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— A~B & A and B have nothing in common

@ The 2-element subsets of {1,2,3,4,5}

e What's the largest collection of nodes containing no edges?

Theorem (Classical Erdés—Ko—Rado)

Any collection of more than (Z:}) nodes must contain an edge.
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Theorem (Classical Erdés—Ko—Rado)

Any collection of more than (Z:}) nodes must contain an edge. J
Bollobds [5] asked: o
If we add random noise, © (4)
is the result still true? ‘

(1) @
[keep edges w/prob. p]

e If p=1, then yes! If p =0, of course not! In between, we solved it:

Theorem (D., Kahn)

If n > 2k + 1, the threshold probability is p. = C (" %] 1) log(n("")).
And if n =2k + 1, then 3/4 < p. < 0.9999999999.

Pat Devlin (Rutgers University) Well, in my defense. .. March 27, 2017 9 /31



Outline

© Entropy and Permutations

Pat Devlin (Rutgers University)

Well, in my defense. . .



Entropy and permutations: submitted (2017+)
Authors:

Pat Devlin (Rutgers University)

Well, in my defense. . .



Entropy and permutations: submitted (2017+)

Authors: Hiiseyin Acan,

Pat Devlin (Rutgers University)

o F
Well, in my defense. . .



Entropy and permutations: submitted (2017+)

Authors: Hiseyin Acan, me,

Pat Devlin (Rutgers University) Well, in my defense. .. March 27, 2017 11 /31



Entropy and permutations: submitted (2017+)

Authors: Hiiseyin Acan, me, and Jeff “Shere” Kahn

Pat Devlin (Rutgers University) Well, in my defense. .. March 27, 2017 11 /31



Entropy and permutations: set-up

Pat Devlin (Rutgers University)

Well, in my defense. . .



Entropy and permutations: set-up
What is entropy?

Pat Devlin (Rutgers University)

Well, in my defense. . .



Entropy and permutations: set-up
What is entropy? H(X)

=—> P(X =1i)logP(X =1i)

Pat Devlin (Rutgers University)

Well, in my defense. . .



Entropy and permutations: set-up
What is entropy? H(X) =

— > P(X =1i)logP(X =)

e mystery facegame

\WHO,

Pat Devlin (Rutgers University)

Well, in my defense. . .



Entropy and permutations: set-up
What is entropy? H(X) =

— > P(X =1i)logP(X =)

e | “randomly” pick something
Pat Devlin (Rutgers University)

Well, in my defense. . .



Entropy and permutations: set-up
What is entropy? H(X)

=—> P(X =1i)logP(X =1i)

e | “randomly” pick something
e Entropy

& # yes/no questions to guess what | picked
Pat Devlin (Rutgers University)

&
Well, in my defense. . .



Entropy and Permutations

Entropy and permutations: set-up
What is entropy? H(X)=—=>,P(X=1i)logP(X =)

" Themystery facegame

e | “randomly” pick something
e Entropy & # yes/no questions to guess what | picked
e High entropy & high uncertainty

Pat Devlin (Rutgers University) Well, in my defense. .. March 27, 2017

12 /31



Entropy and Permutations

Entropy and permutations: set-up
What is entropy? HX)=—->;P(X =i)logP(X = i)
e | “randomly” pick something

e Entropy & # yes/no questions to guess what | picked
e High entropy & high uncertainty

Pat Devlin (Rutgers University) Well, in my defense. . . March 27, 2017 13 /31



Entropy and Permutations

Entropy and permutations: set-up

What is entropy? HX)=—->;P(X =i)logP(X = i)
e | “randomly” pick something
e Entropy & # yes/no questions to guess what | picked
e High entropy & high uncertainty

What is a permutation?

Pat Devlin (Rutgers University) Well, in my defense. . . March 27, 2017 13 /31



Entropy and Permutations

Entropy and permutations: set-up

What is entropy? HX)=—->;P(X =i)logP(X = i)
e | “randomly” pick something
e Entropy & # yes/no questions to guess what | picked
e High entropy & high uncertainty

What is a permutation?

e An ordered list of numbers. For example:

Pat Devlin (Rutgers University) Well, in my defense. . . March 27, 2017 13 /31



Entropy and Permutations

Entropy and permutations: set-up

What is entropy? HX)=—->;P(X =i)logP(X = i)
e | “randomly” pick something
e Entropy & # yes/no questions to guess what | picked
e High entropy & high uncertainty

What is a permutation?

