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Abstract

For the one-dimensional Facilitated Exclusion Process with initial
state a product measure of density ρ = 1/2− δ, δ ≥ 0, there exists an
infinite-time limiting state νρ in which all particles are isolated and
hence cannot move. We study the variance V (L), under νρ, of the
number of particles in an interval of L sites. Under ν1/2 either all
odd or all even sites are occupied, so that V (L) = 0 for L even and
V (L) = 1/4 for L odd: the state is hyperuniform [21], since V (L)
grows more slowly than L. We prove that for densities approaching
1/2 from below there exist three regimes in L, in which the variance
grows at different rates: for L ≫ δ−2, V (L) ≃ ρ(1 − ρ)L, just as in
the initial state; for A(δ) ≪ L ≪ δ−2, with A(δ) = δ−2/3 for L odd
and A(δ) = 1 for L even, V (L) ≃ CL3/2 with C = 2

√
2/π/3; and for

L ≪ δ−2/3 with L odd, V (L) ≃ 1/4. The analysis is based on a careful
study of a renewal process with a long tail. Our study is motivated
by simulation results showing similar behavior in higher dimensions;
we discuss this background briefly.
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1 Introduction

In the Facilitated Exclusion Process (FEP) on Z
d, also known as the Con-

served Lattice Gas process, each site of the lattice can be occupied by at
most one particle, so that a configuration η is an element of the configura-
tion space X = {0, 1}Zd

. At Poisson-distributed times a particle chooses one
of its nearest-neighbor sites at random and attempts to jump to it, succeed-
ing only if the target site is unoccupied and the original site has at least one
occupied (facilitating) neighbor. (Variations of this dynamics, with simul-
taneous updating or with some other rule for choosing the target site, have
also been considered [13].) Note that when d = 1 the need for a facilitating
particle implies that no choice step is necessary: a particle can jump in at
most one direction. We will always assume that the system is started in a
Bernoulli initial state µ

(ρ)
0 of density ρ < 1, that is, a product measure in

which the η(x) are independent and take value 1 with probability ρ. The

evolved state at time t will then be denoted µ
(ρ)
t ; it is clearly translation

invariant (TI).
The evolution of this system, or of minor variations of it, has been in-

vestigated for d = 1 [1–4, 7, 8, 10–13, 17, 22], primarily theoretically, and for
d ≥ 2 [13, 14, 16, 19], primarily via simulation in a cubical box with periodic
boundary conditions. These investigations strongly suggest, for d ≥ 2, and
prove, for d = 1, the existence of a TI limiting state (first described for d = 1
in [22])

νρ := lim
t→∞

µ
(ρ)
t . (1)

Moreover, there appears to be a critical density ρc such that if ρ ≤ ρc then νρ
is a frozen state in which all particles are isolated and hence unable to move,
while if ρ > ρc then νρ is an active stationary state in which there is a finite
density of particles with an occupied neighboring site. Necessarily ρc ≤ 1/2,
since for ρ > 1/2 it is geometrically impossible for all the particles to be
isolated, and indeed equality holds for d = 1. But for d ≥ 2, simulations
suggest values of ρc which are much smaller, for example, ρc ≈ 0.3308 for
d = 2.

Our main interest here will be in fluctuations in the measure νρ, that is,
in the variance Vρ(L) := Varνρ(N(L)) of the number N(L) of particles in a
cubical box of side L. In general, if such a variance computed from a TI
measure µ grows as Ld when L ր ∞, we say that µ has normal fluctua-
tions. Hexner and Levine [14] observe that, in 2d and 3d, νρc is not of this
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character but rather is hyperuniform [21]: Vρc(L) grows more slowly than Ld,
specifically, Vρc(L) ∼ Lλ1 , with λ1 ≈ 1.57 in 2d and λ1 ≈ 2.76 in 3d [14].

Hexner and Levine also discuss the behavior of Vρ(L) as ρ ր ρc. Further
consideration of this behavior has led us [13] to the following conjecture,
which we state for d ≥ 2; the d = 1 version is Theorem 1 below. We
introduce the notation δ = ρc − ρ > 0.

Fluctuation Conjecture. For the FEP with d ≥ 2 a critical density ρc as
described above exists, and νρc is hyperuniform. For ρ less than but close
to ρc, three regimes in L may be identified. For small L (but still with
L ≫ 1) the variances grow approximately as in the hyperuniform state at ρc:
Vρ(L) ≃ C1L

λ1 . At some (approximately defined) scale L1(δ) the variances
enter the regime of intermediate L, in which they grow as Vρ(L) ≃ C2(δ)L

λ2

with λ2 > d > λ1 and C2(δ) > 0. Then above an (approximate) scale
L2 = L2(δ) the growth is as Vρ(L) ≃ ρ(1 − ρ)Ld, that is, exactly as in the

initial Bernoulli measure µ
(ρ)
0 . Finally, as ρ ր ρc, L1(δ) and L2(δ) increase

as Li ∼ δ−γi for some exponents γ1, γ2 satisfying γ2 > γ1 > 0.

In the remainder of the paper we restrict our consideration to the d =
1 model. In Section 2 we state in Theorem 1 our main result, the one-
dimensional version of the conjecture, and in Section 3 we describe the 1d
limiting measure νρ. The proof of Theorem 1 is given in Section 4.

