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Abstract The Ghirardi—Rimini-Weber (GRW) theory of spontaneous wave function col-
lapse is known to provide a quantum theory without observers, in fact two different ones
by using either the matter density ontology (GRWm) or the flash ontology (GRWf). Both
theories are known to make predictions different from those of quantum mechanics, but the
difference is so small that no decisive experiment can as yet be performed. While some
testable deviations from quantum mechanics have long been known, we provide here some-
thing that has until now been missing: a formalism that succinctly summarizes the empirical
predictions of GRWm and GRW{. We call it the GRW formalism. Its structure is similar
to that of the quantum formalism but involves different operators. In other words, we es-
tablish the validity of a general algorithm for directly computing the testable predictions of
GRWm and GRWf. We further show that some well-defined quantities cannot be measured
in a GRWm or GRWf world.
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1 Introduction

This paper is about the derivation of statistical predictions for macroscopic behavior from a
specific microscopic physical model. That is common in statistical physics. A bit unusual,
though, is that the microscopic model we study was developed for explaining quantum me-
chanics. Indeed, in order to obtain a quantum theory without observers, and thus to solve
the measurement problem and other paradoxes of quantum mechanics, it has been suggested
that one should incorporate spontaneous collapses of the wave function into the laws of na-
ture by replacing the Schrodinger evolution with a stochastic and nonlinear evolution law.
The simplest and best known proposal for such a law is due to Ghirardi, Rimini, and We-
ber (GRW) [28, 8] (see [5] for a review of collapse theories). This is the framework we are
concerned with in this paper. Our goal is to obtain the axioms of quantum mechanics as
theorems in the GRW theory.

To complete the GRW theory, one needs to specify a choice of primitive ontology (PO)
and a law determining how the wave function governs the PO (see [3] for a discussion).
Two possibilities for the PO and its law have been proposed: the matter density ontology
and the flash ontology, leading to two different theories we shall denote GRWm and GRWH,
respectively, in the following. We recall their definitions in Sect. 2. It is known that GRWm
and GRWT are empirically equivalent, i.e., that they make exactly and always the same
empirical predictions [3]; we describe the reasons in Sect. 2.4, in fact more carefully than
in [3]. The first purpose of this paper is to derive what these predictions actually are. By
“empirical predictions” we mean those predictions that can be tested in experiment; we
will see that there are also predictions that cannot be so tested. The totality of all empirical
predictions of a theory we also call the empirical content of the theory.

While GRWm and GRWT are designed to imitate quantum mechanics, they have been
known since their inception to deviate from quantum mechanics, and a number of partic-
ular predictions differing from those of quantum mechanics have been identified [28, 40,
36, 31, 1] (for overviews of proposals to test GRW theories against quantum mechanics,
see [5, 1, 26]). Nonetheless, in practice the GRW theories tend to agree extremely well with
quantum mechanics: for small systems, collapses are too rare to be noticed, while the break-
down of macroscopic superpositions is hard to test because of decoherence (for explicit
figures about how closely GRW theories agree with quantum mechanics, see [7]). Thus, the
theorems we prove yield not precisely the axioms of quantum mechanics, but something
very close.

Is there a general scheme of predictions, or an algorithm for directly calculating the pre-
dictions, of the GRW theories, in particular where they differ from quantum mechanics? In
this paper, we answer this question in the positive and provide a formalism, which we call
the GRW formalism, summarizing the empirical predictions of the GRWm and GRWf theo-
ries. (Indeed, GRWm and GRWT give rise to the same formalism; they have to, because they
are empirically equivalent.) The GRW formalism is analogous to the quantum formalism
of orthodox quantum theory that describes the results of quantum experiments in terms of
operators as observables, spectral measures, and the like. The main difference between the
two formalisms lies in the relevant operators.

We make explicit the law of operators for both the quantum and the GRW formalism,
i.e., the law that determines which operators are associated with a given experiment. An
analysis of the general conditions under which the GRW predictions are close to the quantum
predictions is provided in Sect. 6.5.

In Sect. 8 we provide a formulation of both the quantum and the GRW formalism that
allows for collapse at random times, i.e., for collapse of the quantum state at the end of an
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experiment whose duration is determined not in advance but by the experiment itself. For
example, consider a two-stage experiment: in the first stage one waits for a detector to click
(and measures the time when it clicks), in the second stage, right afterwards, one conducts
some quantum measurement on the particle that triggered the detector; the application of the
formalism to the second stage requires that the quantum state of the particle gets collapsed
appropriately in the first stage.

Some questions that possess a unique answer in a GRW world cannot be answered by the
inhabitants of that world by means of any experiment. The following question is presumably
of this type: How many collapses occurred in a certain system during the time interval
[t1, 2,]? We discuss this topic in Sect. 10 and more deeply in a future work [16].

In Appendix F we describe a diagram notation well-suited for certain types of calcula-
tions that arise in this paper, concerning the time evolution of the density matrix of composite
systems.

An innovation of this paper, besides the formulation of the GRW formalism, concerns the
nature of the argument used in deriving it: the argument is based on the primitive ontology
of the theory.

1.1 A First Look at the GRW Formalism

The GRW formalism can be formulated in a way similar to the formalism of quantum me-
chanics using operators in Hilbert space. We will give the complete formulation in Sect. 6.
Put succinctly, the difference between the quantum and the GRW formalism is

different evolution, different operators.

“Different evolution” means that the unitary Schrodinger evolution is replaced by a master
equation for the density matrix p, (a Lindblad equation, or quantum dynamical semigroup):

. N
% = —[H.p+ ; / & x AP0, A ()2 = Nivpy. )
For readers who are not familiar with this type of equation, we note that the term — ’ﬁ [H, p/]
represents the unitary evolution, with H the Hamiltonian, while the further terms, the devia-
tion from the unitary evolution, have the effect that the evolution (1) transforms “pure states
into mixed states,” i.e., transform density matrices that are 1-dimensional projections into
ones that are not. Equation (1) holds for the density matrix p, corresponding to the prob-
ability distribution of the random GRW wave function ¥; arising from a fixed initial wave
function ¥;,. Concerning the notation, A > 0 is a constant, and the positive operators A (x)
are the collapse rate operators (see Sect. 2 for the definition).

“Different operators” means that “observables” are associated with different operators
than in quantum mechanics. This requires some explanation. A precise statement (which
forms a crucial part of the GRW formalism) is that with every experiment &, there is associ-
ated a positive-operator-valued measure (POVM) E(-) such that the probability distribution
of the random outcome Z of &, when performed on a system with density matrix p, is given
by

P(Z € B) =tr(pE(B)) (@)

for all sets B.! This statement, the main theorem about POVMs, is valid in quantum mechan-
ics as well as in GRW theories, but the POVM ECRY(.) associated with & in a GRWm or

Here P(Z € B) denotes the probability of the event Z € B; sets are always assumed to be measurable. The
notion of “POVM” is defined in Sect. 3.1.

@ Springer



S. Goldstein et al.

GRWTf world is different from the POVM E¥(.) associated with & in quantum mechanics.
We prove this statement in Sect. 4. However, we do not compute any specific operators for
specific experiments, but derive only an abstract and general characterization of ESRW(.).

When talking about every experiment, we mean that any possible future advances of
technology are included. The assumptions that define our concept of “experiment” are: it
involves a system (the object on which the experiment is performed) and an apparatus;
it is possible to consider the same experiment for different states of the system, whereas
changing the apparatus counts as considering a different experiment; at the time at which
the experiment begins, the system and the apparatus are not entangled.

Some colleagues that we have discussed this topic with have found it difficult to imagine
how GRW could lead to different operators. When speaking of different operators, we were
asked, does that mean that the momentum operator is no longer —i AV ? No, it does not mean
that. It means that, given any experiment in a quantum world, one can consider the same
experiment in a GRWm or GRWf world, and the statistics of the outcome of that experiment
are different from those in quantum mechanics—given by a different operator, or different
POVM. Which operator should be called the “momentum operator” remains a matter of
convention, and indeed there are reasons to call —i2V the “momentum operator” also in the
GRW theories.? Similarly, it might be convenient to say that the “position observable” is
the same in the GRW theories as in quantum mechanics, even though concrete experimental
designs for “measuring position” may lead to different outcome statistics than in quantum
mechanics.

