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Abstract

We investigate the time evolution of the Boltzmann entropy of a dilute gas of N particles, N ≫ 1,

as it undergoes a free expansion doubling its volume. The microstate of the system changes in

time via Hamiltonian dynamics. Its entropy, at any time t, is given by the logarithm of the phase

space volume of all the microstates giving rise to its macrostate at time t. The macrostates that

we consider are defined by coarse graining the one-particle phase space into cells ∆α. The initial

and final macrostates of the system are thermal equilibrium states in volumes V and 2V , with the

same energy E and particle number N . Their entropy per particle is given, for sufficiently large

systems, by the thermodynamic entropy as a function of the particle and energy density, whose

leading term is independent of the size of the ∆α. The intermediate (non-equilibrium) entropy does

however depend on the size of the cells ∆α. Its change with time is due to (i) dispersal in physical

space from free motion and to (ii) the collisions between particles which change their velocities.

The former depends strongly on the size of the velocity coarse graining ∆v: it produces entropy

at a rate proportional to ∆v. This dependence is investigated numerically and analytically for a

dilute two-dimensional gas of hard discs. It becomes significant when the mean free path between

collisions is of the same order or larger than the length scale of the initial spatial inhomogeneity. In

the opposite limit, the rate of entropy production is essentially independent of ∆v and is given by

the Boltzmann equation for the limit ∆v → 0. We show that when both processes are active the

time dependence of the entropy has a scaling form involving the ratio of the rates of its production

by the two processes.
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INTRODUCTION

Consider an isolated macroscopic system of N particles, N ≫ 1, in equilibrium in a region

Λ of d-dimensional space with volume |Λ| = V . Removing a constraint at time t = 0 permits

the system (still isolated) to expand into a larger region Λ′, with volume |Λ′| = V ′ > V .

After some sufficiently long time the system will come to a new equilibrium in Λ′, with the

same total energy and particle number. The second law of thermodynamics states that the

entropy of the new equilibrium system is greater than what it was originally, i.e.

Seq(E,N, V ′) > Seq(E,N, V ) , V ′ > V . (1)

The thermodynamic equilibrium entropy for macroscopic systems, Seq(E,N, V ), is an ex-

tensive well-defined quantity (up to an additive constant) first introduced by Clausius in

1857 [1].

Clausius does not say anything explicit about the entropy of the system while it is in

a nonequilibrium state, as in the above case while it is transitioning from its initial to its

final equilibrium state. Boltzmann, looking for a justification of the second law, which

seems to contradict the reversibility of the microscopic dynamics, came to the brilliant

insight: the entropy of a macroscopic system in a microstate X = (r1,v1, · · · , rN ,vN),

giving rise to macrostate M , corresponding to the values of suitable macrovariables, is

proportional to log |ΓM |. ΓM is the region of the (2dN)-dimensional phase space of the

system all of whose microstates X are macroscopically similar in the sense that they give

rise to this same macrostateM , and |ΓM | is its Liouville volume. This applies for equilibrium
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and nonequilibrium micro- and macrostates. We shall denote this Boltzmann entropy by

SB(X) ≡ SB(M(X)) = log |ΓM(X)| [2, 3]; see also [4]. As the microstate X evolves in time

from a nonequilibrium macrostate M(X), |ΓM(X(t))| typically increases. Thus this SB(X(t))

satisfies the second law for the vast majority of microstates X in each macrostate M without

violating microscopic reversibility. [Note, in this paper we are using units where Boltzmann’s

constant is kB = 1.]

The choice of macrostatesM , which corresponds to dividing each energy shell into regions

ΓM , is not unique but is physically constrained. In particular we want there to be an

equilibrium macrostate Meq such that SB(Meq) ∼= Seq when the size of the system goes

to infinity. A common way to choose M is to divide the spatial region Λ ∈ Rd into cells

that are each large enough to contain many particles and specify “within some tolerance”

the total energy, total particle number, and total momentum in each such cell. These are

the locally conserved quantities corresponding to the hydrodynamical variables which, in

most cases, evolve on a macroscopic time scale according to autonomous equations, e.g. the

Navier-Stokes equations [5].

Going beyond hydrodynamical variables, Boltzmann also considered, for dilute gases,

more refined macrostates, Mg, than those given by the spatial profiles of the hydrodynamic

variables. He defined Mg by considering the six-dimensional single-particle phase space,

γ = {r,v}, r ∈ Λ ∈ R3, v ∈ R3. The microstate X of the system is described by N points

in γ, while the macrostate Mg(X) is specified by dividing γ into cells ∆α and giving, within
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some tolerance, the number of particles Nα in each cell α. The Nα satisfy the conditions:

∑
α

Nα = N,
∑
α

1

2
Nα|vα|2 ∼= E, (2)

with vα the mean velocity in the cell ∆α; the particles each have mass m = 1. The poten-

tial energy is assumed to be negligible, although the particle-particle scattering due to the

interactions is not neglected. This is appropriate only for dilute gases. For more general

systems we also have to specify the potential energy, c.f. [6].