2 Statement of the result

The key to the rigorous establishment of a version of the Fluctuation Con-
jecture in dimension d = 1 is that there the existence and exact value of the
critical density are known—ρc = 1/2—and that we also have a complete de-
scription of the limiting measure νρ for ρ ≤ 1/2 [1,10,11,22]. (This measure
was first identified and discussed in [22], a reference which has just come to
our attention. We regret that we did not properly credit this work in earlier
papers.) We will discuss νρ for ρ < 1/2 in Section 3; for the moment let us
note that the measure at the critical density is particularly simple:

ν1/2 =
1

2
(δη∗ + δη†), (2)

where η∗ and η† are the two configurations in X = {0, 1}Z in which holes
and particles strictly alternate.
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The Fluctuation Conjecture concerns the asymptotic behavior of the
quantity Vρ(L) with L “small,” “intermediate,” or “large,” yet in each case
also sufficiently large. To give a precise result in 1d we introduce some nota-
tion for the description of this behavior.

Definition 1. Assume that L is a positive integer and δ a positive real
number (in applications we will have δ = ρc − ρ), that A(δ, L) and B(δ, L)
are real valued functions whose asymptotic behavior in L we wish to compare,
and that L1(δ) and L2(δ) are positive functions (these play the role of setting
the scales of the various regions). Then we write respectively

A(δ, L) ≃ B(δ, L) for





L ≪ L1(δ),

L1(δ) ≪ L ≪ L2(δ),

L ≫ L2(δ),

(3)

if for any ǫ > 0 there exists a δ0 > 0, together with a (small) number s > 0
and/or a (large) number l > 0, such that for δ < δ0 we have, respectively,

1− ǫ <
A(δ, L)

B(δ, L)
< 1 + ǫ





for L < sL1(δ),

for lL1(δ) < L < sL2(δ),

for L > lL2(δ).

(4)

If A and B depend also on some additional parameter(s) α we say that (3)
holds uniformly for α in some (possibly L- or δ-dependent) set if s and/or l
may be chosen so that (4) holds for all such α.

With this notation established we may state our main result; we assume
that 0 < ρ < 1/2, that δ = 1/2 − ρ, and that νρ is the measure (1) of the
1d FEP. In contrast to the d ≥ 2 behavior described in the the Fluctuation
Conjecture, for d = 1 the variances Vρ(L) behave differently for L odd and
L even.

Theorem 1. Let N (δ)(L) be the number of particles on the sites 1, 2, . . . , L,
with distribution determined by νρ. Then:

(a) For L odd,

Vρ(L) = Var(N (δ)(L)) ≃





1
4
, for L ≪ δ−2/3,

2
3

√
2
π
δL3/2, for δ−2/3 ≪ L ≪ δ−2,

1
4
L, for L ≫ δ−2.

(5)
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(b) For L even,

Vρ(L) = Var(N (δ)(L)) ≃
{

2
3

√
2
π
δL3/2, for 1 ≪ L ≪ δ−2,

1
4
L, for L ≫ δ−2.

(6)

We actually have a stronger result for the asymptotics in the large-L
region. The “right” estimate for Var(N (δ)(L)) there is ρ(1 − ρ)L, as stated
in the Fluctuation Conjecture and as we discuss further in Remark 1 below,
and this is true for all, not just small, δ:

Corollary 2 (to the proof of Theorem 1). For any ǫ > 0 there exists an
l > 0 such that

1− ǫ <
Var(N (δ)(L))

ρ(1 − ρ)L
< 1 + ǫ for L > lδ−2. (7)

A comparison of Theorem 1(a) with the Fluctuation Conjecture shows
that for L odd the behavior of Vρ(L) in one dimension corresponds directly
to the conjectured behavior in higher dimension (but without the condition
L ≫ 1). In particular it follows from (2) that

V1/2(L) =

{
1
4
, if L is odd,

0, if L is even,
(8)

which implies that ν1/2 is hyperuniform and also explains the Vρ(L) ≃ 1/4
behavior in Theorem 1 for small odd L. The variables introduced in the
conjecture become λ1 = 0, C1 = 1/4, λ2 = 3/2, C2(δ) =

√
8/π δ/3, γ1 = 2/3,

and γ2 = 2. On the other hand, for even L the “small” growth region is absent
in one dimension: for small and moderate values of L the variances grow as
C2(δ)L

3/2. This odd/even distinction may be regarded as a legacy of (8)
when δ is perturbed away from 0.

Remark 1. Corollary 2 certainly implies that limL→∞ Vρ(L)/L = ρ(1−ρ) for
all ρ < 1/2, and this part of the result, although not the scale δ−2 at which
the limit is achieved, may be obtained by an elementary argument [11]. For
with probability 1 each particle will move only a finite distance during the
evolution, so that for L sufficiently large N(L) will, to high relative accuracy,
be the same at the end of the evolution as it was at the beginning, and
Var(N(L)) will be the same as for the original Bernoulli measure.
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Remark 2. There are several one-dimensional models with exclusion and
facilitation, closely related to the FEP, for which also ρc = 1/2 and for which

limt→∞ µ
(ρ)
t is for ρ ≤ 1/2 the measure νρ that we are considering here, and

hence for which the fluctuations Vρ(L) satisfy Theorem 1. In particular, this
is true of the totally asymmetric, discrete-time (parallel) updating in which
all particles attempt to jump at the same time, and only to the right [11]. It is
also true of an asymmetric version of the continuous-time model of Section 1
in which particles attempt to jump to the left or right at different rates [1].