We were also asked, when speaking of different operators, whether we refer to the
Heisenberg picture? No, we do not. The question means this: If the time evolution is not uni-
tary then the Heisenberg picture (or whatever replaces it for a master equation such as (1))
should attribute to all observables different operators than standard quantum mechanics. But
the “different operators” arise even in the Schrodinger picture: If the observation of the sys-
tem (i.e., the period of its interaction with the apparatus) begins at time s and ends at ¢, then
one is supposed, according to the GRW formalism, to evolve the system’s density matrix un-
til time s using (1) in the Schrodinger picture, and insert into the formula (2) the resulting o5,
corresponding to what one feeds into the apparatus.®

Maybe the reason why many physicists find it difficult to understand that the GRW for-
malism involves different operators arises from regarding the operators of quantum me-
chanics as something that came into the theory by means of a second postulate besides the
Schrodinger equation, the measurement postulate. From such a picture one might expect
that the measurement postulate should remain unchanged, and, hence, also the operators,
even when the Schrodinger equation is modified. The GRW perspective, however, forces us
to proceed differently since it contains no measurement postulate, and its predictions must

2Some “observables” of the quantum formalism—the momentum, angular momentum, and energy
operators—are the generators of symmetries of the theory, such as translation, rotation, and time transla-
tion invariance. By virtue of Noether’s theorem, then, they commute with the Hamiltonian. Since GRWm
and GRWH, too, are translation, rotation, and time translation invariant (if the interaction potential is), the
same self-adjoint operators occur here in the role of generators of symmetries (and commute with the Hamil-
tonian), even though a particular experiment that “measures,” in quantum mechanics, momentum, angular
momentum, or energy may, in the GRW formalism, be associated with different operators.

3But some connection with the Heisenberg picture exists indeed: keep in mind that the main theorem about
POVMs concerns any experiment &'; for example, & could consist of waiting for a while Ar and then “mea-
suring position.” Then, the quantum operator associated with & is the Heisenberg-evolved position operator,
0 & = e HALHe—IHAL anq the reader might well expect that in GRWm or GRWT there is a different oper-
ator (in fact, a POVM) associated with &.
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be derived instead from postulates about the primitive ontology. This makes it evident that
the measurement postulate and the Schrodinger equation actually never were independent,
and that the operators depend on the evolution law, for example because the experiment’s
outcome depends on the evolution law of the apparatus. The GRW perspective also forces us
to make precise what it means to say that a certain observable is associated with operator A.
We take it to mean that A encodes the outcome statistics, in the sense that the relevant exper-
iment has outcome statistics given by (2) with E(-) the spectral projection-valued measure
(PVM) of A.

The master equation (1), or very similar equations, also arise in the theory of decoher-
ence [46]. As a closely related fact, the GRW formalism would in principle also hold in
a hypothetical quantum world in which decoherence is inevitable and affects every system
in the same way, corresponding to (1). (In practice, of course, decoherence, due to inter-
action with the environment, cannot correspond to (1) in exactly the same way for every
system because different systems have different environments and interact with their en-
vironments in different ways.) Let us underline the difference between deriving the GRW
formalism from the quantum formalism together with the right dose of decoherence corre-
sponding to (1), and deriving it from GRWm or GRWf: A derivation starting from quantum
mechanics would assume statements about the outcomes of experiments (the measurement
postulate) to deduce other statements about the outcomes of experiments. When starting
from GRWm or GRWT{, in contrast, we assume statements about the primitive ontology, and
derive that, e.g., pointers point in certain directions.

It is an interesting side remark that Bohmian mechanics [13, 10] can be so modified as
to become empirically equivalent to GRWm and GRWT. This modified version is described
in [4] under the name “MBM.” Its empirical content is also summarized by the GRW formal-
ism. As a consequence, the empirical content of the GRW theories can as well be obtained
with a particle ontology, and is not limited to the flash and matter density ontologies.

1.2 Role of the Primitive Ontology

What is the connection between empirical predictions and primitive ontology (PO)? The PO
is described by the variables & giving the distribution of matter in space and time. Thus,
a statement like “the experiment & has the outcome z” should mean that the PO of the
apparatus indicates the value z. For example, if the apparatus displays the outcome by a
pointer pointing to a particular position on a scale, what it means for the outcome to be z
is that the matter of the pointer is, according to the PO, in the configuration corresponding
to z. Thus, the outcome Z is a function of the PO,

Z=¢(). S

Precursors of our treatment of the connection between predictions and PO can be found
in [8, 29, 41, 43, 15, 2, 3, 6], in some of which this connection was implicit, or hinted at,
or briefly mentioned. In Bohmian mechanics [13, 10], a similar connection between PO
and the empirical predictions was explicitly made in [24]; however, researchers working
on Bohmian mechanics have essentially always been aware of this connection—much in
contrast to those working on collapse theories, who tended to focus on the wave function
and forget about any PO.

The fact that GRWm and GRWfT have the same formalism, despite their difference in PO,
may suggest that the PO is not so relevant after all. That is true for practical applications
which require working out some predicted values, but not for the theoretical analysis of
GRW theories, for their logical structure, or for their definition, as the considerations in this
paper exemplify.
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1.3 Status of the Derivation

It may seem as if the GRW formalism were a rather trivial consequence of the master equa-
tion (1). So it is perhaps useful to make a list of what is nontrivial about our derivation of
the GRW formalism:

e It is not a priori clear that a GRW formalism should exist.

The existence of a GRW formalism had not been noticed for 20 years.

Since the predictions of GRWm and GRWfT deviate from those of quantum mechanics,
it is not obvious that they can be summarized by any small number of simple rules.
The derivation of the GRW formalism has a status similar to that of the quantum for-
malism from Bohmian mechanics (see, e.g., [24]), a result implying in particular that
there is no possibility of experimentally testing Bohmian mechanics against standard
quantum mechanics. If that claim is non-obvious (after all, some authors have claimed
the contrary), then so should be the GRW formalism.

The non-linearity of the GRW evolution of the wave function ¥, might have suggested
against the existence of a GRW formalism using linear operators. On the other hand,
the master equation (1) is linear in p;, a crucial fact for deriving the GRW formalism.
Still, this fact alone does not imply the GRW formalism.*

e Our assertion about the GRW formalism concerns the PO. In detail, it states that the
matter density function m (x, t) of GRWm and the set F of flashes in GRWfT are such that
macroscopic apparatuses display certain results with certain probabilities.

Our derivation of the GRW formalism is based on an analysis of the behavior of the
PO. Such an analysis was not done in [6, 7].

Our derivation applies to the matter density ontology and to the flash ontology. We do
not make claims for any other ontology.’

The defining laws of GRWm and GRWHT, unlike the ordinary axioms of quantum me-
chanics, do not refer to observations, but to the wave function and the PO. Thus, the
empirical predictions are not immediate from the defining laws of the theory but require
a derivation.

To the extent that it is not obvious how the PO variables (such as m(x,t) and F)
behave, it is not obvious how macroscopic apparatuses (built out of the elements of the
PO) behave.

It has often been noted that there are situations in which the PO variables (such as
m(x,t) and F) behave in an unexpected, surprising, or counter-intuitive way. (See,
e.g., [5, p. 347], [3, footn. 5].)

e Every physicist knows rules for what can be concluded about measurement results if the
wave function is such-and-such. These rules, however, cannot be used in the derivation
of the GRW formalism, partly because the GRW theories are not quantum mechanics,
and partly because it is the aim of the derivation (and of this paper) to deduce, and not to
presuppose, rules for the results of experiments.