Boltzmann then computed |ΓMg | to be proportional to

|ΓMg | ∼ Πα[
|∆α|Nα

Nα!
] , (3)

from which he obtained the entropy SB(Mg(X)) = log |ΓMg |. To obtain a truly macroscopic

description of the system, the cells should be large enough so that most particles are in cells

with Nα ≫ 1. Using Stirling’s formula, Boltzmann then obtained

SB(Mg) = log |ΓMg | = −
∑
α

|∆α|[
Nα

|∆α|
log

Nα

|∆α|
] + constant , (4)

where the constant depends on N . When we give formulae for entropies later in this paper,

we leave off this additive constant, giving only the part of the entropy that depends on the

configuration of the particles.
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THE ONE-DIMENSIONAL IDEAL GAS

In a previous work with other collaborators, two of us investigated the time evolution of

the {Nα(t)}, and thus of SB(Mg(X(t))), as given in (4), for an ideal gas in one dimension

[7] (see also De Bievre and Parris [8]). We chose cells ∆α all of equal size (∆x∆v) (with a

cutoff on the maximal speed |v|). We started the system in a thermal equilibrium microstate,

confined in an interval of length L, and then let it freely expand to fill an interval of length

2L. After the system equilibrates, X(t) ∈ ΓMeq in the larger interval at almost all times,

and the entropy SB(Mg) ≃ Seq(2L), essentially independent of the choices of cell sizes ∆x,

∆v. During this process the entropy has increased by (approximately) log 2 per particle due

to the expansion. We say approximately because we are not in the limit N → ∞, L → ∞.

[This change, log 2, is for classical dilute gases. For quantum gases, on the other hand,

the change depends on the initial temperature and on the particle statistics (fermions vs.

bosons) [9–11].]

We found that the “equilibration” time, teq, it took the Boltzmann entropy of the system

to approach the new equilibrium value in the final interval of length 2L depended strongly

on the width ∆v of the single-particle phase space cells used to define the macrostate Mg,

see Fig. 2. The smaller ∆v, the slower the rate of entropy production for this SB(Mg). As

a consequence of this, the Boltzmann entropy of each particular nonequilibrium microstate

X(t) that occurs during this free expansion is a strongly varying function of the chosen ∆v.

In fact we found and proved that teq ∼ L/∆v for small ∆v. The reason for this is

that in the ideal gas the only mechanism for uniformising the velocity distribution over all
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of the spatial region is via the difference between the total distance traveled in time t by

the particles with velocity v and those with velocity (v + ∆v). In order for the system to

approach equilibrium (become spatially uniform), this distance must exceed L, which only

occurs after time teq ∼ L/∆v. Note that this equilibration time teq diverges in the limit

∆v → 0.

The time evolution of the entropy of the ideal gas is much less sensitive to the spatial

size ∆x of the cells. The time scale for the uniformization of the spatial density (ignoring

the local velocity distributions) is of order L/vth, where vth is the (thermal) mean speed, so

for ∆v ≪ vth this time is much smaller than teq, see Fig. 1.

These observations are consistent with, and in fact imply, the non-increase of entropy in

the limiting case in which ∆x → 0, ∆v → 0, and N → ∞, such that most particles are in

boxes with Nα ≫ 1, while {Nα(t)/(N |∆α|)} → f(x, v, t), a piecewise smooth function. To

directly see this non-increase, note that since we have an ideal gas, the time evolution of

this smooth empirical distribution satisfies the equation

∂f(x, v, t)

∂t
+ v

∂f(x, v, t)

∂x
= 0 . (5)

Taking the corresponding limit of the entropy per particle SB(Mg)/N given in Eq. (4) yields

[5]

s(ft) = −
∫

dx

∫
dv f(x, v, t) log f(x, v, t) , (6)

where we do not show a time-independent additive constant. As is well known, s(ft) is

time-invariant under the ideal gas evolution given by (5); the entropy production due to
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∆v > 0 and free particle motion vanishes when we take the limit ∆v → 0. This shows that

s(ft), as defined by (6), corresponding to the volumes |∆α| → 0, does not change with time

for an ideal gas.

Note, however, that when f(x, v, t) describes, not the empirical distribution of the phase

point of our gas in the limit described above, but rather the one-particle distribution of

an ensemble of fixed finite systems of independent particles, the non-increase of the cor-

responding ensemble entropy per particle s(ft) conflicts dramatically with the increase of

the Boltzmann entropy SB(Mg(X(t))) of the system. We stress that, unlike the former,

the latter depends on the choice of ∆v, with the rate of change of SB decreasing as ∆v is

decreased.

THE DILUTE GAS

The question then arises of what happens to the Boltzmann entropy SB(Mg) for different

cell sizes |∆α| when one takes into account interactions between the particles. With such

interactions there is a mechanism for changing the velocity of a particle, so Eq. (5) and

its generalization to more than one dimension no longer describe the time evolution of the

limiting single-particle empirical distribution in {r,v} space. Let us consider in particular

the case of a dilute gas in two or three dimensions with short-range interactions, such as hard

discs or spheres. (See also Ref. [12] for a related study of a two-component interacting gas

in one dimension.) For a dilute gas in two or more dimensions, Lanford proved that in the

Boltzmann-Grad (B-G) limit f(r,v, t) evolves (for short times) according to the Boltzmann
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equation (BE) [5, 13, 14]

∂f(r,v, t)

∂t
+ v · ∇f(r,v, t) = λ−1Q(f, f) ; (7)

the right hand side of this equation describes the interparticle collisions. In this B-G limit

the particle density goes to infinity while the diameter of the hard spheres vanishes in such

a way that the mean free path (mfp) between collisions, λ, remains fixed. f(r,v, t) in (7) is

then exactly the smooth density profile of the empirical distribution when |∆α| → 0.