3 The limiting measure νρ for ρ < 1/2

A key ingredient for understanding the behavior described in Theorem 1,
especially the behavior in the intermediate regime, is the renewal structure
of the stationary state νρ, ρ < 1/2. In this state adjacent 1’s have probability
zero; thus the state is supported on configurations of the form

· · · 1 0 1 0 1 0 1 0 0̂ 1 0 1 0 · · · 1 0 0̂ 0̂ 0̂ 1 0 1 0 1 0 · · · 1 0 0̂ · · · (9)

= · · · 0 (1 0 )X−1 0 (1 0)X0 0 (1 0)X1 0 (1 0)X20 · · · . (10)

For νρ the 00’s in (9)—or more specifically the second 0 of each such pair,
marked as 0̂ in (9) and corresponding to a 0 outside the parentheses in (10)—
are renewal events, as is shown in [11,22]. (Note that adjacent renewal events
correspond to a zero value for the corresponding Xi.) This means that, if we
let ν̂ρ be the measure νρ conditioned on the occurrence of a renewal event at
the origin, then under ν̂ρ the Xi’s in (10) are independent random variables
that are identically distributed.

Remark 3. The density of the renewal events, i.e., the probability of finding
adjacent zeros at, say, sites 0 and 1, is 1 − 2ρ = 2δ, since under νρ the
probability of adjacent ones is zero.

It is shown in [11,22] that the distribution of the Xi’s under ν̂ρ is that of

a random variable X̂(δ) for which

P (X̂(δ) = n) = Cnρ
n(1− ρ)n+1

=
1 + 2δ

2 · 4n Cn(1− 4δ2)n,
n = 0, 1, 2, . . . , (11)
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with Cn the nth Catalan number [20]:

Cn :=
1

n+ 1

(
2n

n

)
=

4n

n3/2
√
π

(
1 +O

(
1

n

))
. (12)

Here we have used Stirling’s formula with error bounds. Thus for n ≫ 1,

P (X̂(δ) = n) ≃ 1 + 2δ

2n3/2
√
π
(1− 4δ2)n ≃ 1

2n3/2
√
π
e−4δ2n. (13)

(The Catalan number Cn arises here as the number of random walks of
length 2n, with steps ±1, which begin and end at the origin and take only
nonnegative values.)

While ν1/2 = limδ→0 νρ is rather trivial (see (2)), and in particular contains
no renewal events, the limit ν̂1/2 = limδ→0 ν̂ρ is not: ν̂1/2 is the probability
distribution on configurations of the form (10) for which there is a renewal
event at the origin and the i.i.d. random variables Xi have the distribution
of X̂(0):

P (X̂(0) = n) = lim
δ→0

P (X̂(δ) = n) =
Cn

2 · 4n ≃ 1

2
√
πn3/2

. (14)

Note that X̂(0) = limδ→0 X̂
(δ) (limit in distribution); note also that although

ν̂ρ for ρ < 1/2 was obtained from νρ by conditioning on a renewal event at
the origin, ν̂1/2 cannot be so obtained from ν1/2.

X̂(0) has a 3/2 power-law tail, and this 3/2 is, as we shall show, the origin
of the 3/2 in the L3/2 behavior of the variance in the intermediate regime.
(If 3/2 were replaced by γ, with 1 < γ ≤ 2, we would have had Lγ behavior
there [13]). Further, the fact that the exponential decay in (13) becomes
significant when n is of order δ−2 is the origin of the fact that the transition
to the large L regime occurs for L of order δ−2.

Notation: Here, for the reader’s convenience, we summarize our notation,
reviewing some that was introduced earlier and also defining some new nota-
tion that will be used in the sequel. We write ρ = 1/2− δ, with 0 ≤ δ < 1/2,
define JL = {1, 2, . . . , L}, and call the second of a pair of consecutive empty
sites a renewal event. νρ denotes the infinite-time limit state (1) for the
one-dimensional FEP at density ρ, and ν̂ρ the state defined for δ > 0 by
conditioning νρ on the occurrence of a renewal event at the origin, and for
δ = 0 as limδց0 ν̂ρ. We will use the following random variables:
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• N (δ)(L), the number of particles in JL under νρ;

• N
(δ)
ren(L) and N̂

(δ)
ren(L), the number of renewal events in JL under νρ and ν̂ρ,

respectively;

• X̂(δ), a random variable with the distribution under ν̂ρ of the Xi in (10);

• Ŷ (δ) = 2X̂(δ) + 1, the distance between renewal events under ν̂ρ.
Note that from Remark 3,

E
(
N (δ)

ren(L)
)
= 2δL. (15)

Note also that while N
(0)
ren(L) = limδ→0 N

(δ)
ren(L) is the zero random variable,

since in ν1/2 there are no renewal events, N̂
(0)
ren(L) = limδ→0 N̂

(δ)
ren(L) is non-

trivial. We stress that the key to the δ ց 0 asymptotics described in Theo-
rem 1 lies not in ν1/2 but in ν̂1/2.