Our derivation makes no use of the rules of standard quantum mechanics for predicting
results of experiments given the wave function.

4For example, we do not know of a way of deriving the GRW formalism from GRWm other than exploiting
the empirical equivalence to GRWTf (or MBM [4]), even though (1) is valid in GRWm.

SHowever, there are reasons why every reasonable ontology suitable for the stochastic GRW wave function
evolution law should lead to the same empirical predictions. Similarly, the empirical contents of CSLm, the
Continuous Spontaneous Localization theory [35, 27, 5] with the matter density ontology, or with any other
reasonable ontology, can presumably be summarized by a formalism very similar to the GRW formalism.
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— Our derivation makes no use of any customs of standard quantum mechanics for how
to interpret or use wave functions.

— In particular, operators as observables emerge from an analysis of the GRW theories,
they are not postulated; in fact, they are not even mentioned in the definition of the
GRW theories.

— Certain wave functions may easily suggest certain macro-states, but this does not mean
that the configuration of the PO looks like this macro-state. Our derivation makes no
use of such suggestive assumptions.

e As a consequence of our analysis, there are severe limitations on the epistemic access to
microscopic details of the PO variables m(x, t) or F. In other words, there are limitations
to the extent to which one can measure m(x,t) or F. This fact can be regarded as an
instance of surprising behavior of the PO (as mentioned above), and underlines that it is
not obvious which functions of the PO are observable.

The issue we mentioned in the last item of the list deserves more comment. It turns out
to be impossible to measure, with any reasonable microscopic accuracy, the matter density
m(x,t) in GRWm (or, presumably, the set F of flashes in GRWfY), unless information about
the wave function of the system is available. Limitations on the observers’ access to m(x, t)
were described before in [12]; we describe here several similar limitations. As a particular
example, one might wish to measure the number of collapses that occur in a certain sys-
tem (e.g., a tiny drop of water) during a chosen time interval, in analogy for example to the
measurement of the number of radioactive decay events in a sample of radioactive matter.
Heuristic considerations suggest, perhaps surprisingly, that it is impossible to measure the
number of collapses, with any accuracy and reliability better than what one could estimate
without any measurement at all. In other words, the precise number of collapses is empir-
ically undecidable, and thus GRWm and GRWf entail sharp limitations to knowledge. In
a GRWm or GRWT world, certain facts are kept secret from its inhabitants. Note that this
situation does not arise from anything like a conspiratorial character of the theory, but sim-
ply as a consequence of the defining equations; after all, we do not make postulates about
what can or cannot be measured but analyze the theory. Similar limitations to knowledge are
known for Bohmian mechanics, where for example it turns out to be impossible to measure
the (instantaneous) velocity of a particle [24, 25], unless information about the wave func-
tion is available; as another example, it turns out to be impossible to distinguish empirically
between certain different versions of Bohmian mechanics (see [30] for a discussion).

A question we do not address here is how to do scattering theory for GRW theories. But
we briefly state the problem. Normal quantum scattering theory (see, e.g., [21]) involves
limits + — oo, which would be inappropriate in GRW theories because one consequence
of GRW theories is long-run “universal warming,” since every collapse tends to increase
energy, as it makes the wave function narrower in the position representation and therefore
wider in the momentum representation. In the limit # — oo, scattered wave packets in a
GRW world would therefore always end up with infinite energy, and uniformly distributed
over all spatial directions. From a practical point of view, the time scale of free flight in
real scattering experiments (~ 1072 s) is much smaller than the time scale of universal
warming (~ 10" years [28, p. 481]), usually even much smaller than the time scale of
collapse (~ 10® years), but much larger than the time scale of the interaction process. Thus,
a simple and quite appropriate method of predicting the scattering cross section in a GRW
world is to take the limit + — oo for the unitary evolution, which is the dominant part of
the evolution of the wave function ¥, over the relevant time scale. But this is to ignore the
difference between the predictions of GRW theories and quantum mechanics for scattering
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theory, and the question remains how to compute GRW corrections to the quantum formulas
for scattering cross sections.

Finally, although the GRW formalism is valid for both GRWm and GRWHT, the status of
the derivation is very different for the two theories. While we derive the GRW formalism
as precise theorems from GRWf, we do not know of a similar derivation from GRWm. In
fact, the only way we know of to derive it for GRWm is by exploiting the empirical equiva-
lence with GRWT{, and the argument for the empirical equivalence is not as mathematical in
character as the derivation of the GRW formalism from GRWHT.

2 The GRWm and GRWf Theories

GRWm was essentially proposed by Ghirardi and co-workers [12] and Goldstein [29], and
taken up in [5, 2, 34, 15, 42, 3, 6, 7]. GRW{ was proposed by Bell in [8] and taken up in [11,
32,29, 41, 2, 34, 15, 43, 42, 3, 45]. For a detailed discussion of these two choices of PO
see [3]. Both GRWm and GRWT are non-relativistic theories. The relativistic GRWTf theory
proposed in [41] has a more complex mathematical structure than GRWT and is not covered
by the considerations in this paper. A discrete version of the flash ontology was proposed
for collapse theories on lattices by Dowker et al. [18-20].

2.1 The GRW Jump Process in Hilbert Space

In both GRWm and GRWf the evolution of the wave function follows, instead of the
Schrodinger equation, a stochastic jump process in Hilbert space, called the GRW process.
We shall summarize this process as follows.

Consider a quantum system of (what would normally be called) N “particles,” described
by a wave function ¥ =¥ (q,,...,qn),q; €R*, i =1,..., N.For any point x in R?, define
on the Hilbert space of the system the collapse rate operator

1 _@i-0?
2

Ai(x) = We 20,

“
where Q; is the position operator of “particle” i. Here o is a new constant of nature of order
1077 m.

Let ¥, be the initial wave function, i.e., the normalized wave function at some time %,
arbitrarily chosen as initial time. Then ¥ evolves in the following way:

1. It evolves unitarily, according to Schrodinger’s equation, until a random time 7} =
to + ATy, so that

Y, =Uan ¥y, (&)

where U, is the unitary operator U, = e~ " corresponding to the standard Hamiltonian

H governing the system, e.g., given, for N spinless particles, by

N hz
H=— — V24V, 6
2 g Vit ©
k=1
where my, k =1,..., N, are the masses of the particles, and V is the potential energy

function of the system. ATj is a random time distributed according to the exponential dis-
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tribution with rate NA (where the quantity A is another constant of nature of the theory,
of order 1071 s~ 1),

2. At time T it undergoes an instantaneous collapse with random center X; and random
label I, according to

A (X)),
Ur > Wp,=—>1—_~ "1 @)
! AL (X)) P |
I, is chosen at random in the set {1, ..., N} with uniform distribution. The center of the

collapse X is chosen randomly with probability distribution
. 2
P(X, edx|¥y,, I =i1) = (Wr | A, (x)|¥r,) dx) = ||Ai1(x1)1/2‘1’T1 || dx;. (8)

3. Then the algorithm is iterated: ¥y, evolves unitarily until a random time 7, = T +
AT,, where AT, is a random time (independent of AT)) distributed according to the
exponential distribution with rate N, and so on.

Thus, if, between time 7, and any time ¢ > #, n collapses have occurred at the times 7y <
T, <T, <---<T, <t, with centers Xy, ..., X, and labels I, ..., I,, the wave function at
time ¢ will be
_ L[to,l‘)(Fn) lI/,O
B ||L[t0,r)(Fn) lI/,O || '
where F, = (X1, Ty, 1), ..., (X,,T,, 1,)), and

(C))

t

Ly (Fu) = A2 NAM(=10)/2
x U,_t, Ay, (Xn)l/zUTrT

w1 Ay X)) PU, g o A (XD Up . (10)
(The scalar factor in the first line will be convenient for future use.) Since 7;, X;, I; and n
are random, ¥, is also random. We will also call ¥; the collapsed wave function, particularly
when in need to contrast it with the “uncollapsed” wave function U,_,, ¥, .