The Boltzmann equation (7) derived by Boltzmann on the basis of physical arguments is

known to describe the “smoothed” empirical single-particle distribution f(r,v, t) of a dilute

gas for the case where the size of the atoms is very small compared to the interparticle

distance which in turn is very small compared to λ [15, 16].

Boltzmann proved that s(ft) defined in (6) is monotone increasing with time t when

f(r,v, t), given by the solution of (7), is not equal to the local Maxwell-Boltzmann dis-

tribution, his famous H-theorem. Boltzmann saw this as a generalization of the second

law. He wrote that with the H-theorem “we are able to generalize the notion of entropy to

nonequilibrium systems” [p. 75 in [17]].

Boltzmann did not seem to worry about the fact that s(ft) does not increase with time for

the ideal gas, when λ → ∞. In fact, even when λ is finite there is a nonzero contribution from

the free-particle dispersion to the rate of increase with time of SB(Mg), for |∆α| > 0. This

comes from the term v · ∇f in the BE. This contribution is small when λ is small compared

to the length scale of the spatial inhomogeneity as was certainly the case for the gases
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Boltzmann considered, it is zero for a spatially uniform system, but it can be substantial

when λ is of the order of or larger than the linear scale of the inhomogeneities. This scale

is of order the linear size L of the system in the case of the free expansion considered here.

The dependence of SB(Mg(t)) on λ and on the choice of cell sizes is the question we address

next for a dilute interacting gas.

We note that Eq. (5) for the limiting empirical distribution, f(x, v, t), is obtained formally

for |∆α| → 0 by following Lanford’s steps in the derivation of the BE, if we take a limit

where the diameter goes to zero faster than in the B-G limit so that the mean free path goes

to infinity.

HARD DISCS

To elucidate the time evolution of SB(Mg(t)) for different choices of |∆α| when λ is of

the same order or larger than the length scale of the inhomogeneities, we have carried out

molecular dynamics computations for the time evolution of a two-dimensional system of N

hard discs of unit mass. The system is started in a microstate chosen at random from a

canonical Gibbs ensemble with temperature T = 1 (setting kB = 1) in a rectangular box

of size Lx = 1/2, Ly = 1 with periodic boundary conditions along the y direction and hard

walls constraining the system along the x direction. The discs have radius r. The system

has initial areal density η(0) = πr2N/V where V = LxLy = 1/2. The corresponding mean

free path when the system is dilute is λ ∼ (ηN/V )−1/2.

At time t = 0 we remove the hard walls and let this gas of discs expand to a box of

size Lx = Ly = L = 1 with now periodic boundary conditions along both directions (see
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figure 1). We study the time evolution of this system until it reaches an equilibrium state

X ∈ ΓMeq in this larger periodic box, with final areal density η = η(0)/2. Although in the

simulations we have chosen to use L = 1, in much of the analysis below we will show the

dependence on L, for generality.

FIG. 1: Evolution of a system with N = 200 hard discs, initial areal density η(0) = 0.1 and initial
temperature T = 1: t = 0, 0.1, and 0.3 from left to right.

In the regime λ ≳ L the degrees of freedom associated with y and vy, along which

direction the system does not expand, remain near thermal equilibrium. Therefore the

Boltzmann entropy associated with these y, vy degrees of freedom remains approximately

constant in time while the system expands along the x direction and approaches the new

thermal equilibrium. Thus we will focus only on the entropy due to the degrees of freedom

associated with x and vx, since it is only this part of the entropy that is strongly out of

equilibrium and changing with time. For the ideal gas, λ → ∞, this separation of y degrees

of freedom staying at thermal equilibrium, while the x degrees of freedom do not, becomes

exact.

Thus we divide the four-dimensional one-particle phase space (x, vx; y, vy) into cells ∆α

that are all of extent ∆x and ∆vx along the x and vx directions, respectively, with each

cell including the full range of y and vy. We count Nα(t), the number of particles in ∆α at
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time t. Following Boltzmann in using Stirling’s formula for log |ΓM | in (4), the Boltzmann

entropy per particle due to their x and vx degrees of freedom is:

1

N
SB(Mg(t)) = sB(t) = −∆

N

∑
α

Nα(t)

∆
log

Nα(t)

∆
. (8)

In (8) all cells have equal “area” |∆α| = ∆x∆vx = ∆ in the (x, vx) phase space.

To specify ∆α we divide x ∈ [0, L] into nx equal intervals. We used different values of nx:

nx = 4, 8, 16; as in [7] the results show little dependence on ∆x, so here we show only the

results for nx = 16. Similarly, we divide the range of the velocity vx ∈ [−vmax, vmax], with

vmax = 6
√
T = 6, into nv = 4, 8, . . . , 256 equal cells, so ∆vx = 12/nx. Again, our cells divide

the single-particle phase space only along x and vx, so each cell includes the full ranges of y

and vy.

Ideal Gas; λ = ∞

Before describing the results for different finite values of λ, we present the time evolution

for the case of λ = ∞, i.e., the ideal gas, in Fig. 2. These figures closely resemble the

one-dimensional ideal gas case studied in [7]. We observe how the equilibration time of the

Boltzmann entropy increases as ∆vx decreases. Once we scale time as τ = ∆vxt/L, (L = 1),

we observe the convergence of the curves for different ∆vx values towards a limiting curve

as ∆vx → 0. The limiting curve for the entropy was obtained in reference [7] from the ideal

gas equation (5). The deviations from this limiting behavior become substantial when ∆vx

is of order vth, which is the case for our largest ∆vx.
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Note that there is a slight, rapid increase in entropy at very early times, attributed to

the initial stages of the expansion, see Fig. 2. The specific behavior in this early phase is

influenced by the choice of ∆x and the arrangement of cell boundaries along x, with two

of them precisely at the locations of the initial confining walls. However, our focus will be

on the behavior at intermediate and late times, which are not influenced by these choices

associated with the cells along the x direction.