4 Proof of Theorem 1

The proof of Theorem 1 is broken into nine steps, as follows:

Step 1: Express N (δ)(L) in terms of N
(δ)
ren(L).

Step 2: Express the distribution and second moment of N
(δ)
ren(L) in terms of

those of N̂
(δ)
ren(L).

Step 3: Approximate the expressions found in Step 2 by replacing N̂
(δ)
ren(L)

by N̂
(0)
ren(L). The resulting expressions involve the renewal random

variable Ŷ (δ).

Step 4: Replace the occurrences of Ŷ (δ) in the expression of Step 3 by Ŷ (0).

Step 5: Obtain the large-L asymptotics of the distribution of N̂
(0)
ren(L) and

of its second moment, and insert these into the expressions found
in Step 4.

Step 6: Use the asymptotics of the distribution of Ŷ (0) to further approxi-
mate the expressions found in Step 5.

Step 7: Obtain from the expressions found in Step 6 the asymptotics of
Var(N

(δ)
ren(L)).
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Step 8: Use Step 1 to obtain the results of Theorem 1 for L ≪ δ−2 from the
expression found in Step 7 for Var(N

(δ)
ren(L)).

Step 9: Use some facts about the truncated two-point correlation function
for νρ to obtain the results of Theorem 1 for L ≫ δ−2.

We now consider these steps in order.

Step 1: In this step we again use the notation introduced in (9), so that
the values which may be taken by a configuration ηi are 0̂, 0, and 1, where 0̂
denotes a renewal event, 0 an empty site preceded by a 1, and 1 an occupied
site. Now we observe that L−N

(δ)
ren(L) is odd if and only if the pair (η1, ηL)

has value (0, 0), (0, 0̂), (0̂, 1), or (1, 1); moreover,

N (δ)(L) =
1

2

[
L− (N (δ)

ren(L) + σ(δ)(L))
]
, (16)

where

σ(δ)(L) =





0, if L−N
(δ)
ren(L) is even,

1, if L−N
(δ)
ren(L) is odd and (η1, ηL) is (0, 0) or (0, 0̂),

−1, if L−N
(δ)
ren(L) is odd and (η1, ηL) is (0̂, 1) or (1, 1).

(17)

One checks this by induction on N
(δ)
ren(L); the case N

(δ)
ren(L) = 0 is easy. For the

induction step one passes from a configuration η to another η′ by removing
a 0̂ from some site i with 1 ≤ i ≤ L and setting η′j = ηj if j < i and
η′j = ηj+1 if j ≥ i; one then applies the induction assumption to η′ on

JL−1, noting that then L and N
(δ)
ren(L) both decrease by 1, and observing that

(η′1, η
′
L−1) 6= (η1, ηL) only if i = 1 and η′1 = 1 or i = L and η′L−1 = 0.

From (16) we have that

Var(N (δ)(L) =
1

4
Var

(
N (δ)

ren(L) + σ(δ)(L)
)
. (18)

To simplify this expression further we note that, writing E for expectation,
we have

E
(
σ(δ)(L)

∣∣N (δ)
ren(L) = n

)
= 0, for any n ≥ 0, (19)

as we will argue shortly. But then

E(σ(δ)(L)) = 0 (20)
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and
E(N (δ)

ren(L)σ
(δ)(L)) = Cov(N (δ)

ren(L), σ
(δ)(L)) = 0, (21)

so that

Var
(
N (δ)

ren(L) + σ(δ)(L)
)
= Var

(
N (δ)

ren(L)
)
+Var(

(
σ(δ)(L)

)
. (22)

Thus from(18) and (20),

Var(N (δ)(L)) =
1

4

(
Var(N (δ)

ren(L)) + Var(σ(δ)(L))

=
1

4

(
Var(N (δ)

ren(L)) + P (σ(δ)(L) 6= 0)
)
. (23)

To verify (19) we note that νρ is invariant under reflection about any
(integer or half-integer) point. But reflection about L/2, the midpoint of the

interval {0, 1, . . . , L}, leaves N
(δ)
ren(L) unchanged and, when L − N

(δ)
ren(L) is

odd, changes the sign of σ(δ)(L), as one sees by checking separately for the
four possible values of (η1, ηL) which can then occur.

