Calculus 1000A — Fall 2015
 Solutions to Written Assignment 1

Problem 1. Given below is the graph of the function $f(x) . f(x)$ has domain $[-4,2]$. What is the domain of

$$
g(x)=f^{-1}(2 x+1) ?
$$

In the grid provided below, carefully sketch the graph of $g(x)$.

Domain of $g(x):\left[-\frac{5}{2}, \frac{3}{2}\right]$.
(Useful tip: First, determine the domain and draw the graph of $h(x)=f^{-1}(x)$.)

Problem 2. (i) Use the addition and subtraction formulas for the sine and cosine functions to prove the identity

$$
\sin (x)-\sin (y)=2 \cos \left(\frac{x+y}{2}\right) \sin \left(\frac{x-y}{2}\right) .
$$

(ii) Using part (i), find all the pairs $(x, y), 0 \leq x, y<\frac{\pi}{2}$, that satisfy both of the following equations:

$$
\begin{align*}
2 \sin (x-y) & =\sin (2 x)-\sin (2 y) ; \tag{1}\\
x & =4 y . \tag{2}
\end{align*}
$$

(Useful tip: Simplify (1) before substituting (2) in (1).)
Solution. (i) Using the addition formula for cos and the subtraction formula for sin, we can write

$$
\begin{aligned}
\cos \left(\frac{x+y}{2}\right) & =\cos \left(\frac{x}{2}+\frac{y}{2}\right)=\cos \left(\frac{x}{2}\right) \cos \left(\frac{y}{2}\right)-\sin \left(\frac{x}{2}\right) \sin \left(\frac{y}{2}\right) \\
\sin \left(\frac{x-y}{2}\right) & =\sin \left(\frac{x}{2}-\frac{y}{2}\right)=\sin \left(\frac{x}{2}\right) \cos \left(\frac{y}{2}\right)-\cos \left(\frac{x}{2}\right) \sin \left(\frac{y}{2}\right) .
\end{aligned}
$$

Multiplying the two equations, we get

$$
\begin{aligned}
& \cos \left(\frac{x+y}{2}\right) \sin \left(\frac{x-y}{2}\right) \\
= & \left(\cos \left(\frac{x}{2}\right) \cos \left(\frac{y}{2}\right)-\sin \left(\frac{x}{2}\right) \sin \left(\frac{y}{2}\right)\right)\left(\sin \left(\frac{x}{2}\right) \cos \left(\frac{y}{2}\right)-\cos \left(\frac{x}{2}\right) \sin \left(\frac{y}{2}\right)\right) \\
= & \cos \left(\frac{x}{2}\right) \sin \left(\frac{x}{2}\right) \cos ^{2}\left(\frac{y}{2}\right)-\cos ^{2}\left(\frac{x}{2}\right) \cos \left(\frac{y}{2}\right) \sin \left(\frac{y}{2}\right) \\
& \quad-\sin ^{2}\left(\frac{x}{2}\right) \sin \left(\frac{y}{2}\right) \cos \left(\frac{y}{2}\right)+\sin \left(\frac{x}{2}\right) \cos \left(\frac{x}{2}\right) \sin ^{2}\left(\frac{y}{2}\right) \\
= & \cos \left(\frac{x}{2}\right) \sin \left(\frac{x}{2}\right)\left(\cos ^{2}\left(\frac{y}{2}\right)+\sin ^{2}\left(\frac{y}{2}\right)\right)-\cos \left(\frac{y}{2}\right) \sin \left(\frac{y}{2}\right)\left(\cos ^{2}\left(\frac{x}{2}\right)+\sin ^{2}\left(\frac{x}{2}\right)\right) .
\end{aligned}
$$

Now, $\cos ^{2}(x)+\sin ^{2}(x)=1$ and $\sin (2 x)=2 \sin (x) \cos (x)$, so we can write

$$
2 \cos \left(\frac{x+y}{2}\right) \sin \left(\frac{x-y}{2}\right)=\sin (x)-\sin (y) .
$$

(ii) We use the identity proved in (i) to re-write the left-hand side of (1), and obtain:

$$
2 \sin (x-y)=2 \cos \left(\frac{2 x+2 y}{2}\right) \sin \left(\frac{2 x-2 y}{2}\right)=2 \cos (x+y) \sin (x-y) .
$$

Thus, (1) can be re-written as $2 \sin (x-y)(1-\cos (x+y))=0$.
Case a. $\sin (x-y)=0$. Subsituting $x=4 y$ in this equation, we get $\sin (3 y)=0$. For y in $\left[0, \frac{\pi}{2}\right)$, this happens at $y=0$ and $y=\frac{\pi}{3}$. The corresponding values of x are 0 and $\frac{4 \pi}{3}$, respectively. But, $\frac{4 \pi}{3}$ is not in the interval $\left[0, \frac{\pi}{2}\right)$. So, $(0,0)$ is a solution.

Case $b .1-\cos (x+y)=0$. Subsituting $x=4 y$ in this equation, we get $\cos (5 y)=1$. For y in $\left[0, \frac{\pi}{2}\right)$, this happens at $y=0$ and $y=\frac{2 \pi}{5}$. The corresponding values of x are 0 and $\frac{4 \pi}{5}$, respectively. But, $\frac{4 \pi}{5}$ is not in the interval $\left[0, \frac{\pi}{2}\right) . S o,(0,0)$ is the only solution.