It should be observed that—unless £ is the initial time of the universe—also ¥, should
be regarded as random, being determined by the collapses that occurred at times earlier
than 7. However, given ¥, the statistics of the future evolution of the wave function is
completely determined; for example, the joint distribution of the first n collapses after 7,
with particle labels Iy,..., I, € {1,..., N}, is

P(Xl edx;, Tyedy, I, =1i,,...,X,edx,, T, €edt,, I, :inlwto)
L)W, | dxdty - - dx, dt,, (11)

where the symbol 1¢ is 1 if the condition C is satisfied and O otherwise, f, stands for
((x1,t1,81)5 ++ s (Xn, 1y, i), and

L(fn) — )\il/Ze—N)\(t,,—t())/Z
x Ay, (xn)l/zUtnftn_l Ai,l_l (xnfl)l/zUtn_l—tn_z s Ail (xl)l/zUtl —1g- (12)
The expression (12) equals [1{‘1}1 Liy.0y(fn), with Ly (f,,) defined in (10).

= 110<t] <<y

We have described the law for the evolution of the wave function. We now turn to the
primitive ontology (PO). In the subsections below we present two versions of the GRW
theory, based on two different choices of the PO, namely the matter density ontology (in
Sect. 2.2) and the flash ontology (in Sect. 2.3).

6pearle and Squires [36] have argued that A should be chosen differently for every “particle,” with A; propor-
tional to the mass m;.
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2.2 GRWm

In GRWm, the PO is given by a field: We have a variable m (x, t) for every point x € R* in
space and every time ¢ > t,, defined by

N
m(x,t) = Zmi /‘W dq---dqn 8(q; —x)|l1/,(q1, ...,qN)‘z. (13)
i=1 R’

In words, one starts with the |¥ |?>-distribution in configuration space R3V | then obtains
the marginal distribution of the i-th degree of freedom x; € R? by integrating out all other
variables x;, j # i, multiplies by the mass associated with x;, and sums over i. Alterna-
tively, (13) can be rewritten as

m(x, 1) = (¥ | A(x)|¥,) (14)

with A(x) =Y, m;8(0; — x).

The field m (-, t) is supposed to be understood as the density of matter in space at time .
GRWm is a theory about the behavior of matter with density m(-, ¢) in three-dimensional
space.

2.3 GRWf

According to GRWT, the PO is given by “events” in space-time called flashes, mathemati-
cally described by points in space-time. In GRWHI, histories of matter are not made of world
lines but of world points. The flashes form the set

F={X.T),.... X;. Tp). ...}
(with T} < T, < - -+), or, when we consider labeled flashes,
F= {(Xl’ Tl7 Il)a ) (st Tk’ Ik)v }

with I, € & = {1, ..., N}, the set of labels. We often find it convenient to write F as an
ordered set,

F=(X\.T.1),.... X, Ti. In), ..).

The GRWT law of the flashes asserts that there is a flash at the center (X, T') of every col-
lapse, with the appropriate label. Accordingly, Eq. (11) gives the joint distribution of the
first n flashes, after some initial time f.

Note that if the number N of the degrees of freedom in the wave function is large, as in
the case of a macroscopic object, the number of flashes is also large (if A = 107! s7! and
N = 10?3, we obtain a rate of 10® flashes per second). Therefore, for a reasonable choice of
the parameters of the GRWT theory, a cubic centimeter of solid matter contains more than
108 flashes per second. Such large collections of flashes can form macroscopic shapes, such
as tables and chairs. That is how we find an image of our world in GRWH{.

We should add that the mathematical scheme of GRWf that we have introduced here is
not the most general one possible. The flash rate operators A(x) do not have to be of the
form (4) but could be other positive operators [43], they could depend on time, A(x) =
A;(x), and they could even be allowed to depend on the previous flashes [45]. (The latter
case occurs in the relativistic GRWT theory presented in [41].) The considerations in this
paper are still valid if the A(x) are other positive operators than in (4) and if they depend on
time, but we do not consider the case in which they depend on the previous flashes. For the
sake of concreteness readers can simply take A(x) to be the multiplication operators (4).
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2.4 Empirical Equivalence

As already remarked, it is known that GRWf and GRWm are empirically equivalent, i.e.,
they make always and exactly the same predictions [3]. In other words, there is no conceiv-
able experiment (even those exploiting future advances in technology) that could distinguish
between GRWf and GRWm. This follows from the following even stronger statement: When
applying the flash ontology and the matter density ontology to the same wave function ¥
obtained from the GRW process, the two PO histories are macro-history equivalent, i.e., all
macroscopic facts come out the same way.

Let us elaborate on this statement. What we mean is to consider a realization of the GRW
jump process in Hilbert space as described in Sect. 2.1 (that is, ¥; for every ¢), and then
both the GRWm world and the GRWT world associated with this ¥, defined by m(x, t) as
in (13) for every ¢, respectively by putting a flash at the center of every collapse of ¥. What
we mean by macro-history equivalence is that the macroscopic world history is the same
in both worlds, including, e.g., the weather in a particular place at a particular time, lottery
numbers, and more generally the exact sequence of outcomes of any experiment. This is
more than empirical equivalence, as the latter requires not that all random events come out
the same way in two worlds, but only that the outcome statistics are the same. For example,
if the two theories provided different macroscopic histories which, however, are such that
one cannot conclude from an analysis of the macroscopic histories alone which one arose
from which of the theories, then the two theories would already be empirically equivalent.
Clearly, macro-history equivalence implies empirical equivalence.

For GRWf and GRWm, macro-history equivalence holds with overwhelming probabil-
ity. That is, although there do exist wave functions ¥ for which the macroscopic facts in
the GRWf world are different from those in the GRWm world, such wave functions are
extremely improbable for the GRW process.

Here is the argument. It suffices to consider a macroscopic amount of matter, which we
call the “pointer” (though it could also be, e.g., the shape of ink on paper), that can either
be in position 1 or position 2 at time ¢, and a wave function of the form ¥; = ¢, P + ¢, P>,
where @; is concentrated on configurations in which the pointer is in position i ; we assume
|®;i|l =1 and |¢;|?> + |c2|*> = 1. If, in GRWm, the matter of the pointer is in position 1, then
this means that m (1, t) > m(2, t); thus, |c;|? > |c2|?; thus, flashes occur at a much greater
rate at position 1 than at position 2; thus, with probability near 1, in GRW{ the matter is
also in position 1. To appreciate just how close to 1 this probability is, recall that, as a
consequence of the GRW process for ¥, it is overwhelmingly likely that either |c;|? or |c,|?
will become exorbitantly small within a fraction of a second (in realistic scenarios, smaller
than 10~'°" in 10~ seconds).”

2.5 Systems

Since we have not specified, in the definition of the GRW theories, which kinds of systems
the defining equations, such as (9) through (12), apply to, they a priori apply only to the

"Note also that, in the unlikely event that many flashes occur in position 2 between # and # + At and thus create
a discrepancy between the pointer position in GRWT and that in GRWm, the associated collapses would shrink
the size of ¢ to a considerable extent; so much indeed, if the number of flashes in position 2 is sufficient, that
ler(t + At)l2 is close to zero and |cp (¢ + At)l2 close to 1; as a consequence, m(1,t + At) K m(2,t + At).
That is, even in the unlikely event of a discrepancy, the discrepancy persists only for a limited time—the time
it takes the collapses centered at position 2 to make |c1 (f + At)|? small.
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universe as a whole. For any system, being a subsystem of the universe, equations of the
same kind may or may not apply, but there is no need, and indeed no room, for postulates
about this because the equations for the universe will determine what is true about any sub-
system. Hence, the wave function ¥ we were talking of is the wave function of the universe.
However, in our analysis of the empirical predictions of GRWm and GRWf{, we will have
to consider systems: the system corresponding to those instruments which comprise the ap-
paratus for the experiment and, most importantly, the system upon which the experiment is
performed. For this, it will be helpful to formalize the notion of system, as well as that of
the wave function of a system.