Step 2: Let F (δ) be the location of the first renewal event to the right of the
origin, and let

pδ(l) = P (F (δ) = l). (24)

The critical observation for Step 2 is that the number of renewal events in
JL, if there are any, is one more than the number of such events to the right
of F (δ). Thus for n ≥ 1,

P
(
N (δ)

ren(L) = n
)
=

L∑

l=1

pδ(l)P
(
N (δ)

ren(L) = n
∣∣F (δ) = l)

)

=
L∑

l=1

pδ(l)P
(
N̂ (δ)

ren(L− l) = n− 1
)
, (25)

and so

E
(
N (δ)

ren(L)
2
)
=

L∑

l=1

pδ(l)E
(
(N̂ (δ)

ren(L− l) + 1)2
)
. (26)

Step 3: As indicated earlier, the next step is to control the approximation
arising from the replacement of N̂

(δ)
ren by N̂

(0)
ren in (25) and (26). Specifically,

10



we will show that for n ≥ 1,

P
(
N (δ)

ren(L) = n
)
≃

L∑

l=1

pδ(l)P
(
N̂ (0)

ren(L− l) = n− 1
)

for L ≪ δ−2, (27)

uniformly in n ≤ k
√
L for k any fixed positive integer (see Definition 1), and

also that

E
(
N (δ)

ren(L)
2
)
≃

L∑

l=1

pδ(l)E
(
(N̂ (0)

ren(L− l) + 1)2
)

for L ≪ δ−2. (28)

Note that the right hand sides of (27) and (28) both mix quantities defined

for δ > 0 with those defined for δ = 0 (pδ and N̂
(0)
ren respectively). These

equations are more delicate than they may appear because they demand
that we control the errors in these approximations by requiring merely that,
for small δ, Lδ2 be sufficiently small regardless of the size of L itself.

To do so we first note that from (11) and (14) we have that

P (X̂(δ) = l) = (1 + 2δ)(1− 4δ2)lP (X̂(0) = l). (29)

Let ηL and η̂(δ)(L) denote respectively a fixed and a random configuration on
JL, with the latter distributed according to ν̂ρ, and suppose that ηL contains
n renewal events and that 2li + 1, i = 1, . . . , n, are the distances between
these, with 2l1 + 1 the distance from the origin to the first renewal event.
(Note that since under ν̂ρ there is a renewal event at the origin, if ηL(1) = 0
then this 0 at site 1 must also be a renewal event). Further, define

qδ(L) = P
(
Ŷ (δ) > L

)
= P

(
X̂(δ) >

⌊
L− 1

2

⌋)
(30)

with Ŷ (δ) = 2X̂(δ)+1 as defined at the end of Section 3, so that qδ(L− l(ηL))
is the probability that, given that the last renewal event in ηL is at l(ηL), the
next renewal event is indeed beyond L. Finally, define

rδ(L) =
qδ(L)

q0(L)
. (31)

Then, writing L̃ = L− l(ηL), we have from (29) that

P (η̂(δ)(L) = ηL) =
∏n

i=1
P (X(δ) = li) qδ(L̃)

= (1 + 2δ)n(1− 4δ2)
∑n

i=1 lirδ(L̃)P (η̂(0)(L) = ηL). (32)
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We next show that each of the first three factors in (32) is asymptotic to
1 for L ≪ δ−2, uniformly in n ≤ k

√
L for any fixed positive k. First, under

this condition,

1 ≤ (1 + 2δ)n ≤ (1 + 2δ)k
√
L ≤ e2kδ

√
L. (33)

Next, from
∑n

i=1 li ≤ L/2 and 1− x ≥ e−2x for 0 ≤ x ≤ 1/2 we have

1 ≥ (1− 4δ2)
∑n

i=1 li ≥ e−4Lδ2 for 0 ≤ δ ≤ 1

2
√
2
. (34)

Finally, consider rδ(L̃), and notice that this is a ratio of probabilities of an
event involving a single jump, of size Ŷ , between successive renewal events,
for δ = 0 and for 0 < δ ≪ 1. If the event were that Ŷ = L̂ with L̂ fixed and
not too large, it would easily follow from (29) that for small δ the ratio is
sufficiently close to 1. However, the relevant event is of the form {Ŷ > L̂},
and its probability is given by a sum of probabilities of events {Ŷ = L̂′},
with the sums for δ = 0 and δ > 0 involving the same events. The ratio of
corresponding terms in the numerator and the denominator of the ratio will,
for small δ, be uniformly close to 1—and hence so will the complete ratio
itself—provided that the terms corresponding to jumps that are very large
can be ignored. That the latter is so follows from the power law fall-off of
the tail of the jump distribution as expressed in (14). It is straightforward

to turn these consideration into a formal proof that for L̃ ≤ L,

rδ(L̃) ≃ 1 for L ≪ δ−2. (35)

(27) then follows from (32)–(35).

We now turn to (28). For any positive k we write N̂
(δ)
ren(L) = N̂

(δ)

≤k
√
L
(L)+

N̂
(δ)

>k
√
L
(L), where

N̂
(δ)
≤x(L) := N̂ (δ)

ren(L)I
{
N̂

(δ)
ren(L)≤x

} (36)

and
N̂

(δ)
>x(L) := N̂ (δ)

ren(L)I
{
N̂

(δ)
ren(L)>x

}, (37)

with I{·} denoting the indicator function of the set {·}. Then from (27),

E(N̂
(δ)

≤k
√
L
(L)2) ≃ E(N̂

(0)

≤k
√
L
(L)2) for L ≪ δ−2. (38)

(28) will follow easily once we strengthen (38) to

E(N̂ (δ)
ren(L)

2) ≃ E(N̂ (0)
ren(L)

2) for L ≪ δ−2. (39)

