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Abstract

We investigate the time evolution of the Boltzmann entropy of a dilute gas of N particles, N � 1,

as it undergoes a free expansion doubling its volume. The microstate of the system changes in

time via Hamiltonian dynamics. Its entropy, at any time t, is given by the logarithm of the phase

space volume of all the microstates giving rise to its macrostate at time t. The macrostates that

we consider are de�ned by coarse graining the one-particle phase space into cells ��. The initial

and �nal macrostates of the system are thermal equilibrium states in volumes V and 2V , with the

same energy E and particle number N . Their entropy per particle is given, for su�ciently large

systems, by the thermodynamic entropy as a function of the particle and energy density, whose

leading term is independent of the size of the ��. The intermediate (non-equilibrium) entropy does

however depend on the size of the cells ��. Its change with time is due to (i) dispersal in physical

space from free motion and to (ii) the collisions between particles which change their velocities.

The former depends strongly on the size of the velocity coarse graining �v: it produces entropy

at a rate proportional to �v. This dependence is investigated numerically and analytically for a

dilute two-dimensional gas of hard discs. It becomes signi�cant when the mean free path between

collisions is of the same order or larger than the length scale of the initial spatial inhomogeneity. In

the opposite limit, the rate of entropy production is essentially independent of �v and is given by

the Boltzmann equation for the limit �v ! 0. We show that when both processes are active the

time dependence of the entropy has a scaling form involving the ratio of the rates of its production

by the two processes.
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INTRODUCTION

Consider an isolated macroscopic system of N particles, N � 1, in equilibrium in a region

Λ of d-dimensional space with volume jΛj = V . Removing a constraint at time t = 0 permits

the system (still isolated) to expand into a larger region Λ0, with volume jΛ0j = V 0 > V .

After some sufficiently long time the system will come to a new equilibrium in Λ0, with the

same total energy and particle number. The second law of thermodynamics states that the

entropy of the new equilibrium system is greater than what it was originally, i.e.

Seq(E;N; V
0) > Seq(E;N; V ) ; V 0 > V : (1)

The thermodynamic equilibrium entropy for macroscopic systems, Seq(E;N; V ), is an ex-

tensive well-defined quantity (up to an additive constant) first introduced by Clausius in

1857 [1].

Clausius does not say anything explicit about the entropy of the system while it is in

a nonequilibrium state, as in the above case while it is transitioning from its initial to its

final equilibrium state. Boltzmann, looking for a justification of the second law, which

seems to contradict the reversibility of the microscopic dynamics, came to the brilliant

insight: the entropy of a macroscopic system in a microstate X = (r1;v1; � � � ; rN ;vN),

giving rise to macrostate M , corresponding to the values of suitable macrovariables, is

proportional to log jΓM j. ΓM is the region of the (2dN)-dimensional phase space of the

system all of whose microstates X are macroscopically similar in the sense that they give

rise to this same macrostateM , and jΓM j is its Liouville volume. This applies for equilibrium
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and nonequilibrium micro- and macrostates. We shall denote this Boltzmann entropy by

SB(X) � SB(M(X)) = log jΓM(X)j [2, 3]; see also [4]. As the microstate X evolves in time

from a nonequilibrium macrostate M(X), jΓM(X(t))j typically increases. Thus this SB(X(t))

satisfies the second law for the vast majority of microstates X in each macrostateM without

violating microscopic reversibility. [Note, in this paper we are using units where Boltzmann’s

constant is kB = 1.]

The choice of macrostatesM , which corresponds to dividing each energy shell into regions

ΓM , is not unique but is physically constrained. In particular we want there to be an

equilibrium macrostate Meq such that SB(Meq) �= Seq when the size of the system goes

to infinity. A common way to choose M is to divide the spatial region Λ 2 Rd into cells

that are each large enough to contain many particles and specify “within some tolerance”

the total energy, total particle number, and total momentum in each such cell. These are

the locally conserved quantities corresponding to the hydrodynamical variables which, in

most cases, evolve on a macroscopic time scale according to autonomous equations, e.g. the

Navier-Stokes equations [5].

Going beyond hydrodynamical variables, Boltzmann also considered, for dilute gases,

more refined macrostates, Mg, than those given by the spatial profiles of the hydrodynamic

variables. He defined Mg by considering the six-dimensional single-particle phase space,

 = fr;vg; r 2 Λ 2 R3; v 2 R3. The microstate X of the system is described by N points

in , while the macrostate Mg(X) is specified by dividing  into cells ∆� and giving, within
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some tolerance, the number of particles N� in each cell �. The N� satisfy the conditions:

X
�

N� = N;
X
�

1

2
N�jv�j2 �= E; (2)

with v� the mean velocity in the cell ∆�; the particles each have mass m = 1. The poten-

tial energy is assumed to be negligible, although the particle-particle scattering due to the

interactions is not neglected. This is appropriate only for dilute gases. For more general

systems we also have to specify the potential energy, c.f. [6].

