let g be any Lie algebra with a non-degenerate
bilinear form (-,-) (for example, g semisimple with the killing form). Let x1,...,xy be a basis
of g, with !, ..., 2" dual basis, i.e. (2;,27) = §;;.

Define Q = Y x;2%, the Casimir of g.

Lemma 7.24: If z € g, then [Q,z] = 0.

Proof: We will give the proof in two different ways: First,
[Qa ‘T] = [Z mimiy LU}
= Z:Ul[azl,:n] + Z 24, 2]’

as [, z] is a derivation. Now write [2%, 2] = 3" a;;27, [z;,2] = bijz;. But then

Qi = ([‘rivx]vxj) = ([xjvxi]vx)

bij - ([wivx]vmj> = ([xjvxi]vw) = —Qji,

using that (-,-) is an invariant form. So [Q,z] = Y z;29a;; + Y x;2'b;; = 0.

We can also prove this without coordinates: We have maps of g-modules C < End(g)
g®g* via A = Ad (ie. 1 — Y a;®2"), and the isomorphism g — g* is implied by the
non-degenerate form (-,-). Further, the g-action on V implies a map of g-modules g — End(V)
which gives a g-module map

) multiplication
—_—>

g®g — End(V) ® End(V End(V).

So we have a map of g-modules C — End(V'), which is the statement of the lemma as it maps
1+— Q (i.e. Q generates the trivial submodule of End(V)). O
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Now, let g be semisimple. Then g = t® €,y 8o, and let (-,-) = (-,-)aqa be the killing form.
Choose a basis ug, ..., u; of t, and 0 # x, € go. Denote the dual basis of t by u!, ..., u! and 27
of g_o, i.e. (2o, %) = 1. Normalize x, so that (z4,2_) =1, then 2= = 2_,, and [z, 2_0] =
v~1(a) (note that in general we had that = € go, ¥ € g—o implies [x,y] = (z,y)r"!(«)). Hence

Q= Z wiut + Z(:ra:c_a +T_a%q)

a€ER
= z:uluZ +2 Z Tal_o + Z 1/*1(04).
a€ERT a€R*
Define )
-1%a
a€eRt

then we obtain

0= Zuzu’ + 207 (p) +2 Z Tal—_q- (8)
Note that this is (up to normalisation) the same Casimir as defined before, in the case of sls.

Lemma 7.25: Let V be a g-module, v € V a singular vector with weight A (i.e. nfv = 0,
tv = A(t)v). Then Qu = (]A + p|? — |p|?) - v.

Proof: Apply (8) to v, z,v =0 for all « € R, so

l
Q-v= (Z Aui) A (u?) + )\(21/_1(/)))) v
i=1
Hence, if V' is irreducible, 2 acts on V' by (A, A) + 2(), p) by Schur’s lemma.

7.2 The PBW theorem

Let g be any Lie algebra over k, where k is a field.

Definition 7.26: The universal enveloping algebra of g, Ug is the associative algebra over k
generated by g and relations zy — yx = [z, y] for all z,y € g.

More formally, if V' is a vector space over k, then

TV:k+V+V®V+V®V®V+...:@V@’”
n>0

is the tensor algebra over V, the free associative algebra generated by V. Multiplication V®" @
yem _ yOrtm) s defined in the obvious way. Let J be the two-sided ideal in T'g generated
by z®@y—y®x— [x,y] for z,y € g, then Ug =Tg/J.

Exercise 7.27: An enveloping algebra for g is a linear map ¢: g — A, where A is an associative
algebra and ¢ a k-linear map s.t.

U2)e(y) — y)u(z) = [z, y].
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For example, for V' a representation of g, A = End(V'), the action map ¢ is an enveloping algebra.
Show that Ug is initial in the category of enveloping algebras, i.e. the diagram

Ug

commutes.

Note that the Casimir 2 € Ug. Indeed, 2 € Z(Ug). Observe that T'g is a graded algebra,
but the relations

TRY—y®— [,y
deg 2 deg 2 deg 1

are not homogeneous, so Ug is filtered: Define (Ug),, to be the span of elements of degree < n
of g. Then (Ug)n(Ug)m C (Ug)n+m- In particular, & C (Ug)o, k+9 C (Ug)1,- ...

Exercise 7.28: Show that the above statements hold, and that if x € (Ug)n,y € (Ug)m, then
LY —Yyr = [-ray] € (Ug)n+m-1-

Definition 7.29: For a filtration Fy C F; C F5 C ... we set
grli'= @Fi/Fi—l

and call gr F' the associated graded algebra.

Theorem 7.30 (PBW Theorem, Poincaré-Birkhoff-Witt):

(i) grUg =B Ug)n/(Ug)n-1 <— Se.

(i) Equivalently, if z1,...,zx is a basis of g, then {z{* - ... 23 | a; € N} is basis of Ug. In
particular, g — Ug.

Exercise 7.31:

(i) Show that the previous exercise (x € (Ug)n,y € (Ug)m, then zy—yx = [z,y] € (Ug)n+m—1)
implies that we have a well-defined map Sg — gr Ug extending the map g — g.

(ii) This map is surjective, i.e. the monomials above span Ug. The content of the PBW
Theorem is then to show that this map also injects. We omit the proof of this.

Exercise 7.32: If V is a representation of g, v € V', then the g-submodule of V' generated by
v is just Ug - v (the image of the map Ug® Cv — V).

Definition 7.33: A g-module V is a highest weight module for g if there exists a singular vector
veV (ie. nto=0,t-v=At)v, for all t € t and some A € t*) such that V = Ug - v.

