Calculus 1000A — Fall 2015 Solutions to Written Assignment 3

Due Date: Nov. 04, 2015 (in class)

Name: _____ Section: 007

There are two problems in this assignment. Each problem can earn you a maximum of 10 points.
Attach extra sheets if necessary.

• Attach extra sneets if necessary.

Problem 1. A particle is moving on the hyperbola $x^2 - 18y^2 = 9$. At what point(s) on the hyperbola is the *x*-coordinate of the particle moving three times more rapidly than the *y*-coordinate, assuming that that neither of these velocities are zero?

Solution. Let (x(t), y(t)) denote the postion of the particle at time t. Then, since this point is on the given hyperbola, we have that

$$x(t)^2 - 18y(t)^2 = 9.$$

Differentiating both sides of the above equation w.r.t. t, we get

$$2x(t)\dot{x}(t) - 36y(t)\dot{y}(t) = 0,$$

or,

$$x\frac{dx}{dt} = 18y\frac{dy}{dt}$$

Now, if we substitute $\left|\frac{dx}{dt}\right| = 3 \left|\frac{dy}{dt}\right|$ or $\frac{dx}{dt} = \pm 3 \frac{dy}{dt}$ in the above equation, we get that

$$3x\frac{dy}{dt} = \pm 18y\frac{dy}{dt}$$

or

$$x = \pm 6y$$
, since $\frac{dy}{dt} \neq 0$.

So, if (x, y) is a point on the hyperbola where the x-coordinate of the particle is moving three times more rapidly than the y-coordinate, the point satisfies the following equations:

$$x = \pm 6y \tag{1}$$

and

$$x^2 - 18y^2 = 9. (2)$$

Substituting (1) in (2), we get that

$$36y^2 - 18y^2 = 9$$

or

$$y = \pm \frac{1}{\sqrt{2}}.$$

So, the points on the hyperbola where the x-coordinate of the particle is moving three times more rapidly than the y-coordinate are

$$(3\sqrt{2}, 1/\sqrt{2}), (-3\sqrt{2}, 1/\sqrt{2}), (3\sqrt{2}, -1/\sqrt{2}) \text{ and } (-3\sqrt{2}, -1/\sqrt{2})$$

Problem 2. Given below is the graph of f'(x), the **derivative** of the function f(x) defined on [0,3]. Answer the following questions and give a one-line justification for each answer.

