
Well, in my defense. . .

Pat Devlin
Advisor: Jeff Kahn

Rutgers University

March 27, 2017

Pat Devlin (Rutgers University) Well, in my defense. . . March 27, 2017 1 / 31



To all the graduate students:

Research can be depressing

(Especially watching a defense.)

• Everybody feels that way, but nobody ever talks about it.

• Therapy  ©

Talk to older/former grad students [e.g., me]. I talked to:

Jake Baron
with unidentified stranger
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The big picture

What to expect in this talk? Is there food? When can you doze off?

The docket

We will discuss

• Erdős–Ko–Rado stability D., Kahn [6] 2015

— Brief [mostly for the pictures]

• Entropy and permutations Acan, D., Kahn [3] 2017+

— Brief [mostly for non-experts]

• Hypergraph fractional matchings D., Kahn [7] 2017+

— Very brief [mostly for experts]

• Matrices with large permanents Berkowitz, D. [4] ≈2016

— Also brief [mostly for me]

• 34 diet tips to get your beach bod by May! Buzzfeed et al.

— You’ll never believe number twelve!
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Outline

1 Erdős–Ko–Rado

2 Entropy and Permutations

3 Perfect Fractional Matchings in Hypergraphs

4 Matrices with large permanents
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It all started with Erdős

Jeff Kahn

High-budget
remake of Kahn

(me)
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Jeff Kahn

High-budget
remake of Kahn

(me)

Pat Devlin (Rutgers University) Well, in my defense. . . March 27, 2017 5 / 31



It all started with Erdős
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Erdős–Ko–Rado

Outline

1 Erdős–Ko–Rado

2 Entropy and Permutations

3 Perfect Fractional Matchings in Hypergraphs

4 Matrices with large permanents
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Erdős–Ko–Rado

Stability in Erdős–Ko–Rado: published (2015)

Authors:

‘Pet Devlin’ and Jeff “Genghis” Kahn
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Erdős–Ko–Rado

Stability in Erdős–Ko–Rado: classical EKR
• Kneser graph?

— Nodes ⇔ k-element subsets of {1, 2, . . . , n}
— A ∼ B ⇔ A and B have nothing in common

1,4

1,5

3,5

2,3

2,4

2,5

3,4

1,2

4,5

1,3

3,5

2,3

3,4

1,32,5

2,4

4,5

The 2-element subsets of {1, 2, 3, 4, 5}

• What’s the largest collection of nodes containing no edges?

Theorem (Classical Erdős–Ko–Rado)

Any collection of more than
(n−1
k−1

)
nodes must contain an edge.
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Erdős–Ko–Rado
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Erdős–Ko–Rado

Stability in Erdős–Ko–Rado: noise-ification

Theorem (Classical Erdős–Ko–Rado)

Any collection of more than
(n−1
k−1

)
nodes must contain an edge.

Bollobás [5] asked:

If we add random noise,

is the result still true?

[keep edges w/prob. p]

1,4

1,5

3,5

2,3

2,4

2,5

3,4

1,2

4,5

1,3

3,5

2,3

3,4

1,3

2,5

• If p = 1,

then yes! If p = 0, of course not! In between, we solved it:

Theorem (D., Kahn)

If n > 2k + 1, the threshold probability is pc = C
(n−k−1

k−1

)−1
log(n

(n−1
k

)
).

And if n = 2k + 1, then 3/4 ≤ pc < 0.9999999999.
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Stability in Erdős–Ko–Rado: noise-ification

Theorem (Classical Erdős–Ko–Rado)
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Any collection of more than
(n−1
k−1

)
nodes must contain an edge.

Bollobás [5] asked:

If we add random noise,

is the result still true?

[keep edges w/prob. p]
1,4

1,5

3,5

2,3

2,4

2,5

3,4

1,2

4,5

1,3

3,5

2,3

3,4

1,32,5

• If p = 1, then yes! If p = 0, of course not! In between, we solved it:

Theorem (D., Kahn)

If n > 2k + 1, the threshold probability is pc = C
(n−k−1

k−1

)−1
log(n

(n−1
k

)
).

And if n = 2k + 1, then 3/4 ≤ pc < 0.9999999999.