12



There are two crucial facts for obtaining (39). The first, to be proved
shortly, is that for any ǫ > 0 there exists a k > 0 such that

E
(
N̂

(δ)

>k
√
L
(L)2

)
≤ ǫL for L ≪ δ−2 (40)

(where L ≪ δ−2 holds for all L if δ = 0). The second, to be proved in Step 5,

is that limL→∞E(N̂
(0)
ren(L)2)/L = 1, so that for some constant C > 0,

E(N̂ (0)
ren(L)

2) ≥ CL for all L ≥ 1. (41)

(39) follows from (38), (40) (for both δ = 0 and δ > 0) and (41).
To see this, fix ǫ > 0 and take k so that (40) holds. Then from (40) for

δ = 0 and (41) we have (for all L)
∣∣∣∣∣∣

E
(
N̂

(0)

≤k
√
L
(L)2

)

E
(
N̂

(0)
ren(L)2

) − 1

∣∣∣∣∣∣
=

E
(
N̂

(0)

>k
√
L
(L)2

)

E
(
N̂

(0)
ren(L)2

) <
ǫ

C
. (42)

Now by (38) we may take Lδ2 so small that
∣∣∣∣∣∣

E
(
N̂

(δ)

≤k
√
L
(L)2

)

E
(
N̂

(0)

≤k
√
L
(L)2

) − 1

∣∣∣∣∣∣
< ǫ. (43)

From this,

E
(
N̂

(δ)

≤k
√
L
(L)2

)
> E

(
N̂

(0)

≤k
√
L
(L)2

)
(1− ǫ)

=
[
E
(
N̂ (0)

ren(L)
2
)
−E

(
N̂

(0)

>k
√
L
(L)2

)]
(1− ǫ) (44)

> (C − ǫ)(1− ǫ)L,

and then we have from (40) (possibly with a further restriction on Lδ2) that
∣∣∣∣∣∣

E
(
N̂

(δ)

≤k
√
L
(L)2

)

E
(
N̂

(δ)
ren(L)2

) − 1

∣∣∣∣∣∣
≤

E
(
N̂

(δ)

>k
√
L
(L)2

)

E
(
N̂

(δ)

≤k
√
L
(L)2

) <
ǫ

(C − ǫ)(1− ǫ)
. (45)

Since ǫ here is arbitrary, (42), (43), and (45) imply (39).
To conclude Step 3 we must establish (40). To do so we first note that

for any integer n ≥ 1,

P (N̂ (δ)
ren(L) ≥ n) ≤ P

(
Ŷ (δ) ≤ L

)n

= (1− qδ(L))
n, (46)

13



since the distances between the successive renewal events in JL (including
the distance of the first such event from the origin), which are independent,
must each be no greater than L.

In the remainder of this section we write q = qδ(L). For any integer-valued
random variable N , and any integer nc ≥ 1, we have (as a consequence of
summation by parts) that

E(N2I{N≥nc}) = n2
cP (N ≥ nc) +

∞∑

n=nc+1

(2n− 1)P (N ≥ n), (47)

provided that n2P (N ≥ n) → 0 as n → ∞. Thus from (46),

E(N̂
(δ)
>nc

(L)2) ≤ n2
c(1− q)nc +

∞∑

n=nc+1

(2n− 1)(1− q)n

≤
(
n2
c +

2nc

q
+

2

q2

)
(1− q)nc

≤ 2

(
nc +

1

q

)2

e−qnc . (48)

If δ > 0 then it follows from (13) that for Lδ2 sufficiently small there is an
A > 0 such that

q ≥ A√
L
. (49)

Moreover, (14) implies the same conclusion, for any L, when δ = 0. If now

for any k > 0 we set we set nc =
⌊
k
√
L
⌋
then (48) and (49) yield

E(N̂
(δ)

>k
√
L
(L)2) = E(N̂

(δ)
>nc

(L)2) ≤
(
k +

1

A

)2

eAe−Ak L, (50)

and (40) will hold for sufficiently large k.

Step 4: Equation (28), the starting point for our future investigations, in-
volves pδ(l) = P (F (δ) = l), the probability under νρ that the first renewal
event to the right of the origin occurs at site l > 0. This happens precisely
when there is a renewal event at some site −l′ ≤ 0, an event with probability
2 δ (see Remark 3), and the next renewal event to its right is at l, so that

pδ(l) = 2δ
∑

l′≥0

P (Ŷ (δ) = l′ + l) = 2δP (Ŷ (δ) ≥ l) (= 2δqδ(l − 1)). (51)

14



Then (35) yields

pδ(l) ≃ 2δP (Ŷ (0) ≥ l) for l ≪ δ−2, (52)

and thus from (28) we have that

E
(
N (δ)

ren(L)
2
)
≃ 2δ

L∑

l=1

P (Ŷ (0) ≥ l)E
(
(N̂ (0)

ren(L− l)+1)2
)

for L ≪ δ−2. (53)

Step 5: In this step we obtain the large-L asymptotics of E
(
N̂

(0)
ren(L)2

)
:

E
(
N̂ (0)

ren(L)
2
)
≃ L, for L ≫ 1. (54)