Lemma 7.34: Observe that it follows that Un= -v = V.
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Proof: The PBW Theorem 7.30 implies that if z1,...,zx is a basis of g then 2" ...z spans

Ug. Taking a basis z1,...,2, for n=, z,41,..., 2,47 of t, and x,1y11,...,25 of n~ we see that
Ug=Un ®Ut®Un" as a vector space. But Un™ -v = Cv (as nt -v =0) and Ut-v = Co,
thus Ug =Un~. 0

Remark 7.35: If V is irreducible and finite-dimensional, then it is a highest weight module.

Proposition 7.36: Let V be a highest weight module for g (no necessarily finite-dimensional),
and let vy be a highest weight vector with highest weight A € t*, then:

(i) t acts diagonalizable on V', and V = @AeD(A) V\, where

D(A) = {A_Zkiai | ki€ Z>ot ={pet | u<A}
D(A) is called the descent of A.

(ii) Va = Cup, and all other weight spaces are finite-dimensional.
(iii) V is irreducible if and only if all singular vectors are in Vj.

(iv) Q acts on V as |A + p|? — [p[.

)
)
)
(v) If vy is any singular vector in V', then |\ + p| = |A + p
(vi) There exist only finitely many A such that V), contains a singular vector.
)

(vii) V contains a unique maximal proper submodule I, I is graded by t (i.e. I = @e+(INVY)),
and [ is the sum of all proper submodules of V.

Proof:

(i),(ii) As V' =Un" - vp, expressions of the form e_g e_g, ...e_g vp span V, where 3; € RT and
e_p, € g—p,- But the weight of such an expression is A — 1y — o — ... — B, (Ezercise:
proof this, note tev = [t, eJv + etv = (—[(t) + A(t))ev). Whence (i) and (ii) hold as there
are only finitely many 8 € RT which sum up to a given weight A\ € Z>oR™.

(iii) If vy € V) is a singular vector, then N = Ug- vy = Un™ - v, is a submodule of V| whose

weights, are in D(A), by (i). But A # A implies D(A) € D(A), so N is a proper submodule
as vy ¢ N, i.e. V is not irreducible.
Conversely, if N C V is a proper submodule, then, as tV C N, N is graded by t, and its
weights are in D(A). Let A = A — > k;a; be a weight of N (a; € II) and > k; minimal.
Then > k; > 0 as otherwise A = A and N = V. Now, if 0 # v € N,, then v is singular as
for a« € RY, eq v € Nypq, but Nyxiq = 0 by minimality of Y k;.

(vii) Any proper submodule of V' is t-graded and does not contain vy. Therefore, the sum of all
proper submodules still does not intersect V and is t-graded, so it is the maximal proper
submodule.

(iv) We know from 7.25 that for any singular vector vy we have
Qup = (IA+ pl* — |p[*)or.

Moreover, 1 is central, so Qe_g, ...e_g.vA = e_g, ...e_g Qup and these elements span V.
Therefore, we see that {2 acts by the same constant on all of V.
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(v) Follows immediately from (iv) and 7.25 by applying  to a singular vector with weight .

(vi) If Vi contains a singular vector, then |\ 4 p|* = |A + p|*. This equation defines a sphere
in RR (center p, radius |A + p|) — a compact set. On the other hand, D(A) is discrete,
and the intersection of a compact and a discrete set is finite. ]

Definition 7.37: Let A € t*. A Verma module with highest weight A and highest weight
vector vy, M(A), is a universal module with highest weight A, i.e. if V' is any highest weight
module with highest weight vector v (also of weight A), there exists a unique map

M(A) =V, vp — v.

Proposition 7.38: Let A € t*, then:

(i) There exists a unique Verma module M (A).

(ii) There exists a unique irreducible highest weight module of weight A, we denote it by L(A).
Proof:

(i) Uniqueness of M (A) is clear by the universal property. For existence, define

M(A) =Ug ®@us Cy,
where b = nt +t and C, is the b-module on which nt v =0 and t-v = A(t)v, i.e.
M(A) = Ug/J(A),

where J(A) is the left ideal generated by u — A(u) for all u € Ub. Here we extend A to
the character Ub — C. In other words, M (A) is the module generated by g acting on 1,
with relations n* -1 =0,t-1 = A(¢)1, for all ¢ € t and only the relations these imply. So if
V is an arbitrary highest weight module with weight A, it is clear that V = Ug/.J, where
J is some ideal containing J(A), i.e. M(A) — V.

(ii) From the proof of (i) follows in particular, that an irreducible highest-weight module must
be of the form M(A)/I(A) where I(A) is a mazimal proper submodule of M (A). But we
have just shown that there is an unique maximal proper submodule, so L(A) is unique. [

Proposition 7.39: Let RT = {f1,..., 3.}, then elilﬁl . -eli*ﬁrv,\ is a basis of M(A).

Proof: The “hard” part of the PBW Theorem 7.30 implies this immediately. O

Corollary 7.40: Any irreducible finite-dimensional g-module is of the form L(A) for some
A € PT.

Proof: We know that it is of the form L(A), some A, and we have seen that the highest weight
must be in P by results of the sly theory. O

Example 7.41: Let g = sly. The Verma module M (A) is an infinite string of the following
shape:
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, FBU)\

Exercise 7.42 (Essential): Let first g = sls.
(i) Show that M(X) = L(\) (i.e. M(A) is irreducible) if and only if A ¢ Z>¢.

(ii) Show that if X € Z>¢, then M ()) contains a unique proper submodule, the span of FAtly,,
F 24y, .... This submodule is itself a Verma module.

(iii) Let now g be an arbitrary simple Lie algebra, and A(H;) € Z>o. Show that I*’iA(M)Jrl S UA

is a singular vector of M (A) (NB: there will also be other singular vectors).

(iv) Very important: compute ch M(A).

Proposition 7.43: Let A € P, then L(A) is integrable, i.e. E; and F; act locally nilpotently
(that is, all v € L(A) are contained in a finite-dimensional subspace on which E; acts nilpotently,
i.e. E'v =0 for some n > 0, and ditto for Fj).

Proof: If V is any highest-weight module, then E; acts locally nilpotently (as E;V\ C Vii,,,
but weights of V' are in the cone D(A) = {A — > kija; | ki > 0}). We must show that F;

(H;)+1

acts locally nilpotently. We know that FZA - v is a singular vector, by Exercise 7.42 (iii).

But L(A) is irreducible, so it has no singular vectors other than vy, so F;A(Hi)HUA = 0 by the
following exercise, which finishes the proof. O

Exercise 7.44:

(i) akh = Zf:o (I;) ((ad a)ib)ak_i

(ii) Using (i) and the Serre relations (ad ey)%es = 0 (forall o, B € R), show FNe_g, ...e_g.vp =
0 for N > 0 by induction on 7.

Note that we need the power 4 in the Serre relations in the worst case, for G2 where we have
a string o, o + 8, a + 28, a + 35. Notice that this is true for a generalized Kac-Moody algebra
as well, but then the 4 is replaced by the maximal —a;; + 1 in the Cartan matrix.

Corollary 7.45: We have dim L(A), = dim L(A),, for all w € W.

Proof: We have seen that E;, F; act locally nilpotently implies this statement is true for w = s,
— a simple reflection (see proof sketch 2 of 7.8). But W is generated by sq,, . .. Sq,, S0 this even
holds for all w € W. O
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Theorem 7.46 (Cartan’s theorem): If g is finite-dimensional and A € PT, then L(A) is
finite-dimensional.

Proof: Let « € RT. We know that e, acts nilpotently on L(A). We show first, that also e_,
does, to see that all of the root sla-copies act integrably. In fact, e™ ,vp = 0 for n = 2((;‘;3))
(A,a) + 1, as if not, we would have L(A)p_pqo # 0 and hence by Corollary 7.45 that

Sa(A —na) = so(A) + na
=A— (A a)a+ (A oY)+ 1)
=A+a>A

is also a weight in L(A), contradicting that A is the highest weight. Thus, by Exercise 7.44, we
see that e_, acts locally nilpotently on all of L(A). Therefore,

Un oy = (M .. e o) = L(A), for R = {B1,... 5},

is finite-dimensional. O

Now we can prove the complete reducibility stated in Theorem 7.14. In order to do that, we
need the following lemmas:

Lemma 7.47: For the reflection s; = s,, of the i-th simple root «; the condition s;(RT\{«;}) =
R\ {a;} holds.

Proof: Let o = Zj kja; € RT, then all k; > 0. Now

S;Qx = Z kjozj — Z(Ozj,a;/)kj + ki | oy,
J# J#

but a # o, so some k; > 0, # i. Thus, the coefficient of o in s;« is still positive (as it is the
same coefficient k;). But R = R [[(—R™"), i.e. the disjoint union of roots with all coefficients
> 0 and roots where all coefficients are < 0. This implies s;a € RT, and s;a # «;. O

Recall p = 3 cp+ Q.
Lemma 7.48: We have p(H;) =1, for all i, i.e. p=wi +... +w; € PT.

Proof: Observe

1 1
Sip = S; 50@4-5 Z a
aFa;
a€ERT
1 1
:—§a¢+§ Z a=p—aq;.
aFta;
a€ERT

But, sip = p — (p,a) ), so (p,a) =1 for all 4. O
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Lemma 7.49 (Key lemma): Let A € PT, and p < A such that p+ p € PT. Then
Atpl=lptp = A=p
Proof: Denote A — = > ki, then for all 4, k; > 0, and we compute
0=A+p,A+p)—(u+ppu+p)=Q0+p—(u+tp)A+p+p+p)

=(A—mA+p+p+p)=> kilai,A+p+p+p),
N————
ep+

as A, p,pu+ p € PT. But (a4, (A + p) +2p) > 1. This implies k; = 0 for all i. O

Theorem 7.50 (Weyl complete reducibility, cf. 7.14): Let chark = 0, k = k and g be
a semisimple Lie algebra over k, then every finite-dimensional g-module V is a direct sum of
irreducibles.

Proof: Recall that V' is completely reducible as an (sly),-module. Write V- = @ cp V). Consider
V' = {v € V | ntv = 0}. By Engel’s theorem, V" # 0, and [t,n*] C nT. Hence t acts on
V™ and so V' = D, cpr Vlf+, where Vlf+ ={zr €V |ntzx =0 and tx = u(t)r}. Therefore,
V™" consists of singular vectors.

We claim that for every 0 # v, € VJ+, the module L = Ug - v, is irreducible. To prove
this, note that L is a highest weight module with highest weight ©, so we must only show that
it has no other singular vectors. If A is the weight of a singular vector in L, then A < u, but
also |\ + p| = |+ p| by considering the action of the Casimir. Since V', and therefore L, is
finite-dimensional, we must have A\, € PT (by 7.14, and A(h;) = (A, ))). So by the key
lemma, A = pu.

It follows that V' = Ug- V"' is completely reducible (as if {v,...,v,} is a basis of weight
vectors for V"' with weights Ap, ..., A, then V/ = L(A1) & ... & L()\)). So to finish, we must
show that N =V/V/ =0.

If N #0, then N nt #0. Let vy € N §+ be a singular vector, as N is finite-dimensional,
A € PT. Lift vy to vy € V), then E;v) € V)14, and there exist some i s.t. F;uy # 0 as otherwise
Uy is a singular vector and Ugv) is contained in V' contradicting our choice of vy # 0. But
then, as E;vy, € V/,

OBy 2 By = (N + o> = pP)Evx, N € {A, A,
but on the other hand, as v is a singular vector in N, QTx = |A + p|*—|p|* Tx, so [N + p| = | A + p|
(by 7.36). Moreover, X + q; is a weight in L(X'), so A + o = X' — ) kjay, for some kj, i.e.
A= XN+ klo; with not all k! zero contradicting the key lemma, so V = V', O

7.3 The Weyl character formula

Lemma 7.51: Let A € t* and M (A) the Verma module of A. Then

el

chV(A) = Moo (=)

(10)

Proof: Let Rt = {B1,...,8;}. The PBW Theorem 7.30 gives the basis {e]ilﬁ1 . eIiTBTvA | ki €
Z>o} for the Verma module M (A) and the weight of such an element is A — Y| k;3;. So the
dimension of a weight space M (A)x_p is the number of ways of writing 3 as > k;8;. But this

is the coefficient of ™7 in [, cp+ (1 —e®) 7L O
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Let us write A = [[,cp+ (1 — ™). We have just shown that ch M(A) = ®/A.

Lemma 7.52: For all w € W, w(e’A) = detw - e?A. Here, det: W — Z/2 is the determinant
of w acting on t* (= £1).

Proof: Since W is generated by simple reflections, it is enough to show that s;(e?A) = —ePA.
But

siled) =si | e’(L—e) [T (=€)

aFto;
a€RT
= el % (1 — et™) H (1 —e %) = —€elPA,
aFta;
aeRT
as sip = p — a;, and s;(RT\ {a;}) = RT \ {a;}. O

Lemma 7.53: For any highest weight module V(A) with highest weight A
(i) there exist coefficients ay > 0, A < A, such that

chV(A)= Y axchL()), withay=1; (11)

A<A
[At+pl=|A+p]

(ii) there exist coefficients by € Z with by = 1 such that

chL(A) = E by ch M (). (12)
A<A
[A+p|=[A+p|

Proof: (i)=(ii): We write B(A) = {A < A | |\ + p| = |A + p|}. Recall that B(A) is a finite set
(for A € RR). We have a total order on B(A) = {A1,..., A} so that if \; < \;, then i < j.
Then (i) is a system of equations relating ch M (\) and ch L(\), which is upper-triangular with
ones on the diagonal and therefore invertible. Inverting this system gives (ii).

(i): Recall that the weight spaces of a highest weight module are finite-dimensional. We induct
on_,epn) dimV(A),. Note that if V/(A) is irreducible, (i) is true with ay = 1,a) = 0,if A # A.
Otherwise, there exists a root u € B(A) with a singular vector v, € V/(A),. Choose  so that the
height (3~ k;) of A—p =)~ kjoy; is maximal for all singular vectors. Then L(u) := Ug-v, C V(A)
has no singular vectors, and is therefore irreducible. Set V(A) = V(A)/L(p) (i.e there exists
an exact sequence 0 — L(u) — V(A) — V( ) — 0), then we see that V(A) is a highest-weight

module with a smaller value of }° ¢ py)dimV(A),, and chV(A) = ch V(A) + ch L(p). So we
are done by induction. O

We will now compute ch L(A) for A € PT. We know that

ch L(A Z by ch M (A Z bA—.

AEB(A AEB(A
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Further, we have seen before that w(ch L(A)) = ch L(A) for all w € W, and w(Ae?) = det w-Ae”.
Therefore,
e?Ach L(A) = Z bye P
AEB(A)

is W-anti-invariant. So w (Z/\EB(A) bAeAﬂ)) = det w. (Z/\eB(A) bAeAﬂ)). Let us rewrite this as

S b= Y b Y detu 0,

AEB(A) Ayhs  WEW

where Ai,..., )\ is a representative system for the orbits of W acting on B(A + p). Now, if
A € RR (which is true, since A € P*), then W(\ + p) intersects {z € RR | (z,,Vi) > 0} in
exactly one point (this set is a fundamental domain for the W-action on RR). (Note that for a
given A € RR, W (A + p) defines a positive root system and W acts simply transitively on those
roots). Therefore, we can take a representative system for the orbits only containing dominant
weights. Note that one of these dominant weights is A and the other orbits are given by W
acting on {\ € B(A) | A # A, A € P*}. But the key lemma 7.49 implies that this set is empty,
so the only coefficient is by = 1. This proves the following theorem:

Theorem 7.54 (Weyl Character Formula): For all A € P™

S e detw - ewAtr)

ch L(A) = o e (1= o) (13)
= Z detw - ch M (w(A + p) — p). (14)
weW

Example 7.55: Let g = sly, and write z = e®/2, then C[P] = C|z,27'] and e’ = z, and we

have
SmAl _ o —(m+1)

«
hL(m—) =
¢ (m2) z—2z71

as we saw earlier in this course.

Corollary 7.56 (Weyl denominator identity): As L(0) = C, we have ch L(0) = 1, so

e’ H (1—e"%) = Z detw - “”.

a€Rt weW

Exercise 7.57: Let g = sl,,. Show that the Weyl denominator identity is equivalent to the
Vandermonde determinant

1 1 1
21 Z2 Zn
det . = H(Zl — 2j),
: i<j
2?71 zgfl 2

where we write z; = e®.

Corollary 7.58 (Weyl dimension formula): For all A € P we have

dimL(A) = ] {2212

(15)
a€RTt (a’ p)
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Example 7.59: g = sl3 (root system is of type As), RT = {a, 8, a+8} with p = a+ = wi+ws.
Let A = mqwq + mowo, then

e B a+p
(wA4+p) [mi+1 mo+1 mg+mg+2
Co |11 2

Therefore, dim L(A) = 5(mq + 1)(ma + 1)(m1 + ma + 2).

Exercise 7.60: Compute the dimensions of all the finite-dimensional irreducible representa-
tions of By and Gs.

Remark 7.61: Let w € W be written as w = s;,si,...S;, where s;, are simple reflections.
Then det w = (—1)". The minimal r such that w can be written in this form is called the length
of w, denoted I(w). The Monoid Lemma asserts that you can get from one minimal-length
expression for w to another by repeatedly applying the braid relations.

Exercise 7.62: [(w) = #{-RTNw IRt} =l(w™}).

Proof: (Weyl dimension formula). We still have to prove the Weyl dimension formula 7.58.
We know ch L(A) = > dim L(A)ye* € C[P]. We would like to set e* + 1, but then the denom-
inator in the Weyl character formula would become 0. Instead, consider the homomorphism

F,: C[P] — (D(q),e)‘ — q_o"”).

For example, Fy(et) = 1, so Fy(ch L(A\)) = dim L(\). Now apply F,, to the Weyl dominator
identity. Then

q—(p,u) H (1— (au Z det wg™ (wp,p) Z det wq—(p,wu)

a€eRt weWw weW

as det w = detw™! and (z,wy) = (w™'z,y) (i.e. the Weyl group is a subgroup of the orthogonal
group of the inner product). We now apply F, to the Weyl character formula:

ZwEW det wq_(w(A+p)7u)

F,(chL(A)) =
u (4)) q—(p,#)Ha€R+(1_q(a,#))

if (o, ) #0 for all « € R
Now, take p = p (recall that (p,a;) = 1 > 0 for all simple roots «;, so (p,a) > 0 for all
a € RT), so

=S dim (g ) = T Magne (= A
q_(p7p) HQER+ (1 - q(avp))

where we used our expression for the Weyl denominator identity and applied it to the numerator.

ChL

From this we can conclude the Weyl dimension formula

. (A+p,a)
dimL(A) = J[ &2
OCEHR+ (p7 a)

by setting ¢ = 1 and applying L’Hopital’s rule. O
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Remark 7.63: We can now algorithmically answer all questions about finite dimensional rep-
resentations of semisimple Lie algebras by knowing the highest weight. For example, let us
decompose L(A) ® L(p) = > m5 ,L(v) (by complete reducibility). To compute the Littlewood-
Richardson coefficients m, (recall that we had the Clebsch-Gordan rule for them in sly) define

~: Z[P] = Z[P], ¢! e,

CT: Z[P] — Z, e)‘b—>{0 ?“7&0 , and
1 ifA=0
() ZIP] X ZIP) = Z., (f,g) = ,VlvcﬂngA),

where A = [[ cp+ (1 —e7?).
Claim: if we let x, = ch L(}), then (xx, xu) = 6, and thus m3, = Oxaxu, Xo)-

Proof:
1 -
(X)\a X/.L) == WCT( Z ew(A‘f‘P)—Pem(uJ,-p)—p det(ww))

z,weW
by Weyl. But CT(e?W+P)=itp)y = §,,.5,5 as for A\, p € R* we have w(\ + p) = p + p if and
only if w =1,y = X\ (as the dominant weights are the lattice points in a fundamental domain of
the W-action), so 27 w(\ + p) = u + p precisely if x = w, A\ = p. O

7.4 Principal sl,

Define p¥ € t* by (p¥, ;) = 1 for all a; € II (recall that (p, ;) = 1, so p¥ can be seen as p for
RY).

Exercise 7.64: Show p¥ = 1Y .+ a’. In particular, if R is simply laced, p = p¥. This
implies (p", ) = ht(a) = Y k; if we write a = > k.

Exercise 7.65:
(1-— q(A+p7av))

Fpo(ch L) = ¢~ ™) T T

aceRt

Hint: Apply F),v to the Weyl denominator identity of the irreducible representations of the Lie

Ap,aV) (A p,0) VR
(a¥ () Y = aa)

algebra with root system RY. Note that ( SO We recover

Definition 7.66: We call F,v(ch L(A)) =: dim, L(A) the g-dimension of L(\).

Proposition 7.67: The g¢-dimension dimg L(A) is a unimodal polynomial, i.e. it lives in
]N[qQ,q_Q]Z/2 or qIN[¢2, q_2]Z/2 (depending on its degree), and the coefficients decrease as the
absolute value of the degree increases.

Proof: This follows if we show that dim, L(A) is the character of an slp-module in which the
length of all “strings” have the same parity. Let H = 2v~1(p¥) € t C g, and set £ = > E;.
Check that [H, E] = 2F (Exercise). Write H = > ¢;H; for some ¢; € C (Hy,..., H is a basis of
t), and set F' =) ¢;F;. It is left as an exercise to show:

(i) Show that E, F, H generate a subalgebra isomorphic to sly, the so-called principal slo.
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(ii) Show that if A — v is a weight of L(A), then (A —~,2p") = (A,2p") (mod 2).

This implies the proposition. O

Exercise 7.68: Write [n] = %. Show that the following polynomials are unimodal:

. n n]!
(i) [}] = gt where [n]! = [n][n — 1].... [1],
(i) A+q)(1+¢%)...(L+q").
Hint: For (i), apply the above arguments to g = sl, and V = S¥C™ or A*C"**. For (ii), apply

this to the spin representation of B,, = 502,11 (which we will define in 8.16).

Remark 7.69: An isomorphism V 22 V* implies a bilinear form (-, -), but is this form in A2V
or S?V? Consider for example sly, it can be shown that the bilinear form induced by L(n) is
alternating precisely if n is odd, and symmetry if n is even. Notice that L(\) = L(A\)* if and
only if the lowest weight of L()) is —\ (for example, the C? representations are always self-dual,
and C? ® C? = €3 + C). Now, the question whether the bilinear form induced by L(\) ® L()\)*
is alternating or symmetric can be answered by checking this for the restriction to the principal
sly. This is equivalent to (), 2p") having odd or even parity.

Exercise 7.70:

(i) Compute dimy L(6), where L(6) is the adjoint representation, for A, B, and Ga. Then
do this for all the classical groups.

(ii) You will notice that L(0)| incipal st = L(2€1) + ... + L(2¢;) where | = rank g = dim , for
some ey, ...,e; € IN with e; = 1. The e; are called the exponents of the Weyl group. Note
that the order of the Weyl group is |W| = (eg +1)...(e; + 1). If you are in the mood,
compute |W| for Eg.

8 Crystals

Let g be a semisimple Lie algebra, IT = {aq, ..., o} the simple roots, and P the weight lattice.

Definition 8.1: A crystal is a set B, 0 ¢ B, together with functions wt: B — P, é;: B —
B U {0}, fi: B— BU{0} such that

(i) If &b # 0, then wt &;(b) = wt b + oy, and if f;b # 0, then wt f;(b) = wtb — .
(ii) For b and b/ € B, &b =V if and only if b = f;l.
(iii) ¢i(b) — ei(b) = (wtb,a), for all a; € II, where
gi(b) = max{n > 0| &'b # 0},

©i(b) = max{n >0 | fi”b # 0}.

We can draw B as a graph: The vertices are b € B, and the edges are b — b if &b’ = b.
7
We say that this edge is coloured by . We call such a graph a crystal graph.
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Example 8.2: Consider slo, then the string
n—sn—2-—n—4—...— —n

is a crystal, where the weight of vertex i is i5. Notice, for the crystal of the highest-weight
representation L(n) = L(nw;), we have that if b is of weight n — 2k, then e(b) = k, and
©(b) = n — k and the sum &;(b) 4 ¢;(b) is the length of the string

€ ®
—_——f
n—sn—2—sn—4—...—n—-2k—...— —n.

Define B, = {be€ B | wtb = u}.
If By and By are crystals, can define the tensor product B; ® By = B] X By as a set, with
wt(b) ® ba) = wt by + wt be, and

€i(b1 @ ba) = (8 1)iX> 2 1 #ilb) 2 €i(ba) whence
hh ® (ei)bg, if goi(bﬁ < Ei(bQ),
; fib1) ® by, if i(b1) > ei(b
Fi(by @ b) = (fib1) by ?90(1) €i(b2)
b1 ® (fi)ba, if wi(b1) < ei(b2).
That is, in each colour 7 we have a graph of the form
oo 0o )0 0o o
9 © @ @ @ @ L
Z\/
o © L 4 L 4 L 4 [
4
o © @ @ [
€
e o06—90—° [

the same form as we have seen for sly before.

Exercise 8.3:
(i) Check that B; ® By defines a crystal.

(ii) B1 ® (B ® Bs) = (B1 ® B2) ® B3, b1 ® (ba ® bg) — (b1 ® by) ® bs. It suffices to prove this
for sls. Note that it is not true in general that By ® Bs 2 By ® Bj.

Definition 8.4: BV is the crystal obtained from B by reversing the arrows. That is, BY =
{bV | b € B}, wtbY = —wtb, ;(b") = ¢;(b) (and vice versa), and €;(b¥) = (f;b)" (and vice
versa). In pictures:

(cpee) =(epepe).
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Remark 8.5: If B corresponds to a basis of a representation V', then BY corresponds to a basis
of the dual V* as B — B" comes from the Lie algebra anti-automorphism e; — f;, f; — €;, and
hi — —h;. Notice that if L()) is a representation with highest weight A, then L(\)* has lowest
weight —\.

Exercise 8.6: Show that (B; ® By)Y = By ® BY.

Theorem 8.7 (Kashiwara): Let L(\) be the irreducible highest-weight representation with
highest weight A € PT, then:

(i) There exists a crystal B(\) whose elements are in 1-1 correspondence with a basis of L(\)
(i.e. B(\), parametrizes a basis of L(\),), so

chL(N) = Y v (16)

beB(N)

(ii) For each simple root «; (i.e. a simple (slz); C g), the decomposition of L(\) as an (sl);-
module is precisely given by the i-coloured strings in B()). (In particular, as an uncoloured
graph, B(\) is connected, since it is spanned by elements of the form fi ... f; - vy.)

(iii) The crystal B(A)®B(u) is precisely the crystal for L(A)®L(p), i.e. B(A)®B(u) decomposes

into connected components exactly in the way L(A) ® L(u) decomposes into irreducible
representations.

Example 8.8: Let g = sl3, V = C3 = L(wy), then the weight spaces are 1-dimensional, so we
have no choice but to define the crystal as

wl?wl—al?wl—al—ag.

Let us compute V®V and V ® V*:

.+.+. a1+ —wy

h.w. 2wy
a1 + @2
w1
2w — oy
2w1 — 1
() VeV b)) Vev:

Figure 4: Crystals for V@V and V@V, V = C? as slz-module
Here, we chose black as colour 1, and red as colour 2 in the graphic. This implies,

VoV =0 =820 + A%C = S2C3 + (C*)*  as 2w; —ay = a; + ap — wi, and
VeV =EndV =C+sl3 (as a; + ag = 0).
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Remark 8.9: There are three proof approaches to the Kashiwara’s theorem. The first one is
due to Kashiwara, and is in the lecturer’s opinion the most instructive.

Note that while the crystals give the decomposition of the representation into irreducibles,
they do not correspond directly to a basis. That is, there is no slp-invariant basis that we could
use here. Kashiwara’s proof of the theorem uses the quantum group Ugslz, which is an algebra
over Clg,q '] and a deformation of the universal enveloping algebra Usly. The two algebras
Usly and Uysly have the same representations, but over Clg, q '] there is a very nice basis which
satisfies e;b = €;b+ ¢ - (“some mess”). Therefore, setting ¢ = 0 (“freezing”) will give the crystal.