Pat Devlin (Rutgers University) Well, in my defense. . . March 27, 2017 9 / 31



Erdős–Ko–Rado
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Entropy and Permutations

Entropy and permutations: set-up

What is entropy? H(X ) = −
∑

i P(X = i) logP(X = i)

• I “randomly” pick something

• Entropy ⇔ # yes/no questions to guess what I picked

• High entropy ⇔ high uncertainty
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that mean the outcome is predictable (i.e., has low entropy)?
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Entropy and Permutations

Entropy and permutations: problem and result

Question

If I pick a “random” permutation by a process with noticeable biases, does
that mean the outcome is predictable (i.e., has low entropy)?

Leighton and Moitra [9] asked:

What if for every a 6= b,

Pat either noticeably ‘prefers’

to place a before b or vice-versa?

i.e., P(σ(a) < σ(b)) 6≈ 1/2

Theorem (Acan, D., Kahn)

Let ε > 0 and σ a random permutation of [n] such that for all a, b,
|P(σ(a) < σ(b))− 1/2| > ε. Then the entropy is bounded by
H(σ) ≤ (1− δ) log(n!) for some δ = δ(ε).

[i.e., the answer is “yes”]
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Entropy and Permutations

Entropy and permutations: proof ingredients

Question

If I pick a “random” permutation by a process with noticeable biases, does
that mean the outcome is predictable (i.e., has low entropy)?

Theorem (Acan, D., Kahn)

Let ε > 0 and σ a random permutation of [n] such that for all a, b,
|P(σ(a) < σ(b))− 1/2| > ε. Then the entropy is bounded by
H(σ) ≤ (1− δ) log(n!) for some δ = δ(ε). [i.e., the answer is “yes”]

• Szemerédi’s regularity (very weak version)

• Combinatorial bookkeeping gadget

• Coupling

We prove δ = exp[−ε−C ]; it should be ε or ε2
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Matchings in hypergraphs: submitted (2017+)
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Perfect Fractional Matchings in Hypergraphs

Matchings in hypergraphs: very brief
Perfect matchings in random graphs?

• Precisely when no isolated vertices (stopping-time)

• k-out random graphs when k = 2

Perfect matchings in random hypergraphs?

• Hard!

• Roughly when no isolated vertices (Θ of threshold)

— Solved by Anders Johansson, Jeff Kahn, and Van Vu [8]
(2012 Fulkerson Prize)

• k-out hypergraphs? (At least as hard)

• Fractional relaxations. . .

Theorem (D., Kahn)

For each r , there is a k = k(r) such that a k-out r -uniform hypergraph
has a perfect fractional matching almost surely.
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Authors:
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Little known fact: these pictures actually depict different people.
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Matrices with large permanents

Matrices with large permanents: set-up

• matrix : square array of numbers
• permanent: determinant formula without the (−1)k

perm(A) :=
∑
σ

n∏
i=1

ai ,σ(i)

— perm(A): super important, super hard to work with
[#P-complete; no geometric meaning]

• norm: how much A stretches vectors

‖A‖ := sup
~x 6=~0

‖A~x‖2

‖~x‖2

— ‖A‖: super nice and easy to work with [singular values]

Theorem (Gurvits)

If A is any n × n matrix (even over C), then |perm(A)| ≤ ‖A‖n.
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Matrices with large permanents

Matrices with large permanents: problem statement

perm(A) :=
∑

σ

∏n
i=1 ai ,σ(i) ‖A‖ := sup ‖A~x‖2

‖~x‖2

Theorem (Gurvits)

If A is any n × n matrix (even over C), then |perm(A)| ≤ ‖A‖n.

Aaronson [1] (+ Nguyen [2]) asked:

If Gurvits’s bound is close to tight,

does the matrix have to look special?

i.e., |perm(A)| ≥ ‖A‖n/n100 ⇒. . . ?

Theorem (Berkowitz, D.)

If |perm(A)| ≥ ‖A‖n/n100, then virtually every row and column of A is
dominated by a single entry of large modulus. [A looks very special.]

