
Randomized Greedy Online Edge Coloring Succeeds for
Dense and Randomly-Ordered Graphs

Aditi Dudeja1 Rashmika Goswami 2 Michael Saks 2

1University of Salzburg

2Rutgers University

Edge Coloring

Edge coloring: assignment of colors to edges of G so that no two
edges adjacent to the same vertex have the same color.

1 / 16

Edge Coloring

Edge coloring: assignment of colors to edges of G so that no two
edges adjacent to the same vertex have the same color.

Vizing: Graph with maximum degree ∆ can be properly edge colored
with ∆ + 1 colors (and requires at least ∆ colors).

1 / 16

Online Algorithms

Online setting: edges of the graph arrive one by one and are assigned
colors upon arrival.

2 / 16

Online Algorithms

Online setting: edges of the graph arrive one by one and are assigned
colors upon arrival.

2 / 16

Online Algorithms

Online setting: edges of the graph arrive one by one and are assigned
colors upon arrival.

2 / 16

Online Algorithms

Online setting: edges of the graph arrive one by one and are assigned
colors upon arrival.

2 / 16

Online Algorithms

Online setting: edges of the graph arrive one by one and are assigned
colors upon arrival.

2 / 16

Online Algorithms

Online setting: edges of the graph arrive one by one and are assigned
colors upon arrival.

2 / 16

Online Algorithms

Online setting: edges of the graph arrive one by one and are assigned
colors upon arrival.

2 / 16

Online Algorithms

Online setting: edges of the graph arrive one by one and are assigned
colors upon arrival.

2 / 16

Online Algorithms

Online setting: edges of the graph arrive one by one and are assigned
colors upon arrival.

2 / 16

Online Algorithms

Online setting: edges of the graph arrive one by one and are assigned
colors upon arrival.

2 / 16

Online Algorithms

Online setting: edges of the graph arrive one by one and are assigned
colors upon arrival.

2 / 16

Online Algorithms

Online setting: edges of the graph arrive one by one and are assigned
colors upon arrival.

2 / 16

Online Algorithms

Online setting: edges of the graph arrive one by one and are assigned
colors upon arrival.

2 / 16

Online Algorithms

Online setting: edges of the graph arrive one by one and are assigned
colors upon arrival.

2 / 16

Online Algorithms

Online setting: edges of the graph arrive one by one and are assigned
colors upon arrival.

2 / 16

Online Algorithms

Online setting: edges of the graph arrive one by one and are assigned
colors upon arrival.

2 / 16

Online Algorithms

Online setting: edges of the graph arrive one by one and are assigned
colors upon arrival.

2 / 16

Online Algorithms

Online setting: edges of the graph arrive one by one and are assigned
colors upon arrival.

2 / 16

Online Algorithms

Online setting: edges of the graph arrive one by one and are assigned
colors upon arrival.

2 / 16

Online Algorithms

Online setting: edges of the graph arrive one by one and are assigned
colors upon arrival.

2 / 16

Online Algorithms

Online setting: edges of the graph arrive one by one and are assigned
colors upon arrival.

2 / 16

Online Algorithms

Online setting: edges of the graph arrive one by one and are assigned
colors upon arrival.

2 / 16

Online Algorithms

Online setting: edges of the graph arrive one by one and are assigned
colors upon arrival.

2 / 16

Online Algorithms

Online setting: edges of the graph arrive one by one and are assigned
colors upon arrival.

The greedy algorithm is an online algorithm that can 2∆− 1 color a
graph with maximum degree ∆.

2 / 16

Online Algorithms

Online setting: edges of the graph arrive one by one and are assigned
colors upon arrival.

The greedy algorithm is an online algorithm that can 2∆− 1 color a
graph with maximum degree ∆.

Bar-Noy, Motwani, and Naor 1992: This is optimal.

2 / 16

Online Algorithms

Online setting: edges of the graph arrive one by one and are assigned
colors upon arrival.

The greedy algorithm is an online algorithm that can 2∆− 1 color a
graph with maximum degree ∆.

Bar-Noy, Motwani, and Naor 1992: This is optimal... for
∆ = O(log n). Can we do better if ∆ = ω(log n)?