To begin to approach such a notion, note that usually a system corresponds to some of
the “configuration variables” in the wave function,

lI/:lp(q):lp(qsym Qenv)v (15)

where g = (g1, ..., qy) is the configuration variable of the universe, gy that of the sys-
tem, and geny that of its environment (the rest of the world); defining a system amounts to
splitting the universe into two parts, the system and its environment. For example, g,s may
correspond to a certain collection of “particle variables”, say

QSys:(qlaquM) and qenv:(qM+ls~~~an)~ (16)

Since for the GRW theories, the configuration variables do not play a fundamental role,
our mathematical definition of “system” is formulated in different terms, namely in terms of
the Hilbert space and of the primitive ontology.

For our purposes, a system is defined by two ingredients:

o A splitting of Hilbert space according to
%zf%ys@%nw (17)

For example, such a splitting is provided by (15) according to J%s = Lz(qsys), Iy =
L?(@eny), and 37 = L%(q).
e A splitting of the PO; this means, in GRWHT, a splitting of the flashes according to

F=FsysUFenV, FsysmFenv=®v (18)
or, in GRWm, a splitting of the matter density according to
m(xat):msys(xst)+menv(xvt)~ (19)

In both GRWTf and GRWm, we assume that the splitting is defined either through a subset
Liys © 2 of the set of labels (corresponding to different types of flashes/collapses), or
through a region Ry, € R? in space, or a combination of both: In GRWH, a flash belongs to
Fys if and only if it occurs in Ry, and its label belongs to Zys; Feny := F \ Fyys. In GRWm,
My is the contribution to m(x, t) from labels in %y at locations in Ryys:

2
s

Msys (X, 1) = Leery, Z m; /RW dgy ---dqy 8(g; — x)| ¥ (g1 ... qn) (20)

i€ Lsys

and meny = m — mgys. We now define the splitting (17) of Hilbert space in terms of %y, and
Rsys. For labeled particles, we use that 7% = ji”gws ® Fqp\ 2., When using a region
Rgys C R? of physical space for defining the system, it is best to use Fock spaces (i.e., Hilbert
spaces for a variable number of particles) instead of L?(R3V) because, for configurations
(g1, --.,4x), the number of points g; that lie in Ry, varies with the locations of the g;;
a natural extension of the GRW theories to Fock spaces was described in [43]. Let 52 (S) be
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the fermionic or bosonic Fock space over L2(S). The splitting (17) arises from the fact that
if both Ry and R \ R,y have positive volume then 52 (R?) = 5 (Ryys) ® F (R \ Ryys).

The set Fys C F of the system’s flashes may happen to be empty, but even in that case
the definition of the system in terms of ., and Ry, will be useful. In the example of (16),
Lys =1{1,..., M}, while Ry, = R3? does not play a role. The example provided by (15)
suggests that everything that could be considered a system in orthodox quantum mechanics
also defines a system in the sense of our definition.

We say that the system has wave function Vs if the wave function of the universe fac-

torizes according to

V= 1psys ® Veny 2

with Y5 € Fys and Yeny € I, . Since it follows that not every system has a wave function
at every time, it will also be useful to say that the system has reduced density matrix pgys if

Psys = treny |l[/) (‘Ill (22)

with tre,, the partial trace over J%,,.

We call a system a GRW system if it has an autonomous GRW dynamics, i.e., if it behaves
as if it were alone in the universe. We postpone the exact definition of what that means to
Sect. 7.1.2; there we will also show that a system is a GRW system if and only if it does not
interact with its environment.

3 Mathematical Tools

Let S(5%°) denote the unit sphere in Hilbert space,
S ={y e |y =1} (23)

3.1 POVM

Recall that, while many quantum experiments are associated with self-adjoint operators,
this is not the most general case, which corresponds to positive-operator-valued measures
(POVMs, also known as “generalized observables”; see [17] and Sect. 4 of [24] for an in-
troduction). We recall that a POVM on the set §2 acting on F€ is a mapping

E:A— L() (24)

from a o-algebra A over §2 (the family of all subsets of §2 regarded as “measurable”) to
the space of bounded operators on the Hilbert space 5¢°, with the properties that (i) E(B)
is a positive self-adjoint operator for every B € A, (ii) E(£2) = I, the identity operator, and
(iii) E(-) is o-additive, i.e., for pairwise disjoint By, B, ... € A

E(U&) =) E(By, (25)
k=1 k=1

with the infinite sum understood as the weak limit n — oo of ZZ:1 E(By). (All subsets
and functions we consider will be assumed to be measurable with respect to the relevant
o-algebras. A positive operator S with § < [ is also called an effect in the literature [33],
and a POVM also an effect-valued measure.) By virtue of the spectral theorem, the self-
adjoint operators correspond to special POVMs, the projection-valued measures (PVMs) on
the real line. In many cases relevant to us, 2 will be a finite or countable set; in that case,
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the POVM is determined by the operators associated with singleton sets, E, = E({w}),
according to

E(B)=Y E,, (26)

weB

and any collection of positive operators (E,)yes such that

Z E,=1 (27

defines a POVM. We will thus often identify the POVM with the collection (E,,),cg-
The following two very simple observations about POVMs will be used in the course of
this paper:

Function Property If the distribution of the random variable X depends on a system’s
wave function W via a POVM D(-), P(X € A) = (Y |D(A)|v¥), and if the random variable
Y is a function of X, Y = f(X), then the distribution of Y is also given by a POVM:

P(Y € B) = (Y|E(B)|y) with E(B)=D(f~'(B)). (28)
Reduction Property If D(-) is a POVM on 2 acting on €, @ 5, and if ¢ € 7 has
¢l =1, then
(Y ®@9IDB)|IY ® ¢) = (VIE(B)|Y) V¢ €4, (29)
where the partial scalar product
E(B) = {(¢|D(B)|¢) (30)

defines a POVM E(-) on §2 acting on F€]. Likewise, if D(-) is as before and p, a density
matrix on 5 then the partial trace

E(B) =tn,([I; ® p2]1D(B)), 31)
defines a POVM E(-) on §2 acting on F€.

3.2 The Distribution of the Flashes

In GRWH, the joint distribution of all flashes, as a functional of the initial wave function ¥,
is given by a POVM G (), called the history POVM. Let us elaborate on this statement.

Reformulating (11), the joint distribution of the first n flashes is given by a POVM G, (+)
on

2y ={fi=(C1. 11,00, ..., Gus 1y i) € (R? X [19,00) x )" 1y < -+ <1,} (32)

(where R? represents space, [fy, 00) time, and .Z is the set of labels),

P(F, €df,) = (W, |G (df)|¥) (33)
with df, =dx, dt, - - - dx, dt, a “volume element” around f, € £2, C (R? x R x .Z)" and
G.(df,) =L"(f)L(fu) dfn, (34)

where L(f,) was defined in (12) and L* denotes the adjoint of L. To put (34) differently,
for any measurable set B C £2,,,

G(B) = f dfy L (fOL(f). 35)
B
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where the measure used is the (Lebesgue) volume measure on each of the N 4n-
dimensional sheets of 2, (i.e., integration over B may include summation over labels
i1,...,0y). It is easy to convince oneself that G,(-) is a POVM; see [45] for a rigorous
proof.

It is no surprise now that also the joint distribution of all flashes is given by a POVM
G(-); see [44] for a rigorous proof. The space on which G(-) lives is the set £2;, ) of all
countable sequences (X, t,, i,), in R3 x [ty, 00) x & with increasing times, #, < t,41, and
lim, 7, = oo.