Motivated by connections to quantum computing. . .
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Matrices with large permanents

Matrices with large permanents: results in more detail

perm(A) :=
∑

σ

∏n
i=1 ai ,σ(i) ‖A‖ := sup ‖A~x‖2

‖~x‖2

≤ 1 [wlog ]

• Wlog, ‖A‖ ≤ 1 [So Gurvits says |perm(A)| ≤ 1]

• Set δ = n−1
∑

i ‖ri‖∞ (ri is row i of A)
[δ is the average of largest row entries]

— 0 ≤ δ ≤ 1 with δ = 1 iff A is a “±1-permutation matrix”

Theorem (Berkowitz, D.)

If ‖A‖ ≤ 1, then

|perm(A)| ≤ exp[−n(1− δ)2/105].

Moreover, if A is over R, then we also have

|perm(A)| ≤ exp[−
√

n(1− δ)/400].
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Matrices with large permanents

Matrices with large permanents: results in more detail

perm(A) :=
∑

σ

∏n
i=1 ai ,σ(i) ‖A‖ := sup ‖A~x‖2

‖~x‖2

≤ 1 [wlog ]

• Wlog, ‖A‖ ≤ 1 [So Gurvits says |perm(A)| ≤ 1]

• Set δ = n−1
∑

i ‖ri‖∞ (ri is row i of A)
[δ is the average of largest row entries]

— 0 ≤ δ ≤ 1 with δ = 1 iff A is a “±1-permutation matrix”

Theorem (Berkowitz, D.)

If ‖A‖ ≤ 1, then

|perm(A)| ≤ exp[−n(1− δ)2/105].

Moreover, if A is over R, then we also have

|perm(A)| ≤ exp[−
√

n(1− δ)/400].

Pat Devlin (Rutgers University) Well, in my defense. . . March 27, 2017 23 / 31



Matrices with large permanents

Matrices with large permanents: results in more detail

perm(A) :=
∑

σ

∏n
i=1 ai ,σ(i) ‖A‖ := sup ‖A~x‖2

‖~x‖2
≤ 1 [wlog ]

• Wlog, ‖A‖ ≤ 1 [So Gurvits says |perm(A)| ≤ 1]

• Set δ = n−1
∑

i ‖ri‖∞ (ri is row i of A)
[δ is the average of largest row entries]

— 0 ≤ δ ≤ 1 with δ = 1 iff A is a “±1-permutation matrix”

Theorem (Berkowitz, D.)

If ‖A‖ ≤ 1, then

|perm(A)| ≤ exp[−n(1− δ)2/105].

Moreover, if A is over R, then we also have

|perm(A)| ≤ exp[−
√

n(1− δ)/400].

Pat Devlin (Rutgers University) Well, in my defense. . . March 27, 2017 23 / 31



Matrices with large permanents

Matrices with large permanents: results in more detail

perm(A) :=
∑

σ

∏n
i=1 ai ,σ(i) ‖A‖ := sup ‖A~x‖2

‖~x‖2
≤ 1 [wlog ]

• Wlog, ‖A‖ ≤ 1 [So Gurvits says |perm(A)| ≤ 1]

• Set δ = n−1
∑

i ‖ri‖∞ (ri is row i of A)
[δ is the average of largest row entries]

— 0 ≤ δ ≤ 1 with δ = 1 iff A is a “±1-permutation matrix”

Theorem (Berkowitz, D.)

If ‖A‖ ≤ 1, then

|perm(A)| ≤ exp[−n(1− δ)2/105].

Moreover, if A is over R, then we also have

|perm(A)| ≤ exp[−
√

n(1− δ)/400].

Pat Devlin (Rutgers University) Well, in my defense. . . March 27, 2017 23 / 31



Matrices with large permanents

Matrices with large permanents: results in more detail

perm(A) :=
∑

σ

∏n
i=1 ai ,σ(i) ‖A‖ := sup ‖A~x‖2

‖~x‖2
≤ 1 [wlog ]

• Wlog, ‖A‖ ≤ 1 [So Gurvits says |perm(A)| ≤ 1]

• Set δ = n−1
∑

i ‖ri‖∞ (ri is row i of A)
[δ is the average of largest row entries]

— 0 ≤ δ ≤ 1 with δ = 1 iff A is a “±1-permutation matrix”

Theorem (Berkowitz, D.)

If ‖A‖ ≤ 1, then

|perm(A)| ≤ exp[−n(1− δ)2/105].