e An ordered list of numbers. For example:
— 0,1,2,3,4,5,6,7,8,9; or

Pat Devlin (Rutgers University) Well, in my defense. . . March 27, 2017

13 /31



Entropy and Permutations

Entropy and permutations: set-up

What is entropy? HX)=—->;P(X =i)logP(X = i)
e | “randomly” pick something
e Entropy & # yes/no questions to guess what | picked
e High entropy & high uncertainty

What is a permutation?

e An ordered list of numbers. For example:
— 0,1,2,3,4,5,6,7,8,9; or
— 9,8,7,6,5,4,3,2,1,0; or

Pat Devlin (Rutgers University) Well, in my defense. . . March 27, 2017

13 /31



Entropy and Permutations

Entropy and permutations: set-up

What is entropy? HX)=—->;P(X =i)logP(X = i)
e | “randomly” pick something
e Entropy & # yes/no questions to guess what | picked
e High entropy & high uncertainty

What is a permutation?

e An ordered list of numbers. For example:
— 0,1,2,3,4,5,6,7,8,9; or
— 9,8,7,6,5,4,3,2,1,0; or
— 2,1,4,8,6,7,5,3,0,9; or ...

Pat Devlin (Rutgers University) Well, in my defense. .. March 27, 2017

13 /31



Entropy and Permutations

Entropy and permutations: set-up

What is entropy? HX)=—->;P(X =i)logP(X = i)
e | “randomly” pick something
e Entropy & # yes/no questions to guess what | picked
e High entropy & high uncertainty
What is a permutation?
e An ordered list of numbers. For example:
— 0,1,2,3,4,5,6,7,8,9; or
— 9,8,7,6,5,4,3,2,1,0; or
— 2,1,4,8,6,7,5,3,0,9; or ...

Question

If I pick a “random” permutation by a process with noticeable biases, does
that mean the outcome is predictable (i.e., has low entropy)?

Pat Devlin (Rutgers University) Well, in my defense. .. March 27, 2017 13 /31



Entropy and permutations: problem and result
Question

If I pick a “random” permutation by a process with noticeable biases, does
that mean the outcome is predictable (i.e., has low entropy)?

Pat Devlin (Rutgers University) Well, in my defense. .. March 27, 2017 14 / 31



Entropy and Permutations

Entropy and permutations: problem and result

Question

If I pick a “random” permutation by a process with noticeable biases, does
that mean the outcome is predictable (i.e., has low entropy)?

Leighton and Moitra [9] asked:

Pat Devlin (Rutgers University)

Well, in my defense. . . March 27, 2017 14 / 31



Entropy and Permutations

Entropy and permutations: problem and result

Question

If I pick a “random” permutation by a process with noticeable biases, does
that mean the outcome is predictable (i.e., has low entropy)?

Leighton and Moitra [9] asked:

What if for every a # b,
Pat either noticeably ‘prefers’
to place a before b or vice-versa?

Pat Devlin (Rutgers University)

Well, in my defense. . . March 27, 2017 14 / 31



Entropy and Permutations

Entropy and permutations: problem and result

Question

If I pick a “random” permutation by a process with noticeable biases, does
that mean the outcome is predictable (i.e., has low entropy)?

Leighton and Moitra [9] asked:

What if for every a # b,
Pat either noticeably ‘prefers’
to place a before b or vice-versa?

ie., P(o(a) < o(b)) % 1/2

Pat Devlin (Rutgers University)

Well, in my defense. . . March 27, 2017 14 / 31



Entropy and permutations: problem and result

Question

If I pick a “random” permutation by a process with noticeable biases, does
that mean the outcome is predictable (i.e., has low entropy)?

Leighton and Moitra [9] asked:

What if for every a # b,
Pat either noticeably ‘prefers’
to place a before b or vice-versa?

Theorem (Acan, D., Kahn)

Let € > 0 and o a random permutation of [n] such that for all a, b,

. Then the entropy is bounded by
H(o) < (1 —0)log(n!) for some 6 = 6(¢).

Pat Devlin (Rutgers University) Well, in my defense. . . March 27, 2017 14 / 31



Entropy and permutations: problem and result

Question

If I pick a “random” permutation by a process with noticeable biases, does
that mean the outcome is predictable (i.e., has low entropy)?

Leighton and Moitra [9] asked:

What if for every a # b,
Pat either noticeably ‘prefers’
to place a before b or vice-versa?