Now consider Fy,, ), the sequence of flashes during the time interval [ty, t) with f) <
t < 00. Since Fyy, ) trivially is a function of F, the sequence of all flashes, by the function
property (28) its distribution is given by a POVM Gy, ,)(-) on the space of all histories of
flashes in the time interval [f, ). Since Fy, ;) is almost surely finite, Gy, ;) (-) is concen-
trated on the set §2y,, ;) of all finite sequences in R3 x [ty, t) x &£ with increasing times. Put
differently,

o0
Q[’W) = U 'er;(),t) (36)

n=0

with sectors
[’;OJ) = {((-xla I, il)v ey (-xna [ in)) € (R3 X [t(), t) X z)n: nH<---< tn}. (37)
We can specify Gy, () explicitly:

G (B) = / df Ly o (F Lo () (38)
B

with df the Lebesgue measure on £2y, ), defined as being the Lebesgue measure on each
sector 27, C (R3 xR x .£)" as in (35).

Finally, we note for later use that there is a natural identification i : £2y;, ;) —> $2p,.1p) X
4y,1) for 1y <t < 13 < 0o: Every pattern fj;, ,) of flashes during [#, t3) defines a pair
(fir1.12)» fin.13)) consisting of a pattern fj, ;,) during [#;, 12) and a pattern fi;, ., during [t,, #3).

This mapping is bijective and for 3 < 0o measure-preserving, so

df[tl,l3) = df[tlth)df[[Z’[3)' (39

As here, we shall often make this identification without explicit use of the symbol i.
3.3 The Conditional Probability Formula

Set, for the ease of notation, #y = 0. A simple and important consequence of the distribution
law (11) of the flashes is the conditional probability formula, which asserts that, for 0 < s <
t <ooandany B C £,

Py, (Fis.i) € Bl Fo.5) =Py (Fis 1) € B). (40)

Here, Py, means the distribution obtained starting from the wave function ¥, and IP’E,;? the
one obtained starting from ¥, at time s. Note that the dependence on Fj ) of the right
hand side is through ¥, which is a function of Fjg ). In words, the conditional probability
formula asserts that the conditional distribution of the flashes after time s, given the flashes
before s, coincides with the distribution obtained from starting the universe at time s with
wave function ¥;.

This formula is the ultimate reason why it is natural in GRWfT to regard the collapsed
(GRW) wave function ¥, as the wave function at time s: because the distribution of the
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future flashes after s (given that the past was what it was) agrees with the distribution arising
from ¥ as the initial wave function at time s.

An algebraic-analytic derivation of the conditional probability formula can be found in
Appendix A. Alternatively, the conditional probability formula follows from the Markov
property of the stochastic GRW process ¥;, defined by

Py, (E|¥y = yo¥s' €10, 51) =P (E) (41)

for every event E concerning only the future of ¥, after time s. For example, E could be the
event (¥,,...,¥,) € B fors <t <--- < t;. The Markov property means that the process
is memoryless. That the GRW process has the Markov property is more or less clear from its
definition. To see how the conditional probability formula follows, note first that the history
of the wave function between O and s is determined by (and, conversely, determines) the
flashes between 0 and s, so that conditioning on ¥y = Vs’ € [0, s] amounts to the same
thing as conditioning on Fjg5) = fjo,s). Similarly, the future history of the wave function is
in one-to-one correspondence with the future flashes, so that (40) follows.

4 How Operators Emerge

We will formulate and derive the GRW formalism in Sect. 6. At this stage, we can already
understand, in a particularly easy way, how operators emerge from GRWHI, and that is why
we present this aspect first.

We give a simple derivation for the main theorem about POVMs in GRWY, i.e., for the
fact that in GRWH, as in quantum mechanics, there is a POVM E(-) for every experiment,
so that the probability distribution of the outcome of the experiment, when performed on a
system with wave function ¥, is given by (¥ |E(-)|¥). To appreciate the substance of this
derivation it is relevant to realize that the definition of GRWT did not mention operators as
observables. Thus, operators as observables were not put in, they come out by themselves.

Many physicists find such a situation hard to imagine, and that is why this point deserves
a separate section. Many physicists are used to thinking that the central role of operators
in quantum theory, particularly in view of their non-commutativity, constitutes a crucial
departure from classical physics, and, even more, from any kind of theory describing an
objective reality, or any kind of theory that can be understood as clearly as a classical theory.
According to this widespread view, the non-commutativity of operators entails that reality
itself is paradoxical and will forever remain incomprehensible to us mortals. This view is
often connected to the key word “complementarity.” But the same non-commuting operators
appear in GRWT, a theory describing an objective reality which indeed allows as clear an
understanding as a classical theory!

This is not so surprising since the same can be said of Bohmian mechanics (see, e.g.,
[10, 24]), and since it has been clear for 20 years that GRW theories make almost the same
predictions as quantum mechanics [28, 8]. Nonetheless, it is worthwhile to get a good grasp
of how exactly this can be so, how non-commuting operators can emerge from a theory
describing non-paradoxical reality.

Here is the derivation. Recall from Sect. 3.2 that the joint distribution of all flashes after
time ¢ is given by a POVM G (-) = G; ) (-) on the appropriate space §2; « of flash histories
and the wave function of the universe ¥, at time 7. Let ¢ be the time at which the experiment
begins. Consider splitting the universe into a system (the object of the experiment), the
apparatus of the experiment, and the rest of the world. It so happens that for the argument
that follows, the division between apparatus and the rest of the world is irrelevant, so we
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put the two together and call them the environment (of the system). The division between
the system and its environment corresponds to a splitting of the Hilbert space into 5% =
%ys ® oy the splitting F = Fy U Fepy of the flashes is not needed in this section. We
assume independence between the system and the environment immediately before 7, so
that®

Y=y ®9. (42)

Here ¢ is fixed, being part of the characterization of the experiment, while v, the initial
wave function of the system upon which the experiment is performed, is allowed to vary in
the system Hilbert space J%,,. The outcome Z of the experiment is a function of the pattern
F of flashes after time ¢,

Z=¢(F) (43)

with ¢ @ 2 00) > 2, where & is the value space of the experiment. That is so because the
flashes define where the pointers point, and what the shape of the ink on a sheet of paper is.
(It would even be realistic to assume that Z depends only on the flashes of the apparatus,
but this restriction is not needed for the further argument.) Therefore, the distribution of the
random outcome Z is given by

P(ZeB)=P(Fe¢™'(B) = (WG ot ' (B)W) = (V|EB)lY) VYBC Z, (44)

where the first scalar product is taken in the Hilbert space of the universe and the second in
the Hilbert space of the system (i.e., the object of the experiment), and E(-) is the POVM
given by

E(B)=(¢|Go¢ '(B)l¢) VBC Z, (45)

where the scalar product is a partial scalar product in the Hilbert space of the environment.
Thus, for every experiment in GRWT the distribution of outcomes is given by a POVM E (-)
on %, which is what we wanted to show.

At this point, we would like to go through the derivation again, carefully keeping track
of the ingredients in the argument:

e The distribution of flashes in GRWf is given by a POVM G (+). In more detail:
— G(-) is a POVM on the total Hilbert space J2 = Sy @ 2y, Where Sy is the
Hilbert space of the system and 522, that of its environment, including the apparatus.
— What we really want is, of course, the conditional distribution of the flashes, given
what happened up to the time ¢+ when the experiment begins. By the conditional prob-
ability formula (40), this distribution is (¥;| Gy, (-)|¥;) with ¥, the (collapsed) wave
function at time 7.

8Readers may worry that the factorization condition (42) never holds because of the symmetrization postulate:
As soon as both the system and the apparatus contain electrons, the wave function has to be anti-symmetric
in the electron variables ¢;, which conflicts with (42) if the latter is based on a splitting as in (16), group-
ing some variables g; together as “system variables” and others as “environment variables.” The answer is,
(42) can hold nevertheless, as follows: For identical particles, the indices of the variables g1, ..., gy are mere
mathematical labels, and the splitting into system and environment should not be based on these unphysical
labels but instead on regions of space. Indeed, as mentioned already, if Rgys € R3isa region of space such
that both Rgys and R3 \ Rsys have positive volume then H(R3) = FE (Rsys) ® S[R3\ Rsys), where J2(S)
is the fermionic (or bosonic) Fock space over L2(S). Since a fermionic wave function can be represented by
a vector ¥ € 7 (R3), it can indeed factorize in the splitting based on Rgys.
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e The outcome Z of an experiment in a GRWf world must be a function of the flashes
(usually, just of the flashes belonging to some apparatus), Z = ¢ (F).

e By the function property (28) of POVMs, the distribution of the outcome is also given by
aPOVM on 2.

e Consider a particular setting of the experiment, as encoded in ¢ € %,y; ask for the de-
pendence of the distribution of the outcome Z on the wave function ¢ € J% of the
object. In particular, assume factorization, ¥; = ¥ ® ¢.

e By the reduction property (30) of POVMs, the distribution of Z as a function of ¢ is
given by a POVM E () on J&y;.