FIG. 2: Left: Boltzmann entropy for the ideal gas with N = 108 particles, with nx = 16 and
nv = (4, 8, 16, 32, 64, 128, 256). The colors intensify as nv increases. Right: The same data with
time rescaled: τ = t∆vx/L; L = 1. The blue solid curve represents the theoretical result for the
ideal gas (see Ref. [7]) in the limit ∆x, ∆vx → 0.

.

Finite λ

In Fig. 3 we present the results for SB(Mg(t))/N for N = 105 hard discs with an areal

density of η = 10−6 (mean free path λ ≃ 0.7) and nx = 16 cells along the x direction,

with different values of ∆vx. For the largest value of ∆vx shown, the entropy production is

mostly due to the dispersion from the free particle motion, so the behavior is close to that
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of the ideal gas. For smaller ∆vx, however, the entropy production due to the interparticle

scattering dominates, and the behavior becomes very different from the ideal gas. In the left

panel of Fig. 3, the behavior becomes almost independent of ∆vx for small ∆vx, since the free

particle dispersion then stops giving an important contribution to the entropy production.

FIG. 3: Left: Boltzmann entropy for N = 105 particles and η = 10−6 (mean free path λ ≃ 0.7),
with nx = 16 and nv = (4, 8, 16, 32, 64, 128, 256). The colors intensify as nv increases. Right:
The same data with time rescaled as was appropriate for the ideal gas: τ = t∆vx/L: note that
this scaling does not collapse these data.

In Fig. 4 we show the time evolution of the single-particle phase space distributions in

(x, vx) for three different values of the areal density corresponding to λ ≃ 0.07 (η = 10−4),

λ ≃ 0.7 (η = 10−6), and the ideal gas (η = 0). The initial state has the gas confined to

occupy only one half of this phase space, namely 0.0 < x < 0.5. For the ideal gas (right

panels) the free dynamics of this single-particle marginal distribution is simply f(x, vx, t) =

f(x− vxt, vx, 0), so it always occupies only one half of the single-particle phase space; this is

due to the conservation of the one-particle phase space volume in the absence of interactions.

The initial region develops into stripes that become finely spaced along the vx direction,

getting finer as time increases. Thus the entropy of the ideal gas does not increase due to
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occupying a larger fraction of the single-particle phase space, instead it increases due to the

stripes that it occupies becoming more finely spaced. For the dilute gas (center), scattering

events will move some of the particles, eventually one half of them, into the region that the

ideal gas does not visit. As time progresses, this scattering produces entropy and reduces

the contrast between the dark and light stripes in the center and left panels of Fig. 4, with

the rate of this scattering larger for the larger discs (left).

FIG. 4: (x, vx)-phase space evolution of a system with N = 105 discs with areal densities
η = 10−4, mean free path λ ≃ 0.07, (left column); η = 10−6, mean free path λ ≃ 0.7, (center
column); and the ideal gas, λ−1 = 0 (right column) for times (from top to bottom): t = 0.0,
0.25, 0.50, 0.75 and 1.0.
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ANALYSIS OF ENTROPY PRODUCTION FOR DILUTE HARD DISCS

To obtain a theoretical description of the entropy evolution shown in Fig. 3 we follow

the analysis in Ref [7]. Instead of looking at a single microstate we consider F (x, vx, t), the

marginal one-particle distribution of the time-evolved N -particle distribution following the

lifting of the constraint at time t = 0 :

F (x, vx, t) =
N∑
i=1

⟨δ(xi(t)− x)δ(vx,i(t)− vx)⟩ . (9)

Note that F is normalized so
∫
dx dvxF = N . We take the initial distribution, before the

lifting of the constraint, to be the N -particle canonical Gibbs distribution in the smaller

box, Lx = 1/2, Ly = 1. We then coarse grain the time-evolved F over each cell ∆α:

Fα(t) =
1

∆

∫
∆α

dx dvx F (x, vx, t), (10)

where ∆ = |∆α|.

Using the law of large numbers we expect that the average number of particles in ∆α is

close to that of single (typical) realizations. Hence the coarse grained entropy per particle

of the x and vx degrees of freedom

sF∆ = −∆

N

∑
α

Fα logFα (11)

will be close to the Boltzmann entropy of a typical microstate as given in Eq. (8). This
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was verified in Ref. [7] for the ideal gas where F (x, vx, t) is simply the solution of Eq. (5):

Fideal(x, vx, t) = F (x− vxt, v, 0).

We will now argue that F (x, vx, t) has a rather simple approximate form when the initial

velocity distribution is Maxwellian and we are in the dilute regime λ ≳ L. We show that

this form gives a good approximation to the simulation results for the entropy.

In the dilute limit there is an early time regime L/vth ≪ t ≪ λ/vth where the gas has

spatially expanded to uniformly fill the larger volume. Very little scattering happens during

(or before) this early time regime, so this early time dynamics is well approximated by the

ideal gas behavior F (x, vx, t) = F (x − vxt, vx, 0). Since tvth ≫ L, typical particles have

travelled many times the distance L, and thus the single-particle distribution has become

very finely “striped”, with the width in vx of the stripes being ∼ L/t, which is very narrow

compared to the thermal speed vth. The velocity distribution when averaged over position

remains Maxwellian, and the position distribution when averaged over velocity is uniform.