Boltzmann then computed jΓMg j to be proportional to

jΓMg j � Π�[
j∆�jN�
N�!

] ; (3)

from which he obtained the entropy SB(Mg(X)) = log jΓMg j. To obtain a truly macroscopic

description of the system, the cells should be large enough so that most particles are in cells

with N� � 1. Using Stirling’s formula, Boltzmann then obtained

SB(Mg) = log jΓMg j = �
X
�

j∆�j[
N�

j∆�j
log

N�

j∆�j
] + constant ; (4)

where the constant depends on N . When we give formulae for entropies later in this paper,

we leave off this additive constant, giving only the part of the entropy that depends on the

configuration of the particles.
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THE ONE-DIMENSIONAL IDEAL GAS

In a previous work with other collaborators, two of us investigated the time evolution of

the fN�(t)g, and thus of SB(Mg(X(t))), as given in (4), for an ideal gas in one dimension

[7] (see also De Bievre and Parris [8]). We chose cells ∆� all of equal size (∆x∆v) (with a

cutoff on the maximal speed jvj). We started the system in a thermal equilibrium microstate,

confined in an interval of length L, and then let it freely expand to fill an interval of length

2L. After the system equilibrates, X(t) 2 ΓMeq in the larger interval at almost all times,

and the entropy SB(Mg) ’ Seq(2L), essentially independent of the choices of cell sizes ∆x,

∆v. During this process the entropy has increased by (approximately) log 2 per particle due

to the expansion. We say approximately because we are not in the limit N !1, L!1.

[This change, log 2, is for classical dilute gases. For quantum gases, on the other hand,

the change depends on the initial temperature and on the particle statistics (fermions vs.

bosons) [9–11].]

We found that the “equilibration” time, teq, it took the Boltzmann entropy of the system

to approach the new equilibrium value in the final interval of length 2L depended strongly

on the width ∆v of the single-particle phase space cells used to define the macrostate Mg,

see Fig. 2. The smaller ∆v, the slower the rate of entropy production for this SB(Mg). As

a consequence of this, the Boltzmann entropy of each particular nonequilibrium microstate

X(t) that occurs during this free expansion is a strongly varying function of the chosen ∆v.

In fact we found and proved that teq � L=∆v for small ∆v. The reason for this is

that in the ideal gas the only mechanism for uniformising the velocity distribution over all
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of the spatial region is via the difference between the total distance traveled in time t by

the particles with velocity v and those with velocity (v + ∆v). In order for the system to

approach equilibrium (become spatially uniform), this distance must exceed L, which only

occurs after time teq � L=∆v. Note that this equilibration time teq diverges in the limit

∆v ! 0.

The time evolution of the entropy of the ideal gas is much less sensitive to the spatial

size ∆x of the cells. The time scale for the uniformization of the spatial density (ignoring

the local velocity distributions) is of order L=vth, where vth is the (thermal) mean speed, so

for ∆v � vth this time is much smaller than teq, see Fig. 1.

These observations are consistent with, and in fact imply, the non-increase of entropy in

the limiting case in which ∆x ! 0, ∆v ! 0, and N ! 1, such that most particles are in

boxes with N� � 1, while fN�(t)=(N j∆�j)g ! f(x; v; t), a piecewise smooth function. To

directly see this non-increase, note that since we have an ideal gas, the time evolution of

this smooth empirical distribution satisfies the equation

@f(x; v; t)

@t
+ v

@f(x; v; t)

@x
= 0 : (5)

Taking the corresponding limit of the entropy per particle SB(Mg)=N given in Eq. (4) yields

[5]

s(ft) = �
Z
dx

Z
dv f(x; v; t) log f(x; v; t) ; (6)

where we do not show a time-independent additive constant. As is well known, s(ft) is

time-invariant under the ideal gas evolution given by (5); the entropy production due to
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∆v > 0 and free particle motion vanishes when we take the limit ∆v ! 0. This shows that

s(ft), as defined by (6), corresponding to the volumes j∆�j ! 0, does not change with time

for an ideal gas.

Note, however, that when f(x; v; t) describes, not the empirical distribution of the phase

point of our gas in the limit described above, but rather the one-particle distribution of

an ensemble of fixed finite systems of independent particles, the non-increase of the cor-

responding ensemble entropy per particle s(ft) conflicts dramatically with the increase of

the Boltzmann entropy SB(Mg(X(t))) of the system. We stress that, unlike the former,

the latter depends on the choice of ∆v, with the rate of change of SB decreasing as ∆v is

decreased.

