Let A be a (finite dimensional, as always) \mathbb{F}-algebra.

1.1. Let U be an A-module. Show that the following statements are equivalent.
 (a) U is completely reducible.
 (b) every submodule of U is completely reducible.
 (c) every homomorphic image of U is completely reducible.

1.2. Let V be an A-module. Prove that V is completely reducible iff the intersection of all maximal submodules of V is 0. (Isaacs’ book, problem 1.1).

1.3. A is semisimple iff every A-module is completely reducible. (Isaacs’ book, problem 1.3)

1.4. Let G be a finite group and p a prime dividing $|G|$. Let \mathbb{F} be a field of characteristic p. Prove that $\mathbb{F}G$ is not semisimple. (Isaacs’ book, problem 1.9).
 \textit{(Hint: } Apply Problem 1.2 to the regular module $\mathbb{F}G$ and consider the element $\sum_{g \in G} g$.\textit{)}

2.1. (Isaacs’ book, problem 2.1) a) Let Φ be an irreducible F-representation of a finite group G over an arbitrary field F. Show that $\sum_{g \in G} \Phi(g) = 0$, unless Φ is the principal representation.

b) Let H be a subgroup of G and $g \in G$ be such that all elements of the coset Hg are G-conjugate. Let $\chi \in \text{Irr}(G)$ be such that $(\chi|_H, 1_H)_H = 0$. Show that $\chi(g) = 0$. (Hint: Apply a) to H and compute $\text{tr}(\sum_{h \in H} \Phi(hg))$, Φ a representation affording χ.)

From now on, all characters are \mathbb{C}-characters.

2.2. (Isaacs’ book, problem 2.3) Let χ be a character of G. Choose a representation Φ affording χ and define $\det \chi : G \rightarrow \mathbb{C}$ as follows: $(\det \chi)(g) = \det(\Phi(g))$. Show that $\det \chi$ does not depend on the choice of Φ, and it is a linear character of G.

2.3. (Isaacs’ book, problem 2.4) a) Let G be a non-abelian group of order 8. Show that G has exactly four linear characters and one more irreducible character, say χ, which is of degree 2. Show that $\chi(g) = -2$ if $g \in Z(G)$ and $g \neq 1$, and $\chi(g) = 0$ if $g \in G \setminus Z(G)$. (Hint: Use the fact that $Z(G) = G' \cong \mathbb{Z}_2$, the cyclic group of order 2, and then compute $(\chi, \chi)_G$.)

b) If G is the dihedral group D_8 of order 8:
$$G = \langle a, b \mid a^4 = b^2 = 1, bab = a^{-1} \rangle,$$
then $\det \chi \neq 1_G$. If G is the quaternion group Q_8 of order 8:
$$G = \langle a, b \mid a^2 = b^2, a^4 = 1, bab^{-1} = a^{-1} \rangle,$$
then $\det \chi = 1_G$. On the other hand, observe that D_8 and Q_8 have the same character table. (Hint: Find $\Phi(b)$, Φ a representation affording χ.)

2.4. (Isaacs’ book, problem 2.13) Let G be a finite group such that $G' \leq Z(G)$ and $|G'| = p$ a prime. Let $\chi \in \text{Irr}(G)$ and $\chi(1) > 1$. Show that χ vanishes on $G \setminus Z(G)$ and $\chi(1)^2 = (G : Z(G))$.

2.5. (Isaacs’ book, problem 2.9) a) Let χ be a character of an abelian group A. Show that $\sum_{a \in A} |\chi(a)|^2 \geq |A| \cdot \chi(1)$. (Hint: Decompose $\chi|_A$ into irreducible characters of A.)

b) Let G be a finite group with an abelian subgroup A. Show that $\chi(1) \leq (G : A)$ for any $\chi \in \text{Irr}(G)$.
3.1. (Isaacs’s book, problem 3.3) Show that no simple group can have an irreducible character of degree 2. (Hint: Suppose G has such a character of degree 2, afforded by a representation Φ. Then $|G|$ is divisible by 2 and so G has an involution j. Use Problem 2.2 to show that $\Phi(j) = -I$, hence $j \in Z(G)$.)

3.2. (Isaacs’s book, problems 3.16 and 3.17) Let G be a finite group of odd order.
 a) Let $\chi \in \text{Irr}(G)$ and suppose χ is not the principal character. Show that χ and its complex conjugate $\bar{\chi}$ are different. (Hint: Using the oddness of $|G|$, show that $G = \{1\} \cup \{a_1, a_1^{-1}\} \cup \{a_2, a_2^{-1}\} \cup \cdots \cup \{a_m, a_m^{-1}\}$.

 Suppose $\chi = \bar{\chi}$. Computing $(\chi, 1_G)_G$, show that $\chi(1)/2$ is an algebraic integer.)

 b) Suppose G has exactly r conjugacy classes. Show that $|G| \equiv r \pmod{16}$. (Hint: Use part a) and the formula $|G| = \sum_{\chi \in \text{Irr}(G)} \chi(1)^2$.)

3.3. Let G be a non-abelian group of order p^3, p a prime. Show that G has exactly $p^2 + p - 1$ irreducible characters: p^2 of degree 1 and $p - 1$ of degree p. (Hint: First show that $Z(G)$ has order p. Then show $[G, G] = Z(G)$ and use Corollary 2.23 and Theorem 3.12.)

 This problem shows that Theorem 3.13 is false if one removes the assumption that $P \in \text{Syl}_p(G)$ is abelian.

3.4. (Isaacs’s book, problems 3.4) Let G be a simple group having an irreducible character χ of prime degree p. Show that p, but not p^2, divides $|G|$. (Hint: Let $P \in \text{Syl}_p(G)$. If P is abelian, apply Theorem 3.13. If not, show that $\chi|_P$ is irreducible, hence $Z(P) \leq Z(\chi)$ by Schur’s Lemma.)

3.5. Show that any finite non-abelian simple group has order at least 60. (Hint: You can use Burnside’s p^aq^b-theorem.)

3.6. Let g be an element of a finite group G and let k be any integer coprime to $|g|$. Show that g is a commutator in G if and only if g^k is a commutator in G. (Hint: Use the character formula proved in class.)