Theorem (Acan, D., Kahn)

Let € > 0 and o a random permutation of [n] such that for all a, b,
. Then the entropy is bounded by
H(o) < (1 — 0)log(n!) for some 6 = d(¢). [i.e., the answer is “yes"]

Pat Devlin (Rutgers University) Well, in my defense. . . March 27, 2017 14 / 31



Entropy and Permutations

Entropy and permutations: proof ingredients
Question

If | pick a “random” permutation by a process with noticeable biases, does
that mean the outcome is predictable (i.e., has low entropy)?

v

Theorem (Acan, D., Kahn)

Let € > 0 and o a random permutation of [n] such that for all a, b,
P(o(a) < al(b)) —1/2] > =. Then the entropy is bounded by
H(o) < (1 —d)log(n!) for some § = d(e). [i.e., the answer is “yes”]

Pat Devlin (Rutgers University) Well, in my defense. .. March 27, 2017 15 / 31



Entropy and Permutations

Entropy and permutations: proof ingredients
Question

If | pick a “random” permutation by a process with noticeable biases, does
that mean the outcome is predictable (i.e., has low entropy)?

v

Theorem (Acan, D., Kahn)

Let € > 0 and o a random permutation of [n] such that for all a, b,
P(o(a) < olb))—1/2) = =. Then the entropy is bounded by
H(o) < (1 —0)log(n!) for some 6 = d(¢). [i.e., the answer is “yes”]

e Szemerédi's regularity (very weak version)

Pat Devlin (Rutgers University) Well, in my defense. .. March 27, 2017 15 / 31



Entropy and Permutations

Entropy and permutations: proof ingredients
Question

If | pick a “random” permutation by a process with noticeable biases, does
that mean the outcome is predictable (i.e., has low entropy)?

v

Theorem (Acan, D., Kahn)

Let € > 0 and o a random permutation of [n] such that for all a, b,
Plo(a) < olb)) —1/2] > =. Then the entropy is bounded by
H(o) < (1 —0)log(n!) for some 6 = d(¢). [i.e., the answer is “yes”]

e Szemerédi's regularity (very weak version)
e Combinatorial bookkeeping gadget

Pat Devlin (Rutgers University) Well, in my defense. .. March 27, 2017 15 / 31



Entropy and Permutations

Entropy and permutations: proof ingredients
Question

If | pick a “random” permutation by a process with noticeable biases, does
that mean the outcome is predictable (i.e., has low entropy)?

v

Theorem (Acan, D., Kahn)

Let € > 0 and o a random permutation of [n] such that for all a, b,
Plo(a) < olb)) —1/2] > =. Then the entropy is bounded by
H(o) < (1 —0)log(n!) for some 6 = d(¢). [i.e., the answer is “yes”]

e Szemerédi's regularity (very weak version)
e Combinatorial bookkeeping gadget
e Coupling

Pat Devlin (Rutgers University) Well, in my defense. .. March 27, 2017 15 / 31



Entropy and Permutations

Entropy and permutations: proof ingredients
Question

If | pick a “random” permutation by a process with noticeable biases, does
that mean the outcome is predictable (i.e., has low entropy)?

v

Theorem (Acan, D., Kahn)

Let € > 0 and o a random permutation of [n] such that for all a, b,
P(o(a) < olb))—1/2) = =. Then the entropy is bounded by
H(o) < (1 —0)log(n!) for some 6 = d(¢). [i.e., the answer is “yes”]

e Szemerédi's regularity (very weak version)
e Combinatorial bookkeeping gadget

e Coupling
We prove § = exp[—~¢]; it should be ¢ or 2
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Matchings in hypergraphs: submitted (2017+)

Authors: me and Jeff
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Matchings in hypergraphs: very brief

Perfect matchings in random graphs?
e Precisely when no isolated vertices (stopping-time)
e k-out random graphs when k = 2

Perfect matchings in random hypergraphs?
e Hard!

e Roughly when no isolated vertices (© of threshold)

— Solved by Anders Johansson, Jeff Kahn, and Van Vu [8]
(2012 Fulkerson Prize)

e k-out hypergraphs? (At least as hard)

e Fractional relaxations. ..

Theorem (D., Kahn)

For each r, there is a k = k(r) such that a k-out r-uniform hypergraph
has a perfect fractional matching almost surely.