Thus the way in which the single-particle distribution is out of thermal equilibrium in the

larger box is that it has detailed correlations between x and vx in the form of these fine

stripes along vx. If the distribution F (x, vx, t) is coarse-grained in vx on a scale much larger

than these stripes but small compared to vth then it becomes the equilibrium Maxwell

distribution.

Thus, in the dilute limit and in this time regime L/vth ≪ t ≪ λ/vth, the single-particle

distribution can be written in the form:

F (x, vx, t) =
N

L
gT (vx) + δF (x, vx, t) , (12)
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where gT (vx) is the normalized equilibrium Maxwell velocity distribution, and δF (x, vx, t)

gives the finely striped correlations between x and vx that one can see developing with time

in Fig. 4 and that will vanish (δF → 0) at longer times due to the scattering. In the ideal

gas, and thus also in this time regime before significant scattering has happened, we have

δF (x, vx, t) = F (x− vxt, vx, 0)−
N

L
gT (vx) . (13)

For times t ≫ L/vth, the particles will scatter at a rate, Γ(|v|), which, since the density

is then spatially uniform and the velocity distributions only differ from Maxwellians by the

very fine “striping”, does not depend significantly on x or t. The impact parameter at the

collision is approximately uniformly distributed over the width of the particles, which results

in the post-scattering velocity distribution being a smooth function of vx, with none of the

“striping” present in δF , and the contributions from initial velocities that are very near to

each other but have different signs of δF will cancel. Thus the scattering only produces

losses from the δF part of the distribution, while for the equilibrium (Maxwellian) part of

the distribution, the losses and gains are equal and opposite, as they must be at equilibrium.

Since the scattering rate also depends on vy, this will introduce a dependence of δF on vy.

But, over the bulk of the Maxwell distribution the dependence of the scattering rate on |v|

is small (well under a factor of two), so for simplicity we will make the approximation that

it is a constant: Γ(|v|) = Γ.

In this approximation, δF (x, vx, t) is reduced from the ideal gas form (13) by a factor of
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exp(−Γt), so the behavior for t ≫ L/vth in the dilute limit is well approximated by

F (x, vx, t) = e−ΓtF (x− vxt, vx, 0) +
(
1− e−Γt

) N
L
gT (vx) . (14)

We note that (14) is the solution to the linearized relaxation time approximation to the BE:

∂F (x, vx, t)

∂t
+ vx

∂F (x, vx, t)

∂x
= Γ

[
N

L
gT (vx)− F (x, vx, t)

]
. (15)

In fact one can think of (14) as a simple, perhaps the simplest, interpolation between the

short and long time behavior of F . We shall use it now to compute sF∆ in (11).

The form of (15) clearly delineates the two distinct processes contributing to entropy

production in this dilute gas. Collisions occur at a rate of Γ per particle, leading to entropy

production per particle and an approach to equilibrium at a rate ∼ Γ, which is insensitive

to the choice of cell size |∆α|. On the other hand, the free motion for a time t of particles

initially in a cell with width ∆vx spreads those particles over an x range ∼ t∆vx, resulting

in entropy production when this length scale becomes larger than the initial length scale L

of the spatial inhomogeneity of the density. Thus, the free motion contributes to entropy

production per particle at a rate ∼ ∆vx/L, linearly dependent on our choice of ∆vx. The

entropy production due to free motion becomes significant when the scattering is weak, such

that Γ ≲ ∆vx/l, where l is the length scale of any initial density inhomogeneities.

We can estimate the scattering rate Γ based on the evolution of a typical single con-

figuration. At each time t, we measure the fraction of particles, denoted as ν(t), whose
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noninteracting backward evolution over a time t leads them back to the initial half box:

ν(t) =
1

N

N∑
i=1

χ (0 < xi(t)− vx,it) < L/2) , (16)

where χ(·) is the indicator function. Assuming that after any collision the noninteracting

backward time evolution is equally likely to put the particle in either of the initial half boxes,

ν(t) should be the sum of the fraction of particles that had not had any collision by time t,

denoted as p(t), and half of the fraction of particles that collided, (1−p(t))/2. Consequently,

we have the relationship p(t) = 2ν(t)− 1.

We display the behavior of this p(t) for various η values in the left panel of Fig. 5. From

the data, we take Γ used in (14) as the fitted slope of − log(2ν(t)− 1). The fitted values of

Γ are plotted in the right panel of Fig. 5 vs. their corresponding
√
Nη to demonstrate their

linear relationship, as expected, because Γ ∝ λ−1 ∝
√
Nη.

FIG. 5: Left: log(2ν − 1) vs. t and different η’s: 10−8, 10−9, . . ., 10−12 that correspond to
the mean free paths λ ≃ 7.01, 22.2, 70.1, 222 and 701, respectively. The colors intensify as η
decreases. Black dashed lines are linear fits to the data whose slope is Γ(η). Right: measured
slopes Γ(η) vs

√
Nη. Red dashed line is the linear fit: Γ(η) = 2.69(3)

√
Nη/L, L = 1.
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We use equation (14) with the fitted value of Γ to obtain the coarse-grained distribution

Fα as given by equation (10). We then calculate the entropy, sF∆, given in equation (11).

