Randomized Greedy Online Edge Coloring Succeeds for
Dense and Randomly-Ordered Graphs

Aditi Dudeja’ Rashmika Goswami > Michael Saks 2

LUniversity of Salzburg

2Rutgers University

Edge Coloring

@ Edge coloring: assignment of colors to edges of G so that no two
edges adjacent to the same vertex have the same color.

1/16

Edge Coloring

@ Edge coloring: assignment of colors to edges of G so that no two
edges adjacent to the same vertex have the same color.

o Vizing: Graph with maximum degree A can be properly edge colored
with A + 1 colors (and requires at least A colors).

1/16

Online Algorithms

@ Online setting: edges of the graph arrive one by one and are assigned
colors upon arrival.

2/16

Online Algorithms

@ Online setting: edges of the graph arrive one by one and are assigned
colors upon arrival.

2/16

Online Algorithms

@ Online setting: edges of the graph arrive one by one and are assigned
colors upon arrival.

2/16

Online Algorithms

@ Online setting: edges of the graph arrive one by one and are assigned
colors upon arrival.

2/16

Online Algorithms

@ Online setting: edges of the graph arrive one by one and are assigned
colors upon arrival.

2/16

Online Algorithms

@ Online setting: edges of the graph arrive one by one and are assigned
colors upon arrival.

2/16

Online Algorithms

@ Online setting: edges of the graph arrive one by one and are assigned
colors upon arrival.

2/16

Online Algorithms

@ Online setting: edges of the graph arrive one by one and are assigned
colors upon arrival.

2/16

Online Algorithms

@ Online setting: edges of the graph arrive one by one and are assigned
colors upon arrival.

2/16

Online Algorithms

@ Online setting: edges of the graph arrive one by one and are assigned
colors upon arrival.

2/16

Online Algorithms

@ Online setting: edges of the graph arrive one by one and are assigned
colors upon arrival.

2/16

Online Algorithms

@ Online setting: edges of the graph arrive one by one and are assigned
colors upon arrival.

2/16

Online Algorithms

@ Online setting: edges of the graph arrive one by one and are assigned
colors upon arrival.

2/16

Online Algorithms

@ Online setting: edges of the graph arrive one by one and are assigned
colors upon arrival.

2/16

Online Algorithms

@ Online setting: edges of the graph arrive one by one and are assigned
colors upon arrival.

2/16

Online Algorithms

@ Online setting: edges of the graph arrive one by one and are assigned
colors upon arrival.

2/16

Online Algorithms

@ Online setting: edges of the graph arrive one by one and are assigned
colors upon arrival.

2/16

Online Algorithms

@ Online setting: edges of the graph arrive one by one and are assigned
colors upon arrival.

2/16

Online Algorithms

@ Online setting: edges of the graph arrive one by one and are assigned
colors upon arrival.

2/16

Online Algorithms

@ Online setting: edges of the graph arrive one by one and are assigned
colors upon arrival.

2/16

Online Algorithms

@ Online setting: edges of the graph arrive one by one and are assigned
colors upon arrival.

2/16

Online Algorithms

@ Online setting: edges of the graph arrive one by one and are assigned
colors upon arrival.

2/16

Online Algorithms

@ Online setting: edges of the graph arrive one by one and are assigned
colors upon arrival.

2/16

Online Algorithms

@ Online setting: edges of the graph arrive one by one and are assigned
colors upon arrival.

@ The greedy algorithm is an online algorithm that can 2A — 1 color a
graph with maximum degree A.

2/16

Online Algorithms

@ Online setting: edges of the graph arrive one by one and are assigned
colors upon arrival.

@ The greedy algorithm is an online algorithm that can 2A — 1 color a
graph with maximum degree A.

@ Bar-Noy, Motwani, and Naor 1992: This is optimal.

2/16

Online Algorithms

@ Online setting: edges of the graph arrive one by one and are assigned
colors upon arrival.

@ The greedy algorithm is an online algorithm that can 2A — 1 color a
graph with maximum degree A.

