Calculus 1000A - Fall 2015
 Quiz 3

Date: Nov. 11, 2015
Duration: 30 minutes.

Name: \qquad
Section: 007

This is a multiple-choice test. Circle the best answer. Correct answers will earn you 5 points each. You can score a maximum of 20 points.

Problem 1. Let $f(x)=x^{\frac{1}{x}}$. Then, f is a decreasing function in
(A) $(1, \infty)$.
$(B)(e, \infty)$.
(C) $(1, e)$.
$(D)(0,4)$.
(E) No interval.

Problem 2. Let $f(x)=3 x^{5}-5 x^{4}$ in $[-1,2]$. Which of the following statements is true?
(A) The only critical numbers of $f(x)$ are 0 and 1 and the only inflection point is at $x=0$.
(B) The only critical numbers of $f(x)$ are 0 and 1 and f has no inflection points in $[-1,2]$.
(C) The only critical numbers of $f(x)$ are 0 and $4 / 3$ and the only inflection point is at $x=1$.
(D) The only critical numbers of $f(x)$ are 0 and $4 / 3$ and the only inflection points are at $x=0$ and $x=1$.
(E) f has no critical points in $[-1,2]$ and has one inflection point at $x=1$.

Problem 3. A kite is flying at an angle of elevation of $\pi / 3$. The kite string is being taken in at the rate of 2 feet per second. If the angle of elevation does not change, which of the following statements is correct?
(A) The kite is losing altitude at the rate of 1 ft . per sec.
(B) The kite is gaining altitude at the rate of 1 ft . per sec.
(C) The kite is losing altitude at the rate of 2 ft . per sec.
(D) The kite is losing altitude at the rate of $\sqrt{3} \mathrm{ft}$. per sec.
(E) The kite is gaining altitude at the rate of $\sqrt{3} \mathrm{ft}$. per sec.

Problem 4. The length and width of the rectangle of largest area that can be inscribed in a circle of radius $\sqrt{2} \mathrm{~cm}$ are
(A) 4 and 3 cm , respectively.
(B) 2 and 2 cm , respectively.
(C) 5 and 2 cm , respectively.
(D) $2 \sqrt{3}$ and $\sqrt{3} \mathrm{~cm}$, respectively.
(E) 1 and 1 cm , respectively.