We close this section with a few remarks:

1. The POVMs corresponding to different experiments may well, and typically will, not
commute. Even the single POVM E (-) may be non-commuting, in the sense that E(B;)
does not commute with E(B,) for suitable sets By, B, € Z. The simple derivation
above, just a few lines long, shows how non-commuting operators can emerge from
a picture of reality (a random set of flashes) that is completely coherent, clear, easy-
to-understand, complementarity-free, and paradox-free. Why do different experiments
correspond to different POVMs? Because they correspond to different choices of the in-
teraction Hamiltonian between the system and the apparatus, as well as different choices
of ¢.0

2. Since we know that the predictions of GRWf and GRWm are very close to those of quan-
tum mechanics for all presently feasible experiments, for these experiments the POVM
E(-) = ES®V(.) should be very close to E(-), the POVM predicted by quantum me-
chanics. For a principled consideration see Sect. 6.5.

3. We called the result of our reasoning the “main theorem about POVMs” in GRWH{. Let
us be explicit about the mathematical theorem that is involved here. It was formulated
before as Theorem 8 in [45] and asserts the following:

Let 7€ = 7y, ® Fy be a separable Hilbert space, G(-) a POVM on a measurable
space (£2, Ag) acting on F€, ¢ afixed vector in Fapy with ||¢p|| =1, and ¢ : (2, Ag) —
(Z, Az) a measurable function. For every W € F&ys with Y|l =1, let ¥, = ® ¢,
let F be a random element in $2 with distribution (¥;|G (-)|¥,), and let Z = ¢ (F). Then
there is a POVM E(-) on (&, A%) acting on F&ys so that the distribution of Z is
(VIEOIY).

The proof of this theorem is a straightforward application of the function property (28)
and the reduction property (30) of POVMSs. What is important for us here is to appreciate
the relevance of this theorem as the appropriate mathematical formalization in GRWTf of
the physical statement that with every experiment &, there is associated a POVM E (-)
such that the probability distribution of the random outcome Z of &, when performed on
a system with wave function \r, is given by P(Z € B) = (V' |E(B)|v¥).

4. If the wave function ¢ of the environment were not fixed but random, we would still
end up with a POVM, as long as ¢ is independent of i (at least conditionally on all
information available to us about the experimental setup): we would have to replace (45)
by

E(B)=/M(d¢)(¢IGOC"(B)I¢>, (46)

with p the distribution of ¢.

9From the point of view of the entire universe, from which the Hamiltonian may be regarded as fixed once
and for all, the relevant choice would lie only in that of ¢.
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5. The reader may find it confusing that part of the characterization of the experiment was
the specification of ¢, the wave function of the system’s environment: After all, it will
be practically impossible to repeat the experiment with the same ¢, as ¢ comprises ev-
erything outside the system; for example, when we try to repeat the experiment at a later
time, the moons of Jupiter will have moved, and the state of the lab will have changed
as it will contain records of the previous experiment. So for practical purposes it is im-
portant that E(-) as given by (45) does not depend on all details of ¢, but only on a few
features of ¢ that we can control—and thus repeat. Mathematically, however, (45) pro-
vides the correct POVM, and (44) the correct distribution, regardless of whether we are
able to evaluate or control this expression.

6. Note that the derivation did not assume any pre-determined time at which the experiment
is over. It allows that the time at which the outcome Z can be read off depends on Z itself,
a situation that occurs, e.g., in a time-of-arrival measurement, with Z the time when a
detector clicks.

7. What if factorization ¥, = ¢ ® ¢ is not exactly satisfied, but only approximately? Then
the probability distribution of the outcome Z is still approximately given by (| E(-)|¥).
More precisely, suppose that, instead of (42),

U=cy ® ¢+ AY, (47)

where |[AY|| < 1, |¥] = |l¢ll =1, and ¢ = /1 — || AW ||? (which is close to 1). Then
for any B € 2,'°

|P(Z € B) = (WIEB)|Y)| <3IA¥]. (43)

This estimate conveys that the relevant measure for quantifying the size of the deviation
from perfect factorization is the L? norm of the deviation AY.

8. We do not know of a similar derivation of the main theorem about POVMs from GRWm,
mainly because the probability distribution of the random function m(-, t) is not given
by a POVM. Nevertheless a derivation from GRWm has been given in [6], however one
that is rather different in character: It requires great effort and yields a limited result, as it
assumes a special, idealized type of experiment and, since it allows for small errors in the
outcome statistics, does not show that the outcome statistics is exactly given by a POVM.

5 The Quantum Formalism

Before we formulate the GRW formalism, we formulate for comparison the standard quan-
tum formalism in the way relevant to us. We begin with the simplified version that one learns
in beginner’s courses and that suffices for many applications.

The Simplified Quantum Formalism

e A system isolated from its environment has at every time ¢ a density matrix p, which
evolves according to the unitary Schrodinger evolution,

d i
% = —~[Hys. Pl (49)

10T see this, write P(Z € B) as (¥r|G o g_l(B)\lI/,); insert (47); use 0 < G o {_I(B) < I to bound the
term quadratic in AY by ||[AY Hz; use the Cauchy—Schwarz inequality and |c| < 1 to bound the cross terms

by 2||A¥||; use that 1 — |c\2 = ||A11/||2; in total, by the triangle inequality, obtain the bound 2||A¥ ||(1 +
|A¥]) < 3||AW| provided |AW|| < 1/2.
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o With suitable experiments & there is associated a self-adjoint operator A on %y, (called
the “observable”) with pure point spectrum; let its spectral decomposition be

A=) zP, (50)

with P, the projection to the eigenspace with eigenvalue z. When the experiment & is
performed on a system with density matrix p, the outcome Z is random with probability
distribution

P(Z =z) =tr(P.p). 5D
e In case Z = z, the density matrix immediately after the experiment is
P.pP
o = Pl (52)
tr(P,p)

The last rule contains the standard kind of collapse of the wave function, induced by “the
observer.”

We will need a more general formulation since the above formalism applies only to a
narrow class of experiments, usually called “ideal measurements.” And for this we will need
some more mathematical notions.

5.1 Mathematical Tool: Completely Positive Superoperators

We recall that the trace class TRCL(FZ) is (roughly speaking) the space of all operators
with finite trace. It contains in particular the density matrices.

By a superoperator we mean a C-linear mapping ¢ : TRCL(5¢) — TRCL(78). A su-
peroperator € is called completely positive if for every integer k > 1 and every positive
operator p € C*** @ TRCL(5%), (I; ® €)(p) is positive, where I, denotes the identity
operator on C**¥ [14, 33]. (Completely positive superoperators are also often called com-
pletely positive maps. If for every density matrix p, tr € (p) <1 (as will be the case for
all superoperators that we consider in this paper) then % is also called a quantum opera-
tion [33].)

Completely positive superoperators arise as a description of how a density matrix
changes under the collapse caused by an experiment: If p is the density matrix before the
collapse, then € (p)/tr € (p) is the density matrix afterwards. The simplest example of a
completely positive superoperator is

€ (p) = PpP, (53)

where P is a projection. Note that for a density matrix p, € (p) is not, in general, a density
matrix because completely positive superoperators do not, in general, preserve the trace.