The details and some properties are presented in the Appendix. The crucial observation is

that the functional form of the scaled time-dependence of the entropy in the dilute regime is

set by the ratio, C = ΓL/∆vx, between the rates of entropy production due to the scattering

and that due to the dispersive free motion. Therefore, we expect that any sequence (η,∆vx)

having a given fixed value of C ∝ √
η/∆vx will tend to the same scaled time-dependence

of the entropy as ∆vx and η go to zero. We have done a set of simulations with N = 105

particles and L = 1 to check this limiting behavior. We take the values of C corresponding

to four different values of η0 with nv = 256 velocity cells, see Fig. 6. For each η0 we simulate

the sequence of values: (∆vx, η) = (12/nv, η0(256/nv)
2 with nv = 16, 32, 64, 128, 256. In each

case we evolve the system for a real time t such that we get to scaled time τ = t∆vx/L = 4.

We show in figure 6 the entropies numerically obtained and compared with the theoret-

ical solution. We see that in each case the behavior is consistent with converging to the

theoretical curves as ∆vx and η are decreased towards zero for that fixed C.
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FIG. 6: Scaled entropies for hard discs. First row: η0 = 10−9 and 10−10. Second row: η0 = 10−11

and 10−12. Dots are data from simulations with N = 105 discs, nx = 16. Different colors are
simulations with (∆vx, η) = (12/nv, η0(256/nv)

2 with nv = 16, 32, 64, 128, 256 (color is darker
as nv increases). Magenta lines are the solutions from eq.(11) with C = Γ/∆vx values obtained
from the fits done in figure 5 for each η0.

The insets in figure 6 show weak apparent violations of the second law: there are time

intervals where the entropy decreases. This only occurs when the mean free path is com-

parable to or larger than the size of the system, so this feature does not occur if one takes

the limit of a large system while keeping the mean free path fixed and finite. This entropy

decrease is due to the free motion and is present if the interparticle scattering is weak enough

and ∆vx is chosen large enough so that the entropy change due to the free motion remains

larger than or comparable to that due to interparticle scattering. The free motion compo-

nent of the entropy change is not strictly subject to the second law; although it generally

does produce an entropy increase for spatially inhomogeneous systems, it can produce small

but extensive entropy decreases that depend in detail on the choice of ∆vx and the time, as

we have shown. These decreases only occur when the system is dilute enough so that these

features are not overwhelmed and removed by the entropy production due to the interpar-
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ticle collisions. The latter source of entropy production is, of course, fully subject to the

second law.

We have seen, and our results make explicit, that the Boltzmann entropy of a microstate

X may significantly depend on the choice of macrovariables, and in particular on the choice

of cell size ∆v. For example, X may be within the equilibrium macrostate for some choice

of ∆v, but for a choice of a smaller ∆v it may no longer be in the equilibrium macrostate.

Nonetheless, this dependence on ∆v does not arise for the equilibrium entropy—the entropy

of the equilibrium macrostate: Since the dominant (equilibrium) macrostate occupies almost

the entire energy surface or shell, the equilibrium entropy depends only on the volume of

the energy surface or shell, up to a negligible error, regardless of the choice of macrovari-

ables (assuming that there is a dominant macrostate such as we’ve assumed in this paper).

Changing ∆v leads to a new equilibrium macrostate whose volume differs little from the

original one. The very small differences are those microstates X that are included in the

equilibrium macrostate for one value of ∆v and are not included for the other value.

SUMMARY

In this paper we have investigated the time evolution of the Boltzmann entropy of the

macrostates of a dilute classical gas when the system expands freely after removing a con-

straint. In numerical simulations we specifically studied a dilute two-dimensional gas of

hard discs. The macrostates are specified by dividing the one-particle phase space in to

cells and counting the number of particles in each such cell. We identify two mechanisms

of entropy increase: (i) dispersal of the particles in physical space due to free motion, and
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(ii) dispersal of the particles in velocity space due to collisions between particles. The first

mechanism can dominate when the mean free path λ is much larger than the length scale

ℓ of the initial spatial inhomogeneity of the gas. In this case the rate of the approach to

the final equilibrium entropy is proportional to (∆v)/ℓ, where ∆v is the size of the phase

space cells in the velocity direction. In the opposite limiting case when (∆v)/ℓ ≪ Γ, where

Γ is the interparticle scattering rate, the rate of entropy increase becomes independent of

∆v and is given by the collision terms in the Boltzmann equation. It was only this latter

limit that Boltzmann considered in his famous H-theorem. In the intermediate cases we

show numerically, and partly analytically, that the time dependence of the entropy has a

functional form set by the ratio of the rates of the two mechanisms of entropy growth.
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APPENDIX: THE LONG-TIME BEHAVIOR OF THE BOLTZMANN ENTROPY

Let F (x, v) be the one-particle (marginal) distribution, on [0, L] × R, of an N -particle

system, normalized to N , so that

∫ L

0

dx

∫ ∞

−∞
dv F (x, v) = N. (17)

Its Gibbs entropy per particle is given by

s(F ) = − 1

N

∫ L

0

dx

∫ ∞

−∞
dv F (x, v) logF (x, v). (18)

A very good approximation to the Boltzmann entropy per particle sB for a (typical)

configuration arising from F can be expressed in terms of F∆, the coarse-grained one-

particle distribution arising from F via the coarse-graining into cells ∆α of the one-particle

phase space [0, L]× R as described in the introduction:

F∆(x, v) = Fα, for (x, v) ∈ ∆α, (19)

where Fα is defined in (10) (for v = vx). As stated earlier, by the law of large numbers we

typically have that

sB ≈ s(F∆) (20)

in the large N , ∆ → 0 limit.