@ Bar-Noy, Motwani, and Naor 1992: This is optimal... for
A = O(log n). Can we do better if A = w(logn)?

2/16

Online Algorithms

@ Online setting: edges of the graph arrive one by one and are assigned
colors upon arrival.

@ The greedy algorithm is an online algorithm that can 2A — 1 color a
graph with maximum degree A.

@ Bar-Noy, Motwani, and Naor 1992: This is optimal... for
A = O(log n). Can we do better if A = w(logn)?

e Random greedy algorithm: start with a color set of size (1 + €)A and

choose the color for each edge uniformly at random from the valid
remaining colors upon arrival.

2/16

Intuition: Trees [Feder, Motwani, and Panigrahy n.d.]

3/16

Intuition: Trees [Feder, Motwani, and Panigrahy n.d.]

o Let F(u) and F(v) be the set of free (unused) colors from the palette
at u and v respectively when edge (u, v) arrives.

3/16

Intuition: Trees [Feder, Motwani, and Panigrahy n.d.]

-,
N

/‘_~\\ //‘_\\

4 \ / \
/ /4 \
! | I
! u v)
\ : _—— - - v

\ 4 //
\\ // \\ //

o Let F(u) and F(v) be the set of free (unused) colors from the palette
at u and v respectively when edge (u, v) arrives.
o We expect

/‘s
F(u)

o © o o

F(v)
~—

F()[F(v)| o €A
(1+e)A ~1+4¢

[F(u)n F(v)| =

3/16

Results

Adversarial Settings:
@ Random Order Arrival
@ Oblivious Adversary

o Adaptive Adversary

4/16

Results

Adversarial Settings:
@ Random Order Arrival
@ Oblivious Adversary
o Adaptive Adversary

Theorem (Random Order Case)

For all €, there exists a constant N s.t. if the edges of a graph G with
. A . ..
maximum degree A on n < 2N vertices arrive in a random order, then

with high probability, the random greedy algorithm using (1 + €)A colors
succeeds.

4/16

Results

Adversarial Settings:
@ Random Order Arrival
@ Oblivious Adversary
o Adaptive Adversary

Theorem (Dense Case)

For all e, M and n < MA, the random greedy algorithm using (1 + €)A
colors succeeds with high probability on graphs with maximum degree A
on n vertices, even if the edges of G are chosen by an adaptive adversary.

4/16

Results

Adversarial Settings:
@ Random Order Arrival
@ Oblivious Adversary
o Adaptive Adversary

Corollary (Deterministic Case)

For all €, M there is a deterministic algorithm that, for A sufficiently large,
will (1 + €)A color graphs with maximum degree A on n < MA vertices.

4/16

Related Work

@ Bar-Noy, Motwani, and Naor 1992: No random online algorithm using
< 2A — 1 colors can guarantee success with probability > %

e Bhattacharya, Grandoni, and Wajc 2021: Online (1 4 o(1))A coloring
algorithm that succeeds whp in random order A = w(log n) setting.

o Blikstad et al. 2024b: Provides an online (1 4 o(1))A coloring
algorithm that succeeds with high probability when A = w(log n).

o Blikstad et al. 2024a: Provides a deterministic
(=55 + o(1))-competitive online bipartite edge-coloring algorithm

e—1
under one-sided vertex arrivals when A = w(log n).

5/16

Key ldea

@ Intuition from tree case: for all pairs u, v, we want the sets F(u),
F(v) to look independent. That is, we would like

IF(u) 1 F(v)| ~ IR

(I+e)A
/ fo o e o o o
F(U) © © ©¢ o o ©
© 6 o o o o F(V)
~—

6/16

Key ldea

@ Intuition from tree case: for all pairs u, v, we want the sets F(u),
F(v) to look independent. That is, we would like

IF(u) 0 ()| = ELIEWL

(I+e)A
/ fo o e e o o
F(U) © @ @ o o o
© 6 o o o o F(V)
~—Y

o |t suffices if at each step, the color ¢ assigned to an edge of v satisfies

Prlc € F(u)] ~ |F("’)F?V;(V)|

6/16

Key ldea

o Reality:

C

[F(u) N F(w) 0 F(v)]

Prlc € F(u)] = ORI

6/16

Key ldea

/ o © e e o o
o o © © 07e@

© o ¢ o o o

© 0o 0 0 00 F(v)

e Goal: for all v, u, w, show:

[Flu)nFw) N F(V)[_ [F(u) 0 F(v)]
[F(v) N F(w)| [F(v)]

6/16

Key ldea

@ Goal: for all v, u, w, show:

[FlunFw)nF)[_ [F(u) N F(v)|
[F(v) N F(w)] [F(V)I

o Note: it is enough to show that for all colors sets S and vertices w,

Fw)ns| __Is|)
|F(w)] (1+e)A°

6/16

Key ldea

@ Goal: for all v, u, w, show:

[FlunFw)nF)[_ [F(u) N F(v)|
[F(v) N F(w)] [F(V)I

o Note: it is enough to show that for all colors sets S and vertices w,

Fw)ns| __Is|)
|F(w)] (1+e)A°

o Then take S’ = F(v), S” = F(u) N F(v) to get above expression.

6/16

Key ldea

@ Goal: for all v, u, w, show:

[FlunFw)nF)[_ [F(u) N F(v)|
[F(v) N F(w)] [F(V)I

o Note: it is enough to show that for all colors sets S and vertices w,

Fw)ns| __Is|)
|F(w)] (1+e)A°

o Then take S’ = F(v), S” = F(u) N F(v) to get above expression.
o Unfortunately, this is clearly impossible to show (consider S = F(w).)

6/16

Key ldea

@ Goal: for all v, u, w, show:

[FlunFw)nF)[_ [F(u) N F(v)|
[F(v) N F(w)] [F(V)I

o Note: it is enough to show that for all colors sets S and vertices w,

Fw)ns| _ I8)
|F(w)] (1+e)A°

o Then take S’ = F(v), S” = F(u) N F(v) to get above expression.
o Unfortunately, this is clearly impossible to show (consider S = F(w).)

@ What we can show: with high probability, for all S, all vertices w
excepting constantly many satisfy (x).

6/16

Tracking |F(v) N S|

[Fo(u1)NFo(v)NS| _ |Fo(v)NS] +e

/Ul Pr[Cl GS] [Fo(u1)NFo(v)] — [Fo(v)]
14

7/16

Tracking |F(v) N S|

Uy Pr[Cl c 5] |Fo(u1)NFo(v)NS| _ |Fo(v)NS]| :|:/€\1

T T B
up PI’[CQES] = \lFl(QUQ)ﬂlFl(v)| = |1Fl(v)\ + e
14

7/16

Tracking |F(v) N S|

Fo(u1)NFo(v)NS Fo(v)NS ~
up Prlc € 5] = |(;—_0(1u)1)ﬂ(;'£o()v)| = I%o()v)\ £
Fi(uw)NFi(v)NS Fi(v)NS ~
un PI’[CQ S 5] = | |1/.£1(2u)2)mll-£1()v)| ‘ = I |1/-£1()V)\ | te
14
Fa(us)NFa(v)NS Fs(v)NS -~
us Pr[cs € S] = | |‘}:4u(5u)5)m‘}-£4()v)| = |‘}-£4()V)\ =+ s

7/16

Tracking |F(v) N S|

uy PI’[C1 65] = %ie
up Prlca € S] = ‘F‘l(‘/()vr;lsl +e

us Pr[cs € S] = % + 6
e Let X;(S) indicate whether ¢; € S and p;(S) = Pr[¢; € S]

ISAFW) =T X(S) = X(X(S) - pi(8) + X F2El 4 30

7/16

Tracking |F(v) N S|

uy PI’[C1 S 5] = [Fo “_Ev()vr')]|5| + ¢ €1
u Prles] =0 7 (v()vr;|5| + ¢

y .
us Pr[cs € S] = ‘7‘;:(4‘/()‘/r;|5| + 6

e Let X;(S) indicate whether ¢; € S and p;(S) = Pr[¢; € S]

