Calculus I Integration: A Very Short Summary

Definition: Antiderivative

The function F(x) is an antiderivative of the function f(x) on an interval I if F'(x) = f(x) for all x in I.

Notice, a function may have infinitely many antiderivatives. For example, the function f(x) = 2x has antiderivatives such as x^2 , $x^2 + 3$, $x^2 - \pi$, and $x^2 + .002$, just to name a few.

Definition: General Antiderivative

The function F(x) + C is the General Antiderivative of the function f(x) on an interval I if F'(x) = f(x) for all x in I and C is an arbitrary constant.

The function $x^2 + C$ where C is an arbitrary constant, is the General Antiderivative of 2x. This is actually a family of functions, each with its own value of C.

Definition: Indefinite Integral

The Indefinite Integral of f(x) is the General Antiderivative of f(x).

$$\int f(x) dx = F(x) + C \qquad \int 2x dx = x^2 + C$$

Definition: Riemann Sum

The Riemann Sum is a sum of the areas of n rectangles formed over n subintervals in [a,b]. Here the subintervals are of equal length, but they need not be. The height of the i^{th} rectangle, is the value of f(x) at a chosen sample point in the i^{th} subinterval. The width of each rectangle is $\Delta x = \frac{(b-a)}{n}$ and the height of the rectangle in the i^{th} subinterval is given by $f(x_i^*)$ where x_i^* is a sample point in the i^{th} subinterval. The Riemann Sum used to approximate

$$\int_a^b f(x) dx \text{ is given by } \sum_{i=1}^n f(x_i^*) \Delta x = f(x_1^*) \Delta x + f(x_2^*) \Delta x + \dots + f(x_n^*) \Delta x$$

Here x_i * is the sample point in the i^{th} subinterval. If the sample points are the midpoints of the subintervals, we call the Riemann Sum the Midpoint Rule.

Definition: Definite Integral

The **Definite integral** of f from a to b, written $\int_a^b f(x) dx$, is defined to be the limit of a Riemann sum as $n \to \infty$, if the limit exists (for all choices of sample points $x_1^*, x_2^*, \dots x_n^*$ in the n subintervals).

Thus,
$$\int_a^b f(x)dx = \lim_{n \to \infty} \sum_{i=1}^n f(x_i^*) \Delta x = \lim_{n \to \infty} \left[f(x_1^*) \Delta x + f(x_2^*) \Delta x + \dots + f(x_n^*) \Delta x \right]$$

The First Fundamental Theorem of Calculus: Let f be continuous on the closed interval [a,b], then $\int_a^b f(x)dx = F(b) - F(a)$ where F is any antiderivative of f on [a,b].

$$\int_{1}^{3} 2x \, dx = x^{2} \bigg|_{1}^{3} = 3^{2} - 1^{2} = 8$$

The Second Fundamental Theorem of Calculus: Let f be continuous on the closed interval

$$[a,b]$$
, and define $G(x) = \int_a^x f(t)dt$ where $a \le x \le b$. Then $G'(x) = \frac{d}{dx} \left[\int_a^x f(t)dt \right] = f(x)$.

$$G(x) = \int_0^x \sin^2(t) dt \qquad G'(x) = \sin^2(x) \qquad H(x) = \int_0^{x^3} \sin^2(t) dt \qquad H'(x) = 3x^2 \sin^2(x^3)$$

Integration by Substitution: Let u = g(x) and F(x) be the antiderivative of f(x). Then du = g'(x)dx and $\int f(g(x))g'(x) dx = \int f(u) du = F(u) + C$

Also,
$$\int_a^b f(g(x))g'(x)dx = \int_{g(a)}^{g(b)} f(u) du = F(g(b)) - F(g(a))$$

Ex:
$$u = g(x) = x^2$$
, $du = g'(x)dx = 2x dx$

Ex: $u = g(x) = x^2$, du = g'(x)dx = 2x dx $\int_2^5 2x e^{x^2} dx = \int_{2^2 = 4}^{5^2 = 25} e^u du = e^u \Big|_{A}^{25} = e^{25} - e^4$