THE DILUTE GAS

The question then arises of what happens to the Boltzmann entropy SB(Mg) for different

cell sizes j∆�j when one takes into account interactions between the particles. With such

interactions there is a mechanism for changing the velocity of a particle, so Eq. (5) and

its generalization to more than one dimension no longer describe the time evolution of the

limiting single-particle empirical distribution in fr;vg space. Let us consider in particular

the case of a dilute gas in two or three dimensions with short-range interactions, such as hard

discs or spheres. (See also Ref. [12] for a related study of a two-component interacting gas

in one dimension.) For a dilute gas in two or more dimensions, Lanford proved that in the

Boltzmann-Grad (B-G) limit f(r;v; t) evolves (for short times) according to the Boltzmann
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equation (BE) [5, 13, 14]

@f(r;v; t)

@t
+ v � rf(r;v; t) = ��1Q(f; f) ; (7)

the right hand side of this equation describes the interparticle collisions. In this B-G limit

the particle density goes to infinity while the diameter of the hard spheres vanishes in such

a way that the mean free path (mfp) between collisions, �, remains fixed. f(r;v; t) in (7) is

then exactly the smooth density profile of the empirical distribution when j∆�j ! 0.

The Boltzmann equation (7) derived by Boltzmann on the basis of physical arguments is

known to describe the “smoothed” empirical single-particle distribution f(r;v; t) of a dilute

gas for the case where the size of the atoms is very small compared to the interparticle

distance which in turn is very small compared to � [15, 16].

Boltzmann proved that s(ft) defined in (6) is monotone increasing with time t when

f(r;v; t), given by the solution of (7), is not equal to the local Maxwell-Boltzmann dis-

tribution, his famous H-theorem. Boltzmann saw this as a generalization of the second

law. He wrote that with the H-theorem “we are able to generalize the notion of entropy to

nonequilibrium systems” [p. 75 in [17]].

Boltzmann did not seem to worry about the fact that s(ft) does not increase with time for

the ideal gas, when �!1. In fact, even when � is finite there is a nonzero contribution from

the free-particle dispersion to the rate of increase with time of SB(Mg), for j∆�j > 0. This

comes from the term v � rf in the BE. This contribution is small when � is small compared

to the length scale of the spatial inhomogeneity as was certainly the case for the gases
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Boltzmann considered, it is zero for a spatially uniform system, but it can be substantial

when � is of the order of or larger than the linear scale of the inhomogeneities. This scale

is of order the linear size L of the system in the case of the free expansion considered here.

The dependence of SB(Mg(t)) on � and on the choice of cell sizes is the question we address

next for a dilute interacting gas.

We note that Eq. (5) for the limiting empirical distribution, f(x; v; t), is obtained formally

for j∆�j ! 0 by following Lanford’s steps in the derivation of the BE, if we take a limit

where the diameter goes to zero faster than in the B-G limit so that the mean free path goes

to infinity.

HARD DISCS

To elucidate the time evolution of SB(Mg(t)) for different choices of j∆�j when � is of

the same order or larger than the length scale of the inhomogeneities, we have carried out

molecular dynamics computations for the time evolution of a two-dimensional system of N

hard discs of unit mass. The system is started in a microstate chosen at random from a

canonical Gibbs ensemble with temperature T = 1 (setting kB = 1) in a rectangular box

of size Lx = 1=2, Ly = 1 with periodic boundary conditions along the y direction and hard

walls constraining the system along the x direction. The discs have radius r. The system

has initial areal density �(0) = �r2N=V where V = LxLy = 1=2. The corresponding mean

free path when the system is dilute is � � (�N=V )�1=2.

At time t = 0 we remove the hard walls and let this gas of discs expand to a box of

size Lx = Ly = L = 1 with now periodic boundary conditions along both directions (see
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figure 1). We study the time evolution of this system until it reaches an equilibrium state

X 2 ΓMeq in this larger periodic box, with final areal density � = �(0)=2. Although in the

simulations we have chosen to use L = 1, in much of the analysis below we will show the

dependence on L, for generality.

FIG. 1: Evolution of a system with N = 200 hard discs, initial areal density �(0) = 0:1 and initial
temperature T = 1: t = 0, 0:1, and 0:3 from left to right.

In the regime � & L the degrees of freedom associated with y and vy, along which

direction the system does not expand, remain near thermal equilibrium. Therefore the

Boltzmann entropy associated with these y, vy degrees of freedom remains approximately

constant in time while the system expands along the x direction and approaches the new

thermal equilibrium. Thus we will focus only on the entropy due to the degrees of freedom

associated with x and vx, since it is only this part of the entropy that is strongly out of

equilibrium and changing with time. For the ideal gas, �!1, this separation of y degrees

of freedom staying at thermal equilibrium, while the x degrees of freedom do not, becomes

exact.

