Calculus 1000A - Fall 2015

Solutions to Written Assignment 3
Due Date: Nov. 04, 2015 (in class)
Name: \qquad
Section: 007

- There are two problems in this assignment. Each problem can earn you a maximum of 10 points.
- Attach extra sheets if necessary.

Problem 1. A particle is moving on the hyperbola $x^{2}-18 y^{2}=9$. At what point(s) on the hyperbola is the x-coordinate of the particle moving three times more rapidly than the y-coordinate, assuming that that neither of these velocities are zero?

Solution. Let $(x(t), y(t))$ denote the postion of the particle at time t. Then, since this point is on the given hyperbola, we have that

$$
x(t)^{2}-18 y(t)^{2}=9
$$

Differentiating both sides of the above equation w.r.t. t, we get

$$
2 x(t) \dot{x}(t)-36 y(t) \dot{y}(t)=0,
$$

or,

$$
x \frac{d x}{d t}=18 y \frac{d y}{d t}
$$

Now, if we substitute $\left|\frac{d x}{d t}\right|=3\left|\frac{d y}{d t}\right|$ or $\frac{d x}{d t}= \pm 3 \frac{d y}{d t}$ in the above equation, we get that

$$
3 x \frac{d y}{d t}= \pm 18 y \frac{d y}{d t}
$$

or

$$
x= \pm 6 y, \quad \text { since } \frac{d y}{d t} \neq 0 .
$$

So, if (x, y) is a point on the hyperbola where the x-coordinate of the particle is moving three times more rapidly than the y-coordinate, the point satisfis the following equations:

$$
\begin{equation*}
x= \pm 6 y \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
x^{2}-18 y^{2}=9 \tag{2}
\end{equation*}
$$

Subsitituting (1) in (2), we get that

$$
36 y^{2}-18 y^{2}=9
$$

or

$$
y= \pm \frac{1}{\sqrt{2}} .
$$

So, the points on the hyperbola where the x-coordinate of the particle is moving three times more rapidly than the y-coordinate are

$$
(3 \sqrt{2}, 1 / \sqrt{2}),(-3 \sqrt{2}, 1 / \sqrt{2}),(3 \sqrt{2},-1 / \sqrt{2}) \text { and }(-3 \sqrt{2},-1 / \sqrt{2}) .
$$

Problem 2. Given below is the graph of $f^{\prime}(x)$, the derivative of the function $f(x)$ defined on $[0,3]$. Answer the following questions and give a one-line justification for each answer.

1. $\lim _{x \rightarrow 2^{-}} \frac{f(x)-f(2)}{x-2}=\lim _{x \rightarrow 2^{+}} \frac{f(x)-f(2)}{x-2}$.

TRUE FALSE CANNOT BE DETERMINED
Reason: No value for $f^{\prime}(2)$ - i.e., derivative does not exist at 2 .
2. $\lim _{x \rightarrow 2^{-}} f(x)=\lim _{x \rightarrow 2^{+}} f(x)$.

TRUE
FALSE
CANNOT BE DETERMINED
Reason: f can have a discontinuity or can have a continuous corner at 2 .
3. $f(x)$ does not have any inflection points in $[0,3]$.

TRUE FALSE CANNOT BE DETERMINED
Reason: f^{\prime} is increasing in $(0,1)$ and decreasing in $(1,2)$, so the concavity of f changes from concave up to concave down at 1 , which is, therefore, an inflection point of f.
4. Suppose $f(0)=0$. Then, $f(x)$ must be positive in $(0,2)$.
TRUE FALSE CANNOT BE DETERMINED

Reason: $f^{\prime}>0$ in $(0,2)$, so f has to be increasing. Since $f(0)=0, f(x)>0$ for x in $(0,2)$.
5. $f(x)$ is never concave down.

TRUE FALSE CANNOT BE DETERMINED
Reason: f^{\prime} is decreasing in $(1,2)$, so $f^{\prime \prime}<0$ there. So, f is concave down there.