Integration Rules

$$\int k \, du = ku + C$$

$$\int u^r \, du = \frac{u^{r+1}}{r+1} + C \text{ for } r \neq -1$$

$$\int \frac{du}{u} = \int u^{-1} \, du = \ln|u| + C \text{ for } r = -1$$

$$\int \frac{du}{u} = \int u^{-1} \, du = \ln|u| + C \text{ for } r = -1$$

$$\int a^u \, du = \frac{a^u}{\ln a} + C$$

$$\int e^u \, du = e^u + C$$

$$\int \cos u \, du = \sin u + C$$

$$\int \sin u \, du = -\cos u + C$$

$$\int \sec^2 u \, du = \tan u + C$$

$$\int \sec^2 u \, du = -\cot u + C$$

$$\int \csc^2 u \, du = -\cot u + C$$

$$\int \csc^2 u \, du = -\cot u + C$$

$$\int \csc^2 u \, du = -\cot u + C$$

$$\int \csc^2 u \, du = -\cot u + C$$

$$\int \int \sec^2 u \, du = -\cot u + C$$

$$\int \int \cot u \, du = -\cot u + C$$

$$\int \int \cot u \, du = -\cot u + C$$

$$\int \int \int du = \frac{u^6}{6} + C \text{ for } 5 \neq -1$$

$$\int \int \frac{2x + 3}{x^2 + 3x} \, dx = \ln|x^2 + 3x| + C$$

$$\int e^{\sin x} \cos x \, dx = e^{\sin x} + C$$

$$\int \int \sin^2 u \, du = -\cos u + C$$

$$\int \int \int d^4 \, dt = \frac{4^t}{\ln 4} + C$$

$$\int \int \sin^2 u \, du = -\cos u + C$$

$$\int \int \int d^4 \, dt = \frac{4^t}{\ln 4} + C$$

$$\int \int \partial^4 \, du = -\cos u + C$$

$$\int \int \partial^4 \, du = -\cos u + C$$

$$\int \int \partial^4 \, du = -\cos u + C$$

$$\int \int \partial^4 \, du = -\cos u + C$$

$$\int \int \partial^4 \, du = -\cos u + C$$

$$\int \int \partial^4 \, du = -\cos u + C$$

$$\int \int \partial^4 \, du = -\cos u + C$$

$$\int \int \partial^4 \, du = -\cos u + C$$

$$\int \int \partial^4 \, du = -\cos u + C$$

$$\int \int \partial^4 \, du = -\cos u + C$$

$$\int \partial^4 \, du = -\cos u + C$$

$$\int \partial^4 \, du = -\cos u + C$$

$$\int \partial^4 \, du = -\cos u + C$$

$$\int \partial^4 \, du = -\cos u + C$$

$$\int \partial^4 \, du = -\cos u + C$$

$$\int \partial^4 \, du = -\cos u + C$$

$$\int \partial^4 \, du = -\cos u + C$$

$$\int \partial^4 \, du = -\cos u + C$$

$$\int \partial^4 \, du = -\cos u + C$$

$$\int \partial^4 \, du = -\cos u + C$$

$$\int \partial^4 \, du = -\cos u + C$$

$$\int \partial^4 \, du = -\cos u + C$$

$$\int \partial^4 \, du = -\cos u + C$$

$$\int \partial^4 \, du = -\cos u + C$$

$$\int \partial^4 \, du = -\cos u + C$$

$$\int \partial^4 \, du = -\cos u + C$$

$$\int \partial^4 \, du = -\cos u + C$$

$$\int \partial^4 \, du = -\cos u + C$$

$$\int \partial^4 \, du = -\cos u + C$$

$$\int \partial^4 \, du = -\cos u + C$$

$$\int \partial^4 \, du = -\cos u + C$$

$$\int \partial^4 \, du = -\cos u + C$$

$$\int \partial^4 \, du = -\cos u + C$$

$$\int \partial^4 \, du = -\cos u + C$$

$$\int \partial^4 \, du = -\cos u + C$$

$$\int \partial^4 \, du = -\cos u + C$$

$$\int \partial^4 \, du = -\cos u + C$$

$$\int \partial^4 \, du = -\cos u + C$$