We consider first the long-time asymptotics of sB(t) for the ideal gas in one dimension.
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By (20) we have that

sB(t) ≈ s(F∆
t ) (21)

where F∆
t = (Ft)

∆ is the coarse-graining of Ft(x, v) = F (x, v, t), the time-evolved distribu-

tion. We thus focus here on the long-time asymptotics of s(F∆
t ).

Note that for fixed t, as ∆ → 0,

s(F∆
t ) → s(Ft), (22)

which is independent of t. However, this convergence, unlike that of the approximation (21),

is not uniform in t: For times t of order L/∆v, i.e., on the time scale τ = t∆v/L, s(F∆
t )

does change. In fact, it is shown in [7] that, as ∆ → 0,

s(F∆
τL
∆v
) → s(F̄τ ) (23)

with

F̄τ (x, v) =
1

τL

∫ τL

0

dz F0(x− z, v). (24)

(The distinction between (Ft)
∆, the coarse-grained evolved distribution, and (F∆)t, the

evolved coarse-grained distribution, is crucial here.)

Making the changes of variables x → x′ = x/L and z → z′ = z/L (mapping [0, L]×R to
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[0, 1]× R) in (18) and (24) and then writing x for x′ and z for z′, we obtain that

s(F̄τ ) = −
∫ 1

0

dx

∫ ∞

−∞
dv F̄ (1)

τ (x, v) log(ρF̄ (1)
τ (x, v)) (25)

= − log ρ −
∫ 1

0

dx

∫ ∞

−∞
dv F̄ (1)

τ (x, v) log F̄ (1)
τ (x, v) (26)

with ρ = N/L and

F̄ (1)
τ (x, v) =

1

τ

∫ τ

0

dz F
(1)
0 (x− z, v) (27)

where

F
(1)
0 (x, v) = LF0(xL, v)/N. (28)

Note that F
(1)
0 , which we shall call the shape of F0, is a (normalized to 1) probability

distribution on [0, 1]×R. It is the distribution of the random variable (X/L, V ) when (X, V )

is distributed according to F0 on [0, L]× R. Note also that (26) thus says that, apart from

the term − log ρ, s(F̄τ ) depends only on the shape of F0 —not on L or N .

It follows easily from (24) that, as τ → ∞,

F̄τ (x, v) → Fmax(x, v) = Ng(v)/L (29)

and hence that

s(F̄τ ) → smax = s(Fmax). (30)
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Here g is the global velocity distribution arising from F0,

g(v) =
1

N

∫ L

0

dxF0(x, v). (31)

For g = gT , we have that Fmax = Feq, the one-particle equilibrium distribution at tempera-

ture T , and that smax = seq(ρ, T ) = s(Feq), the equilibrium entropy per particle.

smax maximizes the entropy per particle s(F0) among all distributions F0 with global

velocity distribution g (31). Thus we have for the deviation s−τ of s(F̄τ ) from smax,

s(F̄τ ) = smax − s−τ , (32)

that s−τ ↘ 0 as τ → ∞.

To explore the behavior of s−τ in more detail we write

F
(1)
0 (x, v) = g(v)h(x|v). (33)

Inserting this in (27) we find that

F̄ (1)
τ (x, v) = g(v)h̄τ (x|v) (34)

with

h̄τ (x|v) =
1

τ

∫ τ

0

dz h(x− z|v). (35)
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Then, from (26), we obtain that

s(F̄τ ) =− log ρ−
∫ ∞

−∞
dv g(v) log g(v)

−
∫ ∞

−∞
dv g(v)

∫ 1

0

dx h̄τ (x|v) log h̄τ (x|v) (36)

= smax −
〈∫ 1

0

dx h̄τ (x|v) log h̄τ (x|v)
〉
v

. (37)

Thus we have that

s−τ =

〈∫ 1

0

dx h̄τ (x|v) log h̄τ (x|v)
〉
v

. (38)

(Here ⟨ · ⟩v denotes the average with respect to g(v).)

Note that, since (the periodic extension of) h̄τ (x|v) has period 1 in x, we have from (35)

that h̄τ (x|v) = 1, so that s−τ = 0 and s(F̄τ ) = smax, for τ = 1, 2, 3, . . . . Note also that s−τ

depends only on the shape of F0, and not on N or L.

Since the deviation of s−τ from 0 arises from that of h̄τ (x|v) from 1, it is convenient to

write

h(x|v) = 1 + ϕ(x|v). (39)

Then, from (35),

h̄τ (x|v) = 1 + ϕ̄τ (x|v)/τ (40)

with

ϕ̄τ (x|v) =
∫ τ

0

dz ϕ(x− z|v). (41)
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Note that

−1 ≤ ϕ̄τ (x|v) ≤ 1 (42)

and, since
∫ 1

0
dx ϕ(x|v) = 0, that it is periodic in τ with period 1: For 0 ≤ ξ < 1 and

n = 1, 2, 3, . . .