Pat Devlin (Rutgers University) Well, in my defense. .. March 27, 2017 18 / 31
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Matrices with large permanents: to appear (= 2016)

Authors: Ross Berkowitz and me

Little known fact: these pictures actually depict different people.
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perm(A) : ZHa, (i)
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Matrices with large permanents: set-up

e matrix: square array of numbers
e permanent: determinant formula without the (—1)*
perm(A) : ZHa, o(i)
o i=1
— perm(A): super important, super hard to work with
[# P-complete; no geometric meaning]
e norm: how much A stretches vectors
||A>? |2
Al == =
N
— [|AJ]: super nice and easy to work with [singular values|
Theorem (Gurvits)
If A is any n x n matrix (even over C), then |perm(A)| < ||A||". J
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Matrices with large permanents: problem statement

n AX]|
perm(A) = > [[iL; i o (i) Al := sup ”H;HQZ
Theorem (Gurvits)
If A is any n x n matrix (even over C), then |perm(A)| < ||A||". J

Motivated by connections to quantum computing. ..
HONGY. T THIK SOURE OLD
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If A is any n x n matrix (even over C), then |perm(A)| < ||A||". J

Aaronson [1] (+ Nguyen [2]) asked:

If Gurvits's bound is close to tight,
does the matrix have to look special?

perm(A)| > ||A||"/nt00 = . .7

i.e.,

Pat Devlin (Rutgers University) Well, in my defense. .. March 27, 2017 22 /31



Matrices with large permanents

Matrices with large permanents: problem statement

n AX]|
perm(A) = > [[iL; i o (i) Al := sup ”H;HQZ
Theorem (Gurvits)
If A is any n x n matrix (even over C), then |perm(A)| < ||A||". J

Aaronson [1] (+ Nguyen [2]) asked:

If Gurvits's bound is close to tight,
does the matrix have to look special?

i.e., [perm(A)| > ||A||"/nt00 = . .7

Theorem (Berkowitz, D.)

If |perm(A)| > ||A||"/n'%°, then virtually every row and column of A is
dominated by a single entry of large modulus. [A looks very special.]

Pat Devlin (Rutgers University) Well, in my defense. .. March 27, 2017 22 /31
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Matrices with large permanents

Matrices with large permanents: results in more detail

perm(A) := 3=, T171 ai.0() IA]| = sup IEE2< 1 [wiog]

e Wiog, ||A|| <1 [So Gurvits says [perm(A) < 1]
e Set 5 =n"1>" Il (rj is row i of A)

[6 is the average of largest row entries]
— 0< 9 <1with 6 =1iff Ais a “£1-permutation matrix”

Theorem (Berkowitz, D.)
If ||Al] <1, then

|perm(A)| < exp[—n(1 — §)?/10°].

Moreover, if A is over R, then we also have

|perm(A)| < exp[—+/n(1 — §)/400].

Pat Devlin (Rutgers University) Well, in my defense. .. March 27, 2017
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e G bipartite, max degree A
e #p.m.(G) is number of perfect matchings
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Matrices with large permanents: results in context
perm(A) := 3, [T1 ai.0() A = sup 152

e G bipartite, max degree A
e #p.m.(G) is number of perfect matchings

[Obvious] refined by [Bregman]
#p.m.(G) < A" #p.m.(G) < (A)A =~ Are™"
- ,  refined by - _
[perm(A)| < [|A|" ——————— |perm(A)| < [|A]|"c™"
[Gurvits] [us]
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Matrices with large permanents: proof sketch

perm(A) := 3", [17-1 3i0(7) A = sup I
Goal: |perm(A)| < ||A||"c™"

e |perm(A)| < E[r.v.] (Not unique to us)
o E[rv.] <@ +P(r.v. > @)max(r.v.)
e P(rv.>0Q)<®©

This works because of
e intuition/insight...?
e bravery/naivety...?
Nuts and bolts:

o rv.~||AX|1 X € {~1,1}" uniform
o for E[r.v.]: generalized Khintchine's inequality
e for upper tail: Talagrand, Hoeffding, Bonami hyper-concentration
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- ] )
i J=1 i |j=1
SRS En:Xja,-,j —E (HAle) ]
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Let X € {—1,1}" be chosen uniformly at random. Then

perm(A) = HX ZX aij || - [Trust me|

[ n n
perm(A)] < E|J[IXI D Xaij|| =E [T]|D Xjai,
i j=1 j=1

()

= [IAll

r n
E|{n ) En: X;aj | =E
i i |j=1

IAX]: _ IAXIavA _ AKX _ AIIXI:
T NI

IN
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[ n n
perm(A)] < E|J[IXI D Xaij|| =E [T]|D Xjai,
i j=1 j=1

()

= [IAll

— n n
E|{n ) D Xai =E
i i |j=1
1AX]s _ [AXlav _ [AX ]2 _ [ALIX]
n - n vno T /n
So [perm(A)| < ||A]|". O
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