ISAFW) =T X(S) = X(X(S) - pi(8) + X F2El 4 30

e Two sources of divergence in our calculation of |S N F(v)|:

7/16

Tracking |F(v) N S|

up Prla €S| = ‘FO(V()VF)]IQ +a
up Prlc e S] = F (()Vf;|5| +

v :
us Pr[cs € S] = ‘7‘;:(4‘/()‘/r;|5| + 6

e Let X;(S) indicate whether ¢; € S and p;(S) = Pr[¢; € S]

ISAFW) =T X(S) = X(X(S) - pi(8) + X F2El 4 30

e Two sources of divergence in our calculation of |S N F(v)|:
@ The natural divergence between X;(S) and p;(S)

7/16

Tracking |F(v) N S|

up Prla €S| = ‘FO(V()VF)]IQ +a
up Prlc e S] = F (()Vf;|5| +

v :
us Pr[cs € S] = ‘7‘;:(4‘/()‘/r;|5| + 6

e Let X;(S) indicate whether ¢; € S and p;(S) = Pr[¢; € S]

ISAFW) =T X(S) = X(X(S) - pi(8) + X F2El 4 30

e Two sources of divergence in our calculation of |S N F(v)|:

@ The natural divergence between X;(S) and p;(S)
@ The € error terms from each neighbor

7/16

Future Directions

@ Generalizing the dense case:
o Current proof of the error bound for the dense case allows for worst
case directions of the errors of all neighbors.
e Can we improve our estimate of the collective error of sets of vertices
in order to weaken the density requirement?

8/16

Future Directions

@ Generalizing the dense case:
o Current proof of the error bound for the dense case allows for worst
case directions of the errors of all neighbors.
e Can we improve our estimate of the collective error of sets of vertices
in order to weaken the density requirement?
@ Dynamic setting:
o Adversary can insert or delete edges to graph
o Want to minimize the number of changes made to the coloring after
each insertion/deletion, in expectation

8/16

Future Directions

@ Generalizing the dense case:

o Current proof of the error bound for the dense case allows for worst
case directions of the errors of all neighbors.

e Can we improve our estimate of the collective error of sets of vertices
in order to weaken the density requirement?

@ Dynamic setting:
o Adversary can insert or delete edges to graph

o Want to minimize the number of changes made to the coloring after
each insertion/deletion, in expectation
o Multigraphs:
o In the case of multigraphs, instead of Vizing's theorem, we have
Shannon'’s theorem giving an upper bound of % for X'(G).
o How close can the random greedy algorithm get to this bound in the
multigraph case?

8/16

Thank You

Bibliography |

Bar-Noy, Amotz, Rajeev Motwani, and Joseph Naor (1992). “The Greedy
Algorithm is Optimal for On-Line Edge Coloring”. In: Inf. Process. Lett.
445, pp. 251-253. DOI: 10.1016/0020-0190(92)90209-E. URL:
https://doi.org/10.1016/0020-0190(92)90209-E.

Bhattacharya, Sayan, Fabrizio Grandoni, and David Wajc (2021). “Online
Edge Coloring Algorithms via the Nibble Method". In:

Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms,
Ed. by Déniel Marx. SIAM, pp. 2830-2842. DOT:
10.1137/1.9781611976465.168

Blikstad, Joakim et al. (2024a). “Deterministic Online Bipartite Edge
Coloring”. In: arXiv preprint arXiv:2406.13000. arXiv: 2408.03661
[cs.DS].

— (2024b). "Online Edge Coloring is (Nearly) as Easy as Offline”. In:

CoRR abs/2402.18339. DOI: 10.48550/ARXIV.2402.18339. arXiv:
2402.18339.

10/16

Bibliography Il

| Feder, Tomas, Rajeev Motwani, and Rina Panigrahy (n.d.). “Online
Algorithms for Edge Coloring”. In: (). Available at:
https://citeseerx.ist.psu.edu/document?repid=repl&type=
pdf&doi=e300284ac75ed317c6550bea907ee9ef862d2c19.

11/16