ϕ̄n+ξ(x|v) = ϕ̄ξ(x|v). (43)

Now suppose that, as in the cases considered in this paper, position and velocity are

initially independent, so that

h(x|v) = h(x). (44)

Then (37) assumes the form

s(F̄τ ) = smax −
∫ 1

0

dx h̄τ (x) log h̄τ (x). (45)

with

h̄τ (x) =
1

τ

∫ τ

0

dz h(x− z). (46)

Similarly, equations (39-43) of course continue to hold with h(x), ϕ(x), h̄τ (x), and ϕ̄τ (x)

replacing the corresponding v-dependent quantities.

The choice of h relevant to this paper is

h(x) = 2χ
[0, 12 )

(x) (47)
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with χ
A
the indicator function of the set A. For this h we have from (39) that

ϕ(x) = χ
[0, 12 )

(x)− χ
[ 12 ,1)]

(x), (48)

so that, from (41), we find that for 0 ≤ ξ ≤ 1
2
,

ϕ̄ξ(x) =



2x− ξ, if 0 ≤ x ≤ ξ,

ξ, if ξ ≤ x ≤ 1
2
,

−2x+ 1 + ξ, if 1
2
≤ x ≤ 1

2
+ ξ,

−ξ if 1
2
+ ξ ≤ x ≤ 1.

(49)

Then ϕ̄ξ(x) for
1
2
≤ ξ ≤ 1 is determined by the symmetry

ϕ̄ξ(x) = ϕ̄1−ξ(1− x). (50)

In Figure 7 we display ϕ̄ξ for 0 ≤ ξ ≤ 1
2
and h̄τ for τ ≥ 0.
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FIG. 7: Behavior of the functions ϕ̄ξ(x) and h̄τ (x). Left figure are slices of ϕ̄ξ(x) for ξ = k/20,
with k = 0, 1, . . . , 10 (color darkness increases with k-values). Observe that the curves for
k = 11, 12, . . . 19 are not plotted because they are just reflections about x = 1/2 (see the
symmetry property (50)). The horizontal plain in the right figure is h̄τ (x) = 1.

In view of (50), we shall now write, for n ≤ τ ≤ n + 1 (with n an integer), τ = n + ξ

when n ≤ τ ≤ n+ 1
2
and τ = n+ 1− ξ when n+ 1

2
≤ τ ≤ n+ 1. Then inserting (49) (or its

reflection via x 7→ 1− x) into the integral in (45) using (40), we obtain four contributions,

two from the intervals of length 1
2
− ξ on which ϕ̄ξ(x) is constant (±ξ), and two, which are

the same, from the intervals on which ϕ̄ξ(x) has slope ±2 and varies between −ξ and ξ. We

thus find, writing
1

τ
= ϵ, that for all τ > 0,

s(F̄τ ) = smax−
(
(1
2
− ξ)

(
(1 + ϵξ) log(1 + ϵξ) + (1− ϵξ) log(1− ϵξ)

)
+

1

2ϵ

(
(1 + ϵξ)2 log(1 + ϵξ)− (1− ϵξ)2 log(1− ϵξ)

)
− ξ

)
. (51)

Thus, for small ϵ,

s(F̄τ ) = smax − (1
2
− 2

3
ξ)ξ2ϵ2 +O(ϵ4). (52)

Consider now the long-time asymptotics of sB(t) for the gas of dilute hard discs discussed

in Section V. While this gas is in two dimensions, for the initial distribution of particles

considered, the relevant evolution reduces to the dynamics of a gas in one dimension, with

v = vx. Moreover, for the approximation (14) used there, we obtain once again equations

(51) and (52), but now with ϵ = e−τ/τ̄/τ instead of ϵ = 1/τ . Here τ̄ = Γ−1∆v/L is

roughly the mean free time on the time scale τ = t∆v/L. (Note that ϵ = e−τmicro/τcg where

τmicro = τ/τ̄ = t/t̄, with t̄ = Γ−1 the mean free time on the original t time scale, and
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τcg = τ = t/t̄cg, with t̄cg = L/∆v the unit for the coarse graining time scale τ .)

To see this, note that the analysis in this appendix for the case of the ideal gas covers the

evolution (14), provided that we replace ϕ in (39) and (48) by e−τ/τ̄ϕ, and similarly for ϕ̄

in (40), with (49) adjusted accordingly. Note also that now ϵ (and the asymptotic entropy

approximation) depends not only on τ but on τ̄ as well. Nonetheless. it continues to be the

case that s(F̄τ ) = smax for τ = 1, 2, 3, . . . .

We show in Fig. 8 the behavior of the entropy given by eq. (51) as a function of τ and

the parameter τ̄ .

FIG. 8: Behavior of the entropy s(F̄τ ).

Finally we observe that the analysis given in this appendix and in [7] for the one-

dimensional ideal gas in [0, L] applies as well to the d-dimensional ideal gas in Λ = [0, L]d

(with periodic boundary conditions). Using velocity cells for the coarse-graining that are

d-cubes aligned with the coordinate axes with edge lengths ∆v, one need only replace, in

the equations up to equation (46), x ∈ R, z ∈ R, and v ∈ R by x ∈ Rd, z ∈ Rd, and v ∈ Rd,

making the obvious adjustments for the domains of integration and the like. For example,
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the integration in (24) will now be over the domain τΛ (with L replaced by |Λ| in the factor

in front of the integral). Similarly, the integral in (27) will now be over [0, 1]d. Note that

because Λ and the velocity cells are similar and have the same orientation, it continues to

be the case that s(F̄τ ) = smax for τ = 1, 2, 3, . . . (as it would if Λ and the velocity cells were

similar d-rectangles with the same orientation).
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