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Edge Coloring

@ Edge coloring: assignment of colors to edges of G so that no two
edges adjacent to the same vertex have the same color.
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Edge Coloring

@ Edge coloring: assignment of colors to edges of G so that no two
edges adjacent to the same vertex have the same color.

o Vizing: Graph with maximum degree A can be properly edge colored
with A + 1 colors (and requires at least A colors).
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Online Algorithms

@ Online setting: edges of the graph arrive one by one and are assigned
colors upon arrival.
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Online Algorithms

@ Online setting: edges of the graph arrive one by one and are assigned
colors upon arrival.

@ The greedy algorithm is an online algorithm that can 2A — 1 color a
graph with maximum degree A.

@ Bar-Noy, Motwani, and Naor 1992: This is optimal... for
A = O(log n). Can we do better if A = w(logn)?

e Random greedy algorithm: start with a color set of size (1 + €)A and

choose the color for each edge uniformly at random from the valid
remaining colors upon arrival.
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Intuition: Trees [Feder, Motwani, and Panigrahy n.d.]
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Intuition: Trees [Feder, Motwani, and Panigrahy n.d.]

o Let F(u) and F(v) be the set of free (unused) colors from the palette
at u and v respectively when edge (u, v) arrives.

3/16



Intuition: Trees [Feder, Motwani, and Panigrahy n.d.]
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o Let F(u) and F(v) be the set of free (unused) colors from the palette
at u and v respectively when edge (u, v) arrives.
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Results

Adversarial Settings:
@ Random Order Arrival
@ Oblivious Adversary

o Adaptive Adversary
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Results

Adversarial Settings:
@ Random Order Arrival
@ Oblivious Adversary
o Adaptive Adversary

Theorem (Random Order Case)

For all €, there exists a constant N s.t. if the edges of a graph G with
. A . ..
maximum degree A on n < 2N vertices arrive in a random order, then

with high probability, the random greedy algorithm using (1 + €)A colors
succeeds.

4/16



Results

Adversarial Settings:
@ Random Order Arrival
@ Oblivious Adversary
o Adaptive Adversary

Theorem (Dense Case)

For all e, M and n < MA, the random greedy algorithm using (1 + €)A
colors succeeds with high probability on graphs with maximum degree A
on n vertices, even if the edges of G are chosen by an adaptive adversary.
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Results

Adversarial Settings:
@ Random Order Arrival
@ Oblivious Adversary
o Adaptive Adversary

Corollary (Deterministic Case)

For all €, M there is a deterministic algorithm that, for A sufficiently large,
will (1 + €)A color graphs with maximum degree A on n < MA vertices.
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Related Work

@ Bar-Noy, Motwani, and Naor 1992: No random online algorithm using
< 2A — 1 colors can guarantee success with probability > %

e Bhattacharya, Grandoni, and Wajc 2021: Online (1 4 o(1))A coloring
algorithm that succeeds whp in random order A = w(log n) setting.

o Blikstad et al. 2024b: Provides an online (1 4 o(1))A coloring
algorithm that succeeds with high probability when A = w(log n).

o Blikstad et al. 2024a: Provides a deterministic
(=55 + o(1))-competitive online bipartite edge-coloring algorithm

e—1
under one-sided vertex arrivals when A = w(log n).
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Key ldea

@ Intuition from tree case: for all pairs u, v, we want the sets F(u),
F(v) to look independent. That is, we would like

IF(u) 1 F(v)| ~ IR

(I+e)A
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Key ldea

@ Intuition from tree case: for all pairs u, v, we want the sets F(u),
F(v) to look independent. That is, we would like

IF(u) 0 ()| = ELIEWL

(I+e)A
/ fo o e e o o
F(U) © @ @ o o o
© 6 o o o o F(V)
~—Y

o |t suffices if at each step, the color ¢ assigned to an edge of v satisfies

Prlc € F(u)] ~ |F("’)F?V;(V)|
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Key ldea

o Reality:

C

[F(u) N F(w) 0 F(v)]

Prlc € F(u)] = ORI
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Key ldea
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e Goal: for all v, u, w, show:

[Flu)nFw) N F(V)[ _ [F(u) 0 F(v)]
[F(v) N F(w)| [F(v)]
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@ Goal: for all v, u, w, show:

[FlunFw)nF)[ _ [F(u) N F(v)|
[F(v) N F(w)] [F(V)I

o Note: it is enough to show that for all colors sets S and vertices w,

Fw)ns| _ I8 )
|F(w)] (1+e)A°

o Then take S’ = F(v), S” = F(u) N F(v) to get above expression.
o Unfortunately, this is clearly impossible to show (consider S = F(w).)

@ What we can show: with high probability, for all S, all vertices w
excepting constantly many satisfy (x).
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Tracking |F(v) N S|

[Fo(u1)NFo(v)NS| _ |Fo(v)NS] +e

/Ul Pr[Cl GS] [Fo(u1)NFo(v)]  —  [Fo(v)]
14
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Tracking |F(v) N S|
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Tracking |F(v) N S|
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Tracking |F(v) N S|
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us Pr[cs € S] = ‘7‘;:(4‘/()‘/r;|5| + 6

e Let X;(S) indicate whether ¢; € S and p;(S) = Pr[¢; € S]

ISAFW) =T X(S) = X(X(S) - pi(8) + X F2El 4 30

e Two sources of divergence in our calculation of |S N F(v)|:

@ The natural divergence between X;(S) and p;(S)
@ The € error terms from each neighbor
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Future Directions

@ Generalizing the dense case:
o Current proof of the error bound for the dense case allows for worst
case directions of the errors of all neighbors.
e Can we improve our estimate of the collective error of sets of vertices
in order to weaken the density requirement?
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Future Directions

@ Generalizing the dense case:

o Current proof of the error bound for the dense case allows for worst
case directions of the errors of all neighbors.

e Can we improve our estimate of the collective error of sets of vertices
in order to weaken the density requirement?

@ Dynamic setting:
o Adversary can insert or delete edges to graph

o Want to minimize the number of changes made to the coloring after
each insertion/deletion, in expectation
o Multigraphs:
o In the case of multigraphs, instead of Vizing's theorem, we have
Shannon'’s theorem giving an upper bound of % for X'(G).
o How close can the random greedy algorithm get to this bound in the
multigraph case?
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