Moreover, if A is over R, then we also have

|perm(A)| ≤ exp[−
√

n(1− δ)/400].

Pat Devlin (Rutgers University) Well, in my defense. . . March 27, 2017 23 / 31



Matrices with large permanents

Matrices with large permanents: results in more detail

perm(A) :=
∑

σ

∏n
i=1 ai ,σ(i) ‖A‖ := sup ‖A~x‖2

‖~x‖2
≤ 1 [wlog ]

• Wlog, ‖A‖ ≤ 1 [So Gurvits says |perm(A)| ≤ 1]

• Set δ = n−1
∑

i ‖ri‖∞ (ri is row i of A)
[δ is the average of largest row entries]

— 0 ≤ δ ≤ 1 with δ = 1 iff A is a “±1-permutation matrix”

Theorem (Berkowitz, D.)

If ‖A‖ ≤ 1, then

|perm(A)| ≤ exp[−n(1− δ)2/105].

Moreover, if A is over R, then we also have

|perm(A)| ≤ exp[−
√

n(1− δ)/400].

Pat Devlin (Rutgers University) Well, in my defense. . . March 27, 2017 23 / 31



Matrices with large permanents

Matrices with large permanents: results in context
perm(A) :=

∑
σ

∏n
i=1 ai ,σ(i) ‖A‖ := sup ‖A~x‖2

‖~x‖2

• G bipartite, max degree ∆

• #p.m.(G ) is number of perfect matchings

#p.m.(G ) ≤ ∆n

[Obvious]

|perm(A)| ≤ ‖A‖n
[Gurvits]

#p.m.(G ) ≤ (∆!)n/∆ ≈ ∆ne−n
[Bregman]

|perm(A)| ≤ ‖A‖nc−n
[us]

refined by

refined by

Pat Devlin (Rutgers University) Well, in my defense. . . March 27, 2017 24 / 31
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Matrices with large permanents

Matrices with large permanents: proof sketch

perm(A) :=
∑

σ

∏n
i=1 ai ,σ(i) ‖A‖ := sup ‖A~x‖2

‖~x‖2

Goal: |perm(A)| ≤ ‖A‖nc−n

• |perm(A)| ≤ E[r .v .] (Not unique to us)

• E[r .v .] ≤ © + P(r .v . > ©) max(r .v .)

• P(r .v . > ©) ≤ ©

This works because of

• intuition/insight. . . ?

• bravery/näıvety. . . ?

Nuts and bolts:

• r .v . ≈ ‖A~X‖1
~X ∈ {−1, 1}n uniform

• for E[r .v .]: generalized Khintchine’s inequality

• for upper tail: Talagrand, Hoeffding, Bonami hyper-concentration

Pat Devlin (Rutgers University) Well, in my defense. . . March 27, 2017 25 / 31
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• |perm(A)| ≤ E[r .v .] (Not unique to us)

• E[r .v .] ≤ © + P(r .v . > ©) max(r .v .)

• P(r .v . > ©) ≤ ©

This works because of

• intuition/insight. . . ?

• bravery/näıvety. . . ?

Nuts and bolts:

• r .v . ≈ ‖A~X‖1
~X ∈ {−1, 1}n uniform

• for E[r .v .]: generalized Khintchine’s inequality

• for upper tail: Talagrand, Hoeffding, Bonami hyper-concentration
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Matrices with large permanents

Matrices with large permanents: proof of Gurvits’s result
Let ~X ∈ {−1, 1}n be chosen uniformly at random. Then

perm(A) = E

∏
i

Xi

 n∑
j=1

Xjai ,j

 . [Trust me]

|perm(A)| ≤ E

∏
i

|Xi |
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Xjai ,j
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[(
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n

)n ]
‖A~X‖1

n
≤ ‖A~X‖2

√
n

n
=
‖A~X‖2√

n
≤ ‖A‖‖

~X‖2√
n

= ‖A‖

So |perm(A)| ≤ ‖A‖n.
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Matrices with large permanents

There’s no way I need this slide...

Oh no! Stall for more time!

Pat Devlin (Rutgers University) Well, in my defense. . . March 27, 2017 27 / 31
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Thanks!

Thanks!
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