Thus we divide the four-dimensional one-particle phase space (x; vx; y; vy) into cells ∆�

that are all of extent ∆x and ∆vx along the x and vx directions, respectively, with each

cell including the full range of y and vy. We count N�(t), the number of particles in ∆� at
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time t. Following Boltzmann in using Stirling’s formula for log jΓM j in (4), the Boltzmann

entropy per particle due to their x and vx degrees of freedom is:

1

N
SB(Mg(t)) = sB(t) = �

∆

N

X
�

N�(t)

∆
log

N�(t)

∆
: (8)

In (8) all cells have equal “area” j∆�j = ∆x∆vx = ∆ in the (x; vx) phase space.

To specify ∆� we divide x 2 [0; L] into nx equal intervals. We used different values of nx:

nx = 4; 8; 16; as in [7] the results show little dependence on ∆x, so here we show only the

results for nx = 16. Similarly, we divide the range of the velocity vx 2 [�vmax; vmax], with

vmax = 6
p
T = 6, into nv = 4; 8; : : : ; 256 equal cells, so ∆vx = 12=nx. Again, our cells divide

the single-particle phase space only along x and vx, so each cell includes the full ranges of y

and vy.

Ideal Gas; � =1

Before describing the results for different finite values of �, we present the time evolution

for the case of � = 1, i.e., the ideal gas, in Fig. 2. These figures closely resemble the

one-dimensional ideal gas case studied in [7]. We observe how the equilibration time of the

Boltzmann entropy increases as ∆vx decreases. Once we scale time as � = ∆vxt=L, (L = 1),

we observe the convergence of the curves for different ∆vx values towards a limiting curve

as ∆vx ! 0. The limiting curve for the entropy was obtained in reference [7] from the ideal

gas equation (5). The deviations from this limiting behavior become substantial when ∆vx

is of order vth, which is the case for our largest ∆vx.
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Note that there is a slight, rapid increase in entropy at very early times, attributed to

the initial stages of the expansion, see Fig. 2. The specific behavior in this early phase is

influenced by the choice of ∆x and the arrangement of cell boundaries along x, with two

of them precisely at the locations of the initial confining walls. However, our focus will be

on the behavior at intermediate and late times, which are not influenced by these choices

associated with the cells along the x direction.

FIG. 2: Left: Boltzmann entropy for the ideal gas with N = 108 particles, with nx = 16 and
nv = (4; 8; 16; 32; 64; 128; 256). The colors intensify as nv increases. Right: The same data with
time rescaled: � = t∆vx=L; L = 1. The blue solid curve represents the theoretical result for the
ideal gas (see Ref. [7]) in the limit ∆x, ∆vx ! 0.

.

Finite �

In Fig. 3 we present the results for SB(Mg(t))=N for N = 105 hard discs with an areal

density of � = 10�6 (mean free path � ’ 0:7) and nx = 16 cells along the x direction,

with different values of ∆vx. For the largest value of ∆vx shown, the entropy production is

mostly due to the dispersion from the free particle motion, so the behavior is close to that
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of the ideal gas. For smaller ∆vx, however, the entropy production due to the interparticle

scattering dominates, and the behavior becomes very different from the ideal gas. In the left

panel of Fig. 3, the behavior becomes almost independent of ∆vx for small ∆vx, since the free

particle dispersion then stops giving an important contribution to the entropy production.

FIG. 3: Left: Boltzmann entropy for N = 105 particles and � = 10�6 (mean free path � ’ 0:7),
with nx = 16 and nv = (4; 8; 16; 32; 64; 128; 256). The colors intensify as nv increases. Right:
The same data with time rescaled as was appropriate for the ideal gas: � = t∆vx=L: note that
this scaling does not collapse these data.

In Fig. 4 we show the time evolution of the single-particle phase space distributions in

(x; vx) for three different values of the areal density corresponding to � ’ 0:07 (� = 10�4),

� ’ 0:7 (� = 10�6), and the ideal gas (� = 0). The initial state has the gas confined to

occupy only one half of this phase space, namely 0:0 < x < 0:5. For the ideal gas (right

panels) the free dynamics of this single-particle marginal distribution is simply f(x; vx; t) =

f(x� vxt; vx; 0), so it always occupies only one half of the single-particle phase space; this is

due to the conservation of the one-particle phase space volume in the absence of interactions.

The initial region develops into stripes that become finely spaced along the vx direction,

getting finer as time increases. Thus the entropy of the ideal gas does not increase due to

14