This formula may be obtained from [9], but we give a self-contained proof,
arguing from the detailed form of the distribution of the renewal random
variable Ŷ (0) = 2X̂(0) + 1. Recall (see (11)) that P (X̂(0) = n) = Cn2

−(2n+1);
the Catalan number Cn counts the number of paths between time 0 and time
2n of a random walk which starts and ends at the origin while never taking
any positive value. Thus Ŷ (0) has the same distribution as the time of first
arrival at site 1 of a simple symmetric random walk Wl, l = 0, 1, . . ., which
starts at the origin. As a consequence, N̂

(0)
ren(L) has the same distribution as

the maximum value M(L) of Wl over the interval [0, L]. From [6], Section
III.7, Theorem 1 we then have

P (N̂ (0)
ren(L) = n) =

{
P (WL = n), if L− n is even,

P (WL = n + 1), if L− n is odd.
(55)

An easy calculation from (55) gives, for L odd,

E
(
N̂ (0)

ren(L)
2
)
= E

(
W 2

L

)
− E

(
|WL|

)
+

1

2

(
1− P (WL = 0)

)
, (56)

and this yields (54), since E
(
W 2

L

)
= L and E

(
|WL|

)
≤

√
L, by the Schwarz

inequality.

Remark 4. (a) From (55) one can show easily that N̂
(0)
ren(L)/

√
L converges in

distribution, as L → ∞, to |Z|, with Z a standard normal random variable.

(b) In [11,22] a random walk representation of particle configurations (there
called a height function or height process) was used to obtain the distribution
(11). The Catalan numbers play the same role in this derivation that they
do above.
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Step 6: Equation (53) provides the leading order small-δ approximation to

E
(
N

(δ)
ren(L)2

)
, valid for L ≪ δ−2. In this step we use (54) and (57) below to

approximate this moment to leading order in L, as well.
First, note that from (13) we have at once that

P
(
Ŷ (0) ≥ l

)
= P

(
X̂(0) ≥ l − 1

2

)
≃

√
2

πl
for l ≫ 1. (57)

Substituting (54) and (57) into (53) yields, at least formally,

E
(
N (δ)

ren(L)
2
)
≃ 2

√
2

π
δ

L∑

l=1

L− l√
l
, for 1 ≪ L ≪ δ−2. (58)

We will justify (58) shortly, but for the moment only note that the restriction
L ≫ 1, not present in (53), arises from (54) and (57). From (58) we have
that for 1 ≪ L ≪ δ−2,

E
(
N (δ)

ren(L)
2
)
≃ 2

√
2

π
δ

∫ L

1

L− x√
x

dx

= 2

√
2

π
δL3/2

∫ 1

1/L

1− y√
y

dy ≃ 8

3

√
2

π
δL3/2. (59)

This is our final approximation for E
(
N

(δ)
ren(L)2

)
.

We now return to (58). We are justified (when l is not too large) in

replacing E
(
(N̂

(0)
ren(L− l) + 1)2

)
by E

(
(N̂

(0)
ren(L− l))2

)
in passing from (53) to

(58) since, from (54) and the Schwarz inequality, E
(
N̂

(0)
ren(L)

)
≪ E

(
N̂

(0)
ren(L)2

)

for L ≫ 1. Further, although this replacement and the substitutions obtained
from (54) and (57) are jointly valid, say to relative error ǫ, only in some range
lǫ ≤ l ≤ L− lǫ, the sums in (53) and (58) over 1 ≤ l < lǫ and L− lǫ < l ≤ L
are O(L) and O(1), respectively, as L → ∞, while the sum over lǫ ≤ l ≤ L−lǫ
is of order L3/2 (see (59)). This completes the justification.

Step 7: From (15) and (59),

E
(
N

(δ)
ren(L)

)2

E
(
N

(δ)
ren(L)2

) ≃ 3

2

√
π

2
δL1/2 ≪ 1 for 1 ≪ L ≪ δ−2. (60)

Thus, again from (59),

Var
(
N (δ)

ren(L)
)
≃ E

(
N (δ)

ren(L)
2
)
≃ 8

3

√
2

π
δL3/2, for 1 ≪ L ≪ δ−2. (61)
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Step 8: We can now combine the results of Step 1 and Step 7 to obtain the
parts of Theorem 1 which concern L ≪ δ−2. For from (23) and (61) we have
that

Var(N (δ)(L)) ≃ 2

3

√
2

π
δL3/2 +

1

4
P (σ(δ)(L) 6= 0) for 1 ≪ L ≪ δ−2, (62)

with σ(δ)(L) defined in (17).
If L is even then, from (15),

P (σ(δ)(L) 6= 0) = P (N (δ)
ren(L) is odd)

≤ P (N (δ)
ren(L) > 0) ≤ E(N (δ)

ren(L))) = 2δL.
(63)

Since L ≪ L3/2 for L ≫ 1, the L ≪ δ−2 part of Theorem 1(b) follows.
On the other hand, if L is odd then, again from (15),

P (σ(δ)(L) 6= 0) = P (N (δ)
ren(L) is even)

≥ P (N (δ)
ren(L) = 0) ≥ 1− 2δL ≃ 1 for L ≪ δ−1.