$$\int \partial^4 \, du = -\cos u + C$$

$$\int \partial^4 \, du = -\cos u + C$$

$$\int \partial^4 \, du = -\cos u + C$$

$$\int \partial^4 \, du = -\cos u + C$$

$$\int \partial^4 \, du = -\cos u + C$$

$$\int \partial^4 \, du = -\cos u + C$$

$$\int \partial^4 \, du = -\cos u + C$$

$$\int \partial^4 \, du = -\cos u + C$$

$$\int \partial^4 \, du = -\cos u + C$$

$$\int \partial^4 \, du = -\cos u + C$$

$$\int \partial^4 \, du = -\cos u + C$$

$$\int \partial^4 \, du = -\cos u + C$$

$$\int \partial^4 \, du = -\cos u + C$$

$$\int \partial^4 \, du = -\cos u + C$$

$$\int \partial^$$

Examples

$$\int 3 \, du = 3u + C \qquad \int \pi \, dt = \pi t + C$$

$$\int u^5 \, du = \frac{u^6}{6} + C \text{ for } 5 \neq -1$$

$$\int \frac{2x+3}{x^2+3x} \, dx = \ln|x^2+3x| + C$$

$$\int 4^t \, dt = \frac{4^t}{\ln 4} + C$$

$$\int e^{\sin x} \cos x \, dx = e^{\sin x} + C$$

$$\int 3x^2 \cos x^3 \, dx = \sin x^3 + C$$

$$\int 7t^6 \sin t^7 \, dt = -\cos t^7 + C$$

$$\int 20x^3 \sec^2 5x^4 \, dx = \tan 5x^4 + C$$

$$\int 4x^3 \sec x^4 \tan x^4 \, dx = \sec x^4 + C$$

$$\int 8 \csc^2 8x \, dx = -\cot 8x + C$$

$$\int 5x^4 \csc^2 8x \, dx = -\cot 8x + C$$

$$\int 4\cos x \, dx = 4 \int \cos x \, dx = 4\sin x + C$$

$$\int [4x^3 \pm \sec^2 x] \, dx = x^4 \pm \tan x + C$$

Properties of the Definite Integral

$$\int_{a}^{a} f(x) dx = 0 \text{ (same integration limits)}$$

$$\int_{a}^{b} f(x) dx = -\int_{b}^{a} f(x) dx \text{ (exchange integration limits)}$$

$$\int_{a}^{b} f(x) dx = \int_{a}^{c} f(x) dx + \int_{c}^{b} f(x) dx \text{ where } a < c < b.$$

Notice, rules 4 through 6 below are simply negatives of rules 1 through 3.

Inverse Trig Integration Rules

Examples

1.
$$\int \frac{du}{\sqrt{1-u^2}} = \sin^{-1} u + C$$

$$\int \frac{3x^2 dx}{\sqrt{1 - x^6}} = \sin^{-1} x^3 + C$$

2.
$$\int \frac{du}{1+u^2} = \tan^{-1} u + C$$

$$\int \frac{4x^3 \, dx}{1+x^8} = \tan^{-1} x^4 + C$$

3.
$$\int \frac{du}{|u|\sqrt{u^2 - 1}} = \sec^{-1} u + C$$

$$\int \frac{dx}{x|\ln x|\sqrt{(\ln x)^2 - 1}} = \sec^{-1}(\ln x) + C$$

4.
$$\int \frac{-du}{\sqrt{1-u^2}} = \cos^{-1} u + C = -\sin^{-1} u + C$$

4.
$$\int \frac{-du}{\sqrt{1-u^2}} = \cos^{-1}u + C = -\sin^{-1}u + C \qquad \int \frac{-3x^2 dx}{\sqrt{1-x^6}} = \cos^{-1}x^3 + C = -\sin^{-1}x^3 + C$$

5.
$$\int \frac{-du}{1+u^2} = \cot^{-1}u + C = -\tan^{-1}u + C$$

5.
$$\int \frac{-du}{1+u^2} = \cot^{-1}u + C = -\tan^{-1}u + C \qquad \int \frac{-4x^3 dx}{1+x^8} = \cot^{-1}x^4 + C = -\tan^{-1}x^4 + C$$

6.
$$\int \frac{-du}{|u|\sqrt{u^2 - 1}} = \csc^{-1}u + C = -\sec^{-1}u + C \qquad \int \frac{-dx}{x|\ln x|\sqrt{(\ln x)^2 - 1}} = \csc^{-1}(\ln x) + C$$
$$= -\sec^{-1}(\ln x) + C$$

$$\frac{-ax}{x|\ln x|\sqrt{(\ln x)^2 - 1}} = \csc^{-1}(\ln x) + C$$
$$= -\sec^{-1}(\ln x) + C$$