Let A be a (finite dimensional, as always) F-algebra.

1.1. Let U be an A-module. Show that the following statements are equivalent.
 (a) U is completely reducible.
 (b) every submodule of U is completely reducible.
 (c) every homomorphic image of U is completely reducible.

1.2. Let V be an A-module. Prove that V is completely reducible iff the intersection of all maximal submodules of V is 0. (Isaacs’ book, problem 1.1).

1.3. A is semisimple iff every A-module is completely reducible. (Isaacs’ book, problem 1.3)

1.4. Let G be a finite group and p a prime dividing $|G|$. Let F be a field of characteristic p. Prove that FG is not semisimple. (Isaacs’ book, problem 1.9).
 (Hint: Apply Problem 1.2 to the regular module FG and consider the element $\sum_{g \in G} g$.)
2.1. (Isaacs’ book, problem 2.1) a) Let Φ be an irreducible \mathbb{F}-representation of a finite group G over an arbitrary field \mathbb{F}. Show that $\sum_{g \in G} \Phi(g) = 0$, unless Φ is the principal representation.

b) Let H be a subgroup of G and $g \in G$ be such that all elements of the coset Hg are G-conjugate. Let $\chi \in \text{Irr}(G)$ be such that $(\chi|_H, 1_H)_H = 0$. Show that $\chi(g) = 0$. (Hint: Apply a) to H and compute $tr(\sum_{h \in H} \Phi(hg))$, Φ a representation affording χ.)

From now on, all characters are \mathbb{C}-characters.

2.2. (Isaacs’ book, problem 2.3) Let χ be a character of G. Choose a representation Φ affording χ and define $\det \chi : G \to \mathbb{C}$ as follows: $(\det \chi)(g) = \det(\Phi(g))$. Show that $\det \chi$ does not depend on the choice of Φ, and it is a linear character of G.

2.3. (Isaacs’ book, problem 2.4) a) Let G be a non-abelian group of order 8. Show that G has exactly four linear characters and one more irreducible character, say χ, which is of degree 2. Show that $\chi(g) = -2$ if $g \in Z(G)$ and $g \neq 1$, and $\chi(g) = 0$ if $g \in G \setminus Z(G)$. (Hint: Use the fact that $Z(G) = G' \simeq \mathbb{Z}_2$, the cyclic group of order 2, and then compute $(\chi, \chi)_G$.)

b) If G is the dihedral group D_8 of order 8:

$$G = \langle a, b \mid a^4 = b^2 = 1, bab = a^{-1} \rangle,$$

then $\det \chi \neq 1_G$. If G is the quaternion group Q_8 of order 8:

$$G = \langle a, b \mid a^2 = b^2, a^4 = 1, bab^{-1} = a^{-1} \rangle,$$

then $\det \chi = 1_G$. On the other hand, observe that D_8 and Q_8 have the same character table. (Hint: Find $\Phi(b)$, Φ a representation affording χ.)

2.4. (Isaacs’ book, problem 2.13) Let G be a finite group such that $G' \leq Z(G)$ and $|G'| = p$ a prime. Let $\chi \in \text{Irr}(G)$ and $\chi(1) > 1$. Show that χ vanishes on $G \setminus Z(G)$ and $\chi(1)^2 = (G : Z(G))$.

2.5. (Isaacs’ book, problem 2.9) a) Let χ be a character of an abelian group A. Show that $\sum_{a \in A} |\chi(a)|^2 \geq |A| \cdot \chi(1)$. (Hint: Decompose $\chi|_A$ into irreducible characters of A.)

b) Let G be a finite group with an abelian subgroup A. Show that $\chi(1) \leq (G : A)$ for any $\chi \in \text{Irr}(G)$.