A second proof approach is due to Lusztig. We will later look at the third proof using
Littlemann paths, which give a purely combinatorial way of proving this theorem (which, on the
face of it, is a purely combinatorial statement).

Definition 8.10: A crystal is called integrable if it is a crystal of an integrable highest-weight
module with highest weight in P*.

For two integrable crystals By, By, we do in fact have B; ® By = By ® By (in general, this
is false).

There is a combinatorial condition on crystals which implies that a crystal is integrable (due
to Stembridge); it is a degeneration of the Serre relations.

8.1 Semi-standard Young tableaux

Consider sl,,:

° — L] — L] —_— ... —> ® —
el=w; 1 wi—a1 2 wi—oaij—ay 3 n—1 n—1

is the crystal of the standard representation L(w;) = C". From this, we can construct the
crystals for all sl,,-representations:

Let A\ € P, A\ = kyjwy + ... + ky_1w,_1, then L()\) is a summand of L(w)®" ® ... ®
L(wyp—1)®*n-1 as v5M @ ... ® v5Fn1 is the highest weight vector of weight A (if vy, is the
highest weight vector of L(w;)). But L(w;) = A*C" is a summand of (C")®?, so L(w;) occurs
in some (C")®N, N > 0. Therefore, the crystal of C" and the rule for the tensor product of a
crystal determine the crystal for every representation L(\) of sl,,.

Now, we can introduce the semi-standard Young tableau of a representation (due to Hodge

(~1930), Schur (~1900), and Young (~1900)). Write
Blun) =[1] - [2] 2 [8] = .. 2 ]

for the crystal of the standard representation C". Now, if ¢ < n, denote

IJZZ®®(®E.B(’M)1)®z

The element b; corresponds to the basis vector v1 Avy A ... Av; € A'C"™, where C™ has the basis
Vly.-.yUn.
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Exercise 8.11:

(i) The vector b; is a highest weight vector in B(w1)®" of weight w; = e + ...+ e,. (Recall
that b € B is a highest weight vector if ;b = 0 for all 7). Hence, the connected component
of B(w1)®" containing b; is B(w;).

(ii) The connected component B(w;) consists precisely of

{[a]®[a2]®...®[a][1<a < ... <a; <n} C Blw)®.

We can write elements of the form ® ®...® as column vectors

.|, so the highest weight vectors are denoted

Now, let A = 3~ k;w; and embed B(\) — B(w1)®" @ ... ® B(w,_1)®*~1 by mapping the
highest weight vector by — b @ .. .@bZ*=1 Note that M. .®b§f’f1 actually is a highest

n—1
weight vector in B(w1)®" @ ... ® B(w,_1)®*1. Now as B(w;) < B(w;)®*" and hence

n—1
B(w))®" @...® B(wy_1)®1 < B(w)™, N:= Z k;,
i=1

we can represent any element in B(w1)®" ®...® B(w,_1)®*-1 by a sequence of column vectors

A [T 1111
e EE—
- k1
|
<
\ >
/ kn—2
-
kn—l

where the entries are strictly increasing down columns, the length of the i-th row is Z?:l k;.
We say this young tableau has shape .

Definition 8.12: A semi-standard Young tableauz is an array of numbers as above, such that

(i) the numbers are strictly increasing down columns, and
(ii) decreasing along rows.

Theorem 8.13 (Exercise):

(i) The semi-standard Young tableau of shape A\ are precisely elements of the connected
component of B(\) in B(w1)®" @ ... ® B(w,_1)%*»-1.

(ii) Describe é;, f; explicitly in terms of tableaux.

In the following, we will construct the Young tableau for the classical Lie algebras.
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Example 8.14: 509,41 (Type B, root systems) For the standard representation C?"*! we
have the crystal

BB mml om0
502, (Type D, root systems) For the standard representation C2" we have the crystal
1 2 “.n72 man.“ 2 1 .

x W%
spy,: (Type C,, root systems) For the standard representation C?" we have the crystal

T e e AR [ SR LISl

Exercise 8.15:

(i) Show that these are indeed the crystals of the standard representations of the classical Lie
algebras.

(ii) What subcategory of the category of representations of g do these representations generate?
Consider the highest weight A of the standard representation. This gives an element
A€ P/Q = Z(Q), a finite group (G is the simply connected group attached to g). Consider
the subgroup (\) < P/Q. We do not obtain all the representations unless P/Q is cyclic,
generated by \. For the classical examples we have P/Q = Z/2 x Z./2 for Ds,, P/Q = 7./4
for Dapt1, P/Q = 7Z./2 for B, and C,.

(iii) (Optional) Write down a combinatorial set like Young tableaux that is the crystal of B(\)
with A\ obtained from the standard representation.

For B,,, we need one more representation, the spin representation. Recall that for B, we
had the dynkin diagram

a2 Qp—205_1 %

Definition 8.16: The irreducible highest weight s09,,1-representation L(w,,), where w,, is the
n-th fundamental weight, is called the spin representation.

Exercise 8.17: Use the Weyl dimension formula 7.58 to show that dim L(w,) = 2".

68 Robert Laugwitz & Henning Seidler



8 Crystals

Define B = {(i1,...,in) | ij € {£1}}, wt(i1,...,in) = 5 Y_j_  ije; € P,and for 1 < j <n—1

(Z17a+17 - 1772n) if (2]72]+1):(_1?+1)

éj(il,...,in): VRS

0 otherwise,
~ /. . i1>~~-7in717+1) 1fln:_]-
en(it, ... in) = )

0 otherwise,

so always é? = 0.
Fact 8.18: This is the crystal of the spin representation L(wy,).

A
Remark 8.19: We have dim L(w,,) = dim A*C". In fact, gl,, C s02,+1, A — 0
—JAT g1

and L(wy)|,, = A*C™.

al,

Exercise 8.20: Check that B|g[ is a crystal of A*C".

For type D, the situation is more complex. We can define representations
Vt=L(w,), V =L{wy_1).

These are called half-spin representations. B* = {(i1,...,in) | i; € {£1},m, = +1} + if BT
and — if B™. wt, e;, and f; (¢ < n) are defined as above, and

en(il, e

) (i1, yin—g,+1,41) if (ip—1,in) = (—1,—1)
77/71) = .
0 otherwise.

8.2 Littelmann paths

Set Pr = P ®z R. By a path we mean a piecewise linear continuous map [0,1] — Pr. We
consider paths up to reparametrisation, i.e. ™ = 7o ¢, where ¢: [0,1] — [0,1] is a piecewise-
linear isomorphism.

Let P = {paths 7 s.t. 7(0) =0, m(1) € P}. We can define a crystal structure on P. For

m € P define
wt(m) = 7(1).

To define é;(7), let
hi =minZ N {(r(t),e)) | 0 <t <1} <0.

That is, h; is the smallest integer in (o), 7[0, 1]) (note that since 7(0) = 0, we have h; < 0). If
h; = 0, set é;(m) = 0 (this is not the path that stays at 0, but rather the extra element in the
crystal). Otherwise h; < 0, then take the smallest ¢; > 0 such that (7(¢1), ) = h; (i.e. the first
time the path crosses h;). Moreover, let to be the largest to < ¢1 such that (r(to), @) = h; + 1.
We will define é;7 as the path reflecting 7[to, 1] in the hyperplane {\ € Pg | (\,a") = h; + 1},
and then translating 7[t1, 1] while leaving 70, to] unchanged.
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b P h 41 Db+ 2

Expressed in formulas we have

m(t), if0<t<to
€i(m)(t) = § w(to) + Sa; (m(t) — w(to)) = 7(t) — (w(t) — w(to), ) Yy, ifto <t <ty
w(t) + ift > tg.

Exercise 8.21: Show that &;(7) = —h;.

Example 8.22: Let us compute some examples for sls:

éi<o—> o)z(), and
0 Q4
2
Ei|l @ «—o0<—0| = o o,
—a; 0 _ Q4 0
2
éz<o ﬁo>:0—>0—>o,
_ Qi 0 0 a;
2
ciloe— o — o | =0.
0 a;

If 7 is a path, let m¥ be the reversed path, i.e. t — 7(1 —t) — m(1). Define
film) = (@(x))".
Exercise 8.23: P is a crystal with wt, &, f; defined as above.

Now, define
P+ = {paths w s.t. 7[0,1] C P ={z € Pr | (z, ') >0 Vi}}.

Observe that if 7 € P, then é;(r) = 0 for all i. o i
For m € P let B; be the subcrystal of P generated by «, i.e. Br = {fi, fiy--- fi,7}.
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Theorem 8.24 (Littelmann):

(i) If 7,7’ € PT, then
Br 2 By < w(1)=7'(1)

(i.e. crystals with the same endpoint of highest weight paths are isomorphic).

(ii) There is a unique isomorphism of crystals B(w(1)) — B, (where B(w(1)) is the crystal of
the irreducible representation L(w(1))) sending the highest weight 7(1) to a path = with
endpoint 7(1).

Moreover, for paths of the form 7(¢) = A, A € P*, Littlemann give an explicit combinatorically
description of the paths in B;.

Example 8.25 (Exercise):

(i) Consider sl3 with simple roots «, 5. We want to compute the crystal of the adjoint repre-
sentation. First, show that

[ J
—(a+B)

and then compute the rest of the crystal and show that you obtain the adjoint represen-
tation of sl3.

(ii) Consider the root system type G2. You might have seen before that the smallest non-trivial
representation is 7-dimensional. Compute the crystal for the 7-dimensional representation
of GGo. Further, note that the second smallest non-trivial representation is 14-dimensional
(the adjoint representation). Calculate the crystal for the 14-dimensional representation,
and the tensor product of these two representations, if you feel like.

Remark 8.26: Littlemann’s Theorem 8.24 allows us to define B(\) explicitly, without using
L(\), and we can also prove Weyls character formula

> wew detwe™ (X + p) — p
[[(1—e)
without the use of L(A). This gives a proof of the existence of crystals (Theorem 8.7) without

quantum groups. To prove this, we can build ch L()), and indeed L(\) (and the crystal variants),
one root at a time. This is called the Demazure character formula.

dim B(\) =
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For every w € W, there is an approximation to L(\) given by Ly (\) if L, (A) is the nt-
submodule of L(\) generated by vectors vy, where vy is the highest weight vector of L(\), and
Uy 18 the vector in wL(A)y (1-dimensional submodule).

Theorem 8.27 (Demazure character formula):

ch Ly,(\) = Dy (e),

where w = s;, - ... - s;, is a reduced simple reflection decomposition of w (i.e. r minimal), and
Dy = Dy, - ... D, with D, : Z[P] — Z[P] defined by
f—silf)
D, (f) =1 %)
(==
f
= (Id +s;
(Id +s:) <1 —e %
1 Q4 i
= = (fe2 —si(fe?)), VfeZP]
671 —e 7
Note that

Additional sources

Grojnowski, 1. (2010), ‘Introduction to lie algebras and their representations, lecture notes’.

Kac, V. (2010), ‘Introduction to lie algebras, lecture notes’, http://math.mit.edu/classes/
18.745/classnotes.html.

Schweigert, C. (2004), ‘Einfhrung in die theorie der lieschen algebren, vorlesungsscript’, http:
//www.math.uni-hamburg.de/home/schweigert/.
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