In order to establish the complete positivity of a given superoperator, the following
facts are useful: If p, is a density matrix on 5% then the mapping € : TRCL(J4]) —
TRCL(54 ® ) given by € (p) = p ® p, is completely positive. Conversely, the partial
trace p > trp p is a completely positive superoperator TRCL(5€ ® 4) — TRCL(54).
For any bounded operator R : 54 — %, p — RpR* is a completely positive superopera-
tor TRCL(54]) — TRCL(5%), where R* : 56, — F2 is the adjoint of R. The composition
of completely positive superoperators is completely positive. Positive multiples of a com-
pletely positive superoperator are completely positive. Finally, when a family of completely
positive superoperators is summed or integrated over, the result is completely positive. In-
deed, these rules suffice for all cases we will encounter in this paper.
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For example, the master equation (1) of the GRW evolution has the property that the so-
lution p, as a function of the initial datum p, is given by a completely positive superoperator
Fo.n» Pr = Fo.npo (and, in fact, Ao ) is trace-preserving).

A canonical form of completely positive superoperators is provided by the theorem
of Choi and Kraus [14, 33] (also sometimes connected with the name of Stinespring),
which asserts that for every bounded completely positive superoperator € : TRCL(F€) —
TRCL(5%) there exist bounded operators R; : 761 — 5 so that

C(p)=) RipR!, (54)
ied
where Z is a finite or countable index set.

Another remark concerns notation. Since superoperators are mappings, it is standard to
write the composition of superoperators of, 9B as (& o B)(p) = A (ZB(p)). For some
calculations involving the composition of many superoperators acting on product spaces
JA Q- - - ® I, the standard notation gets cumbersome; for these cases, we propose a more
transparent notation using diagrams in Appendix F.

5.2 The Formalism

We are now prepared for formulating the quantum formalism in greater generality. Without
an essential loss of generality, we only consider experiments with discrete value space %,
i.e., experiments for which the set 2 of possible outcomes is finite or countable. The reason
why this is essentially no restriction is that every experiment in practice has limited accu-
racy, and indeed only a finite number of possible outcomes. Nevertheless it is sometimes
convenient to consider a continuous variable z, and indeed, as far as the main theorem about
POVMs, or (55), is concerned, we can allow Z to be any measurable space (i.e., set with
a o -algebra), including the possibility of a continuous variable z. However, when trying to
formulate the collapse rule (57) for a continuous variable z, difficulties arise that lie outside
the scope of this paper.

The Quantum Formalism

e A system isolated from its environment has at every time ¢ a density matrix p, which
evolves according to the unitary Schrodinger evolution (49).

e With every experiment & with discrete value space %, beginning at time s and ending
at time ¢, there is associated a POVM (FE ?u)ze 2 on Z acting on J%,,,. When the experi-
ment & is performed on a system with density matrix py, the outcome Z is random with
probability distribution

P(Z =2z) =tr(p,EQ"). (55)

e With & is further associated a family (CKZQu)ZE 2 of completely positive superoperators
acting on TRCL(5%s) with the compatibility property that, for all trace class operators p,

tr(pE) = tr €2 (p). (56)

In case Z = z, the density matrix of the system at time ¢ (immediately after the experi-
ment) is
2 (py)

—p = P (57)
P T % ()
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Since readers may not be familiar with this formulation of the quantum formalism, we
elucidate it a bit in the following subsections. We begin with a remark.

The assumption that the experiment is over at a fixed time ¢ is not in all practical cases
satisfied, for example when the experiment measures the time at which a detector clicks. To
keep this discussion simple, we postpone the discussion of experiments whose duration is
random (i.e., decided upon by the experiment itself) to Sect. 8.

5.3 First Example

To begin with, the simplified quantum formalism is contained in the full quantum formalism
in the following way: Let & be the spectrum of the self-adjoint operator A (a finite or
countable set since we assume pure point spectrum), EQ'(-) the spectral PVM of A,

EQ' =P, (58)
and
€2 (p) = P.pP: (59)
for every operator p in the trace class. Then, the compatibility property (56) is satisfied since
tr(pES“) =tr(pP,) =tr(P,pP,) = tr‘tg”zQ“(p).

Equations (55) and (57) reduce to (51) and (52).

In general, the set 2 need not be a subset of R. For example, an element of 2—an
outcome of the experiment—could be a list of numbers (£ C R"), or simply a name like
“up” or “down.”

5.4 Compatibility Between Superoperators and POVM

Using the Choi—Kraus theorem
%.(0)= Y _ R.ipR:, (60)
i€ d;

(where we have dropped the superscript “Qu” for ease of notation), we can show that the
POVM E(-) associated with & is completely determined by the (%,).c 2 according to

E.=) RiR.. (61)
ie ¥,
To see this, note that the compatibility property (56) implies, with (60), that
tr(p E) =tr€,(p) =tr Y RypR;=tr Y pR}R;. (62)
ied; i€ g,

This can hold for all trace class operators p only if (61) holds. Moreover, it follows from (56)
by summing over all z € 2 that ) __ . €, is trace-preserving.

Conversely, suppose the (%) ¢ » are given and that the superoperator ) . _,, €. is trace-
preserving. Then (61) defines a POVM E(-) satisfying (56): R}; R;; is a positive operator,
and E (%) = I because, for every vector ¥ in Hilbert space,

(WIE(Z)Y) =tr(|w><w| > ZR;RZ,) =Y Y uw(Ral¥)(WIR)
€ i € i
=t Y C(v)l) =w(lv)wl) = v

€¥

@ Springer



The Quantum Formalism and the GRW Formalism

To see that (56) holds, note that

w(pE) = Y w(pR;Ry) = ) t(RupR%) =, (p).

ied; i€ ¥,
5.5 Another Example: Two Consecutive Experiments

Here is an example illustrating how the POVM E(-) and the superoperators %, arise, and
how to do calculations with them. Suppose we carry out two experiments & and &, in a row
on the same system with a lapse of ¢ time units in between, and regard the entire procedure
as one experiment & whose outcome Z is given by the pair (Z;, Z,) of outcomes of &
and &,. Suppose we know the POVMs E; ;, and E, ., (for ease of notation, we drop the
superscript “Qu”) as well as the superoperators € ;, and 6> ,, and want to determine the
POVM E. = E,, .,) and the superoperators 6, = 6., .,) corresponding to & . For example,
&1 and &, could be ideal measurements as described in the simplified quantum formalism.
We will see that in that case & is (in general) not itself an ideal measurement, and E(-) is a
proper POVM (i.e., not a PVM).

The value space of & is Z& = 2 x Z5. The joint distribution of Z; and Z,, if the system
starts with density matrix p, is

P(Zi=z1,2,=2)=P(Z =20)P(Zy =2:|Z) =z1)

61,z (P) Ht/h
Ztl‘(pEL_ )tr<elet/ﬁ71 i t/7E2
“ tr €.z ()

[using the compatibility property (56)]
— tr(e—th/h(gl,Z] (P)eth/hELzZ)
[using the Choi-Kraus theorem for € ., |

_UA(eilHl/hZRl i PR} 2150 LHI/hEZ.zz)

1

- tr(,o > RT,ZIYieth/hEz’zze*th/th.Zlqi)
i

= tr(pE(Zl,Zz)) (63)
with
Eqio= ZRI 29,0 lHt/hEZ,zze_iH[/th,mJ' (64)

Note that this expression defines a POVM, since each summand is a positive operator and
E(Zh x 25) =1

ZZE(’ o= ZZRI o lHI/ﬁZEZZZ eiiH[/th,zl,i

;,_/
_ZZRlzllRldl_ZElZl_I

In case & and &, are ideal measurements, the formula (64) reduces to

Eqy o = Pio @ py e 0Py (65)
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If P ;, commutes with e'#/" P, _ e~iH!/" (equivalently, if the self-adjoint operators A; and
e ft/h A, e~ /R commute) then E(zy, z») is itself a projection, and E