2 / 16

Online Algorithms

Online setting: edges of the graph arrive one by one and are assigned
colors upon arrival.

The greedy algorithm is an online algorithm that can 2∆− 1 color a
graph with maximum degree ∆.

Bar-Noy, Motwani, and Naor 1992: This is optimal... for
∆ = O(log n). Can we do better if ∆ = ω(log n)?

Random greedy algorithm: start with a color set of size (1 + ε)∆ and
choose the color for each edge uniformly at random from the valid
remaining colors upon arrival.

2 / 16

Intuition: Trees [Feder, Motwani, and Panigrahy n.d.]

u v...
...

3 / 16

Intuition: Trees [Feder, Motwani, and Panigrahy n.d.]

u v...
...

Let F (u) and F (v) be the set of free (unused) colors from the palette
at u and v respectively when edge (u, v) arrives.

3 / 16

Intuition: Trees [Feder, Motwani, and Panigrahy n.d.]

u v...
...

Let F (u) and F (v) be the set of free (unused) colors from the palette
at u and v respectively when edge (u, v) arrives.

We expect

F (v)

F (u)

|F (u) ∩ F (v)| ≈ |F (u)||F (v)|
(1 + ε)∆

≥ ε2∆

1 + ε
.

3 / 16

Results

Adversarial Settings:

Random Order Arrival

Oblivious Adversary

Adaptive Adversary

4 / 16

Results

Adversarial Settings:

Random Order Arrival

Oblivious Adversary

Adaptive Adversary

Theorem (Random Order Case)

For all ε, there exists a constant N s.t. if the edges of a graph G with

maximum degree ∆ on n ≤ 2
∆
N vertices arrive in a random order, then

with high probability, the random greedy algorithm using (1 + ε)∆ colors
succeeds.

4 / 16

Results

Adversarial Settings:

Random Order Arrival

Oblivious Adversary

Adaptive Adversary

Theorem (Dense Case)

For all ε,M and n ≤ M∆, the random greedy algorithm using (1 + ε)∆
colors succeeds with high probability on graphs with maximum degree ∆
on n vertices, even if the edges of G are chosen by an adaptive adversary.

4 / 16

Results

Adversarial Settings:

Random Order Arrival

Oblivious Adversary

Adaptive Adversary

Corollary (Deterministic Case)

For all ε,M there is a deterministic algorithm that, for ∆ sufficiently large,
will (1 + ε)∆ color graphs with maximum degree ∆ on n ≤ M∆ vertices.

4 / 16

Related Work

Bar-Noy, Motwani, and Naor 1992: No random online algorithm using
< 2∆− 1 colors can guarantee success with probability ≥ 1

e .

Bhattacharya, Grandoni, and Wajc 2021: Online (1 + o(1))∆ coloring
algorithm that succeeds whp in random order ∆ = ω(log n) setting.

Blikstad et al. 2024b: Provides an online (1 + o(1))∆ coloring
algorithm that succeeds with high probability when ∆ = ω(log n).

Blikstad et al. 2024a: Provides a deterministic
(e
e−1 + o(1))-competitive online bipartite edge-coloring algorithm

under one-sided vertex arrivals when ∆ = ω(log n).

5 / 16

Key Idea

Intuition from tree case: for all pairs u, v , we want the sets F (u),
F (v) to look independent. That is, we would like

|F (u) ∩ F (v)| ≈ |F (u)||F (v)|
(1 + ε)∆

F (v)

F (u)

6 / 16

Key Idea

Intuition from tree case: for all pairs u, v , we want the sets F (u),
F (v) to look independent. That is, we would like

|F (u) ∩ F (v)| ≈ |F (u)||F (v)|
(1 + ε)∆

F (v)

F (u)

It suffices if at each step, the color c assigned to an edge of v satisfies

Pr[c ∈ F (u)] ≈ |F (u) ∩ F (v)|
|F (v)|

6 / 16

Key Idea

F (w)

F (v)

F (u)

Reality:

v w
c

u

Pr[c ∈ F (u)] =
|F (u) ∩ F (w) ∩ F (v)|
|F (v) ∩ F (w)|

6 / 16

Key Idea

F (w)

F (v)

F (u)

Goal: for all v , u,w , show:

|F (u) ∩ F (w) ∩ F (v)|
|F (v) ∩ F (w)|

≈ |F (u) ∩ F (v)|
|F (v)|

.

6 / 16

Key Idea

Goal: for all v , u,w , show:

|F (u) ∩ F (w) ∩ F (v)|
|F (v) ∩ F (w)|

≈ |F (u) ∩ F (v)|
|F (v)|

.

Note: it is enough to show that for all colors sets S and vertices w ,

|F (w) ∩ S |
|F (w)|

≈ |S |
(1 + ε)∆

. (∗)

6 / 16

Key Idea

Goal: for all v , u,w , show:

|F (u) ∩ F (w) ∩ F (v)|
|F (v) ∩ F (w)|

≈ |F (u) ∩ F (v)|
|F (v)|

.

Note: it is enough to show that for all colors sets S and vertices w ,

|F (w) ∩ S |
|F (w)|

≈ |S |
(1 + ε)∆

. (∗)

Then take S ′ = F (v), S ′′ = F (u) ∩ F (v) to get above expression.

6 / 16

Key Idea

Goal: for all v , u,w , show:

|F (u) ∩ F (w) ∩ F (v)|
|F (v) ∩ F (w)|

≈ |F (u) ∩ F (v)|
|F (v)|

.

Note: it is enough to show that for all colors sets S and vertices w ,

|F (w) ∩ S |
|F (w)|

≈ |S |
(1 + ε)∆

. (∗)

Then take S ′ = F (v), S ′′ = F (u) ∩ F (v) to get above expression.
Unfortunately, this is clearly impossible to show (consider S = F (w).)

6 / 16

Key Idea

Goal: for all v , u,w , show:

|F (u) ∩ F (w) ∩ F (v)|
|F (v) ∩ F (w)|

≈ |F (u) ∩ F (v)|
|F (v)|

.

Note: it is enough to show that for all colors sets S and vertices w ,

|F (w) ∩ S |
|F (w)|

≈ |S |
(1 + ε)∆

. (∗)

Then take S ′ = F (v), S ′′ = F (u) ∩ F (v) to get above expression.
Unfortunately, this is clearly impossible to show (consider S = F (w).)

What we can show: with high probability, for all S , all vertices w
excepting constantly many satisfy (∗).

6 / 16

Tracking |F (v) ∩ S |

v

u1 Pr[c1 ∈ S] = |F0(v)∩S|
|F0(v)| ± ε̂1

u2 Pr[c2 ∈ S] = |F1(v)∩S|
|F1(v)| ± ε̂2

u5 Pr[c5 ∈ S] = |F4(v)∩S|
|F4(v)| ± ε̂5

Let Xi (S) indicate whether ci ∈ S and pi (S) = Pr[ci ∈ S]

|S ∩ F (v)| =
∑

Xi (S) =
∑

(Xi (S)− pi (S)) +
∑ |Fi−1(v)∩S |

|Fi−1(v)| +
∑
ε̂i

Two sources of divergence in our calculation of |S ∩ F (v)|:

1 The natural divergence between Xi (S) and pi (S)

2 The ε̂ error terms from each neighbor

7 / 16

Tracking |F (v) ∩ S |

v

u1 Pr[c1 ∈ S] = |F0(u1)∩F0(v)∩S |
|F0(u1)∩F0(v)| = |F0(v)∩S|

|F0(v)| ± ε̂1

u2 Pr[c2 ∈ S] = |F1(v)∩S|
|F1(v)| ± ε̂2

u5 Pr[c5 ∈ S] = |F4(v)∩S|
|F4(v)| ± ε̂5

Let Xi (S) indicate whether ci ∈ S and pi (S) = Pr[ci ∈ S]

|S ∩ F (v)| =
∑

Xi (S) =
∑

(Xi (S)− pi (S)) +
∑ |Fi−1(v)∩S |

|Fi−1(v)| +
∑
ε̂i

Two sources of divergence in our calculation of |S ∩ F (v)|:

1 The natural divergence between Xi (S) and pi (S)

2 The ε̂ error terms from each neighbor

7 / 16

Tracking |F (v) ∩ S |

v

u1 Pr[c1 ∈ S] = |F0(u1)∩F0(v)∩S |
|F0(u1)∩F0(v)| = |F0(v)∩S|

|F0(v)| ± ε̂1

u2 Pr[c2 ∈ S] = |F1(u2)∩F1(v)∩S |
|F1(u2)∩F1(v)| = |F1(v)∩S|

|F1(v)| ± ε̂2

u5 Pr[c5 ∈ S] = |F4(v)∩S|
|F4(v)| ± ε̂5

Let Xi (S) indicate whether ci ∈ S and pi (S) = Pr[ci ∈ S]

|S ∩ F (v)| =
∑

Xi (S) =
∑

(Xi (S)− pi (S)) +
∑ |Fi−1(v)∩S |

|Fi−1(v)| +
∑
ε̂i

Two sources of divergence in our calculation of |S ∩ F (v)|:

1 The natural divergence between Xi (S) and pi (S)

2 The ε̂ error terms from each neighbor

7 / 16

Tracking |F (v) ∩ S |

v

u1 Pr[c1 ∈ S] = |F0(u1)∩F0(v)∩S |
|F0(u1)∩F0(v)| = |F0(v)∩S|

|F0(v)| ± ε̂1

u2 Pr[c2 ∈ S] = |F1(u2)∩F1(v)∩S |
|F1(u2)∩F1(v)| = |F1(v)∩S|

|F1(v)| ± ε̂2

u5 Pr[c5 ∈ S] = |F4(u5)∩F4(v)∩S |
|F4(u5)∩F4(v)| = |F4(v)∩S|

|F4(v)| ± ε̂5

...

Let Xi (S) indicate whether ci ∈ S and pi (S) = Pr[ci ∈ S]

|S ∩ F (v)| =
∑

Xi (S) =
∑

(Xi (S)− pi (S)) +
∑ |Fi−1(v)∩S |

|Fi−1(v)| +
∑
ε̂i

Two sources of divergence in our calculation of |S ∩ F (v)|:

1 The natural divergence between Xi (S) and pi (S)

2 The ε̂ error terms from each neighbor

7 / 16

Tracking |F (v) ∩ S |

v

u1 Pr[c1 ∈ S] = |F0(v)∩S|
|F0(v)| ± ε̂1

u2 Pr[c2 ∈ S] = |F1(v)∩S|
|F1(v)| ± ε̂2

u5 Pr[c5 ∈ S] = |F4(v)∩S|
|F4(v)| ± ε̂5

...

Let Xi (S) indicate whether ci ∈ S and pi (S) = Pr[ci ∈ S]

|S ∩ F (v)| =
∑

Xi (S) =
∑

(Xi (S)− pi (S)) +
∑ |Fi−1(v)∩S |

|Fi−1(v)| +
∑
ε̂i

Two sources of divergence in our calculation of |S ∩ F (v)|:

1 The natural divergence between Xi (S) and pi (S)

2 The ε̂ error terms from each neighbor

7 / 16

Tracking |F (v) ∩ S |

v

u1 Pr[c1 ∈ S] = |F0(v)∩S|
|F0(v)| ± ε̂1

u2 Pr[c2 ∈ S] = |F1(v)∩S|
|F1(v)| ± ε̂2

u5 Pr[c5 ∈ S] = |F4(v)∩S|
|F4(v)| ± ε̂5

...

Let Xi (S) indicate whether ci ∈ S and pi (S) = Pr[ci ∈ S]

|S ∩ F (v)| =
∑

Xi (S) =
∑

(Xi (S)− pi (S)) +
∑ |Fi−1(v)∩S |

|Fi−1(v)| +
∑
ε̂i

Two sources of divergence in our calculation of |S ∩ F (v)|:

1 The natural divergence between Xi (S) and pi (S)

2 The ε̂ error terms from each neighbor

7 / 16

Tracking |F (v) ∩ S |

v

u1 Pr[c1 ∈ S] = |F0(v)∩S|
|F0(v)| ± ε̂1

u2 Pr[c2 ∈ S] = |F1(v)∩S|
|F1(v)| ± ε̂2

u5 Pr[c5 ∈ S] = |F4(v)∩S|
|F4(v)| ± ε̂5

...

Let Xi (S) indicate whether ci ∈ S and pi (S) = Pr[ci ∈ S]

|S ∩ F (v)| =
∑

Xi (S) =
∑

(Xi (S)− pi (S)) +
∑ |Fi−1(v)∩S |

|Fi−1(v)| +
∑
ε̂i

Two sources of divergence in our calculation of |S ∩ F (v)|:
1 The natural divergence between Xi (S) and pi (S)

2 The ε̂ error terms from each neighbor

7 / 16

Tracking |F (v) ∩ S |

v

u1 Pr[c1 ∈ S] = |F0(v)∩S|
|F0(v)| ± ε̂1

u2 Pr[c2 ∈ S] = |F1(v)∩S|
|F1(v)| ± ε̂2

u5 Pr[c5 ∈ S] = |F4(v)∩S|
|F4(v)| ± ε̂5

...

Let Xi (S) indicate whether ci ∈ S and pi (S) = Pr[ci ∈ S]

|S ∩ F (v)| =
∑

Xi (S) =
∑

(Xi (S)− pi (S)) +
∑ |Fi−1(v)∩S |

|Fi−1(v)| +
∑
ε̂i

Two sources of divergence in our calculation of |S ∩ F (v)|:
1 The natural divergence between Xi (S) and pi (S)
2 The ε̂ error terms from each neighbor

7 / 16

Future Directions

Generalizing the dense case:

Current proof of the error bound for the dense case allows for worst
case directions of the errors of all neighbors.
Can we improve our estimate of the collective error of sets of vertices
in order to weaken the density requirement?

8 / 16

Future Directions

Generalizing the dense case:

Current proof of the error bound for the dense case allows for worst
case directions of the errors of all neighbors.
Can we improve our estimate of the collective error of sets of vertices
in order to weaken the density requirement?

Dynamic setting:

Adversary can insert or delete edges to graph
Want to minimize the number of changes made to the coloring after
each insertion/deletion, in expectation

8 / 16

Future Directions

Generalizing the dense case:

Current proof of the error bound for the dense case allows for worst
case directions of the errors of all neighbors.
Can we improve our estimate of the collective error of sets of vertices
in order to weaken the density requirement?

Dynamic setting:

Adversary can insert or delete edges to graph
Want to minimize the number of changes made to the coloring after
each insertion/deletion, in expectation

Multigraphs:

In the case of multigraphs, instead of Vizing’s theorem, we have
Shannon’s theorem giving an upper bound of 3∆

2 for χ′(G).
How close can the random greedy algorithm get to this bound in the
multigraph case?

8 / 16

Thank You

9 / 16

Bibliography I

Bar-Noy, Amotz, Rajeev Motwani, and Joseph Naor (1992). “The Greedy
Algorithm is Optimal for On-Line Edge Coloring”. In: Inf. Process. Lett.
44.5, pp. 251–253. doi: 10.1016/0020-0190(92)90209-E. url:
https://doi.org/10.1016/0020-0190(92)90209-E.

Bhattacharya, Sayan, Fabrizio Grandoni, and David Wajc (2021). “Online
Edge Coloring Algorithms via the Nibble Method”. In:
Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms, SODA 2021, Virtual Conference, January 10 - 13, 2021.
Ed. by Dániel Marx. SIAM, pp. 2830–2842. doi:
10.1137/1.9781611976465.168.

Blikstad, Joakim et al. (2024a). “Deterministic Online Bipartite Edge
Coloring”. In: arXiv preprint arXiv:2406.13000. arXiv: 2408.03661
[cs.DS].

– (2024b). “Online Edge Coloring is (Nearly) as Easy as Offline”. In:
CoRR abs/2402.18339. doi: 10.48550/ARXIV.2402.18339. arXiv:
2402.18339.

10 / 16

Bibliography II

Feder, Tomás, Rajeev Motwani, and Rina Panigrahy (n.d.). “Online
Algorithms for Edge Coloring”. In: (). Available at:
https://citeseerx.ist.psu.edu/document?repid=rep1&type=

pdf&doi=e300284ac75ed317c6550bea907ee9ef862d2c19.

11 / 16