(64)

Since δL3/2 ≫ 1 for L ≫ δ−2/3 and δL3/2 ≪ 1 for L ≪ δ−2/3, we obtain from
(64) and (62) the conclusions of Theorem 1(a) for 1 ≪ L ≪ δ−2. To remove
the restriction that L ≫ 1 we note that

Var
(
N (δ)

ren(L)
)
≤ E(N (δ)

ren(L)
2) ≤ E(N (δ)

ren(L
′)2) (65)

for L ≤ L′. Choosing L′ such that also 1 ≪ L′ ≪ δ−2/3, we see using (23),
(59), and (64) that Var(N (δ)(L)) ≃ 1

4
for 1 ≤ L ≪ δ−2/3.

Remark 5. Concerning the estimate P (N
(δ)
ren(L) > 0) ≤ 2δL used in (63)

and (64), note that it follows from (24), (52), and (57) that in fact for L ≫ 1,

P (N (δ)
ren(L) > 0) = P (F (δ) ≤ L) ≃ 2δ

∫ L

0

√
2

πl
dl ≃ 4

√
2

π
δ
√
L. (66)

Step 9: We now turn to the L ≫ δ−2 part of Theorem 1 and to the related
Corollary 2 (recall also Remark 1). The argument is based on the standard
formula

Var(N (δ)(L)) = ρ(1− ρ)L+ 2

L−1∑

k=1

k∑

j=1

gTρ (j), (67)
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with gTρ the truncated two-point correlation function for the TI state νρ:

gTρ (k) = E(η(j)η(j + k))− ρ2. (68)

It is shown in [11] that for all n ≥ 0,

gTρ (2n+ 1) + gTρ (2n+ 2) = 0, (69)

so that(67) becomes

Var(N (δ)(L)) = ρ(1− ρ)L+ 2
L−1∑

k=1
k odd

gTρ (k). (70)

We will show shortly that for j ≥ 0,
∣∣gTρ (2j + 1)

∣∣ ≤ ρ2(1− 4δ2)j. (71)

Then from (70),
∣∣∣∣
Var(N (δ)(L))

ρ(1− ρ)L
− 1

∣∣∣∣ ≤
2ρ

(1− ρ)L

∞∑

j=0

(1− 4δ2)j <
1

2δ2L
, (72)

and this verifies the result stated in Corollary 2. The L ≫ δ−2 cases of
Theorem 1 then follow by taking the δ0 of Definition 1 sufficiently small.

Consider now (71). The generating function of the gTρ is computed in [11]:

Gρ(z) :=

∞∑

k=1

gTρ (k)z
k =

z
(√

1− z2(1− 4δ2)− 2δ
)2

4(z − 1)(z + 1)2
. (73)

The numerator in (73) has double zeros (on its first sheet) at z = ±1, so
that Gρ is analytic at these points with singularities at z = ±z∗, where
z∗ := (1 − 4δ2)−1/2. Expressing gTρ (k) via Cauchy’s formula as an integral
over a small circle around the origin, distorting this contour to obtain the
sum of integrals of the discontinuity of Gρ across cuts on the real axis from
z∗ to ∞ and from −z∗ to −∞, and making the change of variable z → −z in
the second of these integrals, we obtain a representation of gTρ (k) which for
k odd is

gTρ (k) = − 2δ

πz∗

∫ ∞

z∗

√
z2 − z2∗

zk(z2 − 1)2
dz, k odd. (74)

This implies that for k odd, |gTρ (k)| ≤ z
−(k−1)
∗ |gTρ (1)|, and since gTρ (1) = −ρ2,

(71) follows.
This completes the proof of Theorem 1.
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5 Concluding remarks

We note that on Z the approach to hyperuniformity as ρ ց ρc is different
from that for ρ ր ρc; in the former case the unique stationary measure for
the FEP on Z is known and [13, 15]

lim
L→∞

1

L
Vρ(L) = ρ(1− ρ)(2ρ− 1) for ρ > 1/2. (75)

Thus from Theorem 1 and (8), limL→∞L−1Vρ(L) is continuous in ρ from
above, but not from below, at ρ = 1/2. We expect similar behavior on Z

d.
The case of the FEP on a ladder, a system consisting of two (infinite) rows

of sites, was studied numerically in [17,18]. Here again, as on Z
d with d ≥ 2,

ρc < 1/2 (for the continuous-time symmetric FEP on the ladder, ρc ≈ 0.4755
or, for the slightly different dynamics of [16], ρc ≈ 0.4874 [18]). The results
of [18] also suggest that the Fluctuation Conjecture holds for this model
(although the scaling behavior of the Li(δ) is not discussed). Rigorously, one
may observe that for ρ < ρc the portions of the system to the left and right
of an empty square are independent under the t → ∞ limiting measure νρ,
implying in particular that the locations of the empty squares (when these
have a nonzero density) form a renewal process and that the portions of
the system between them are jointly independent. Further, we see that the
critical density must satisfy ρc ≥ 1/4, since at smaller densities there would
always be a finite density of empty squares and the stationary state would
be frozen [18]. We have no such lower bound for ρc on Z

d, d ≥ 2.

Acknowledgments: We thank Cesar Ramirez-Ibanez for helpful discus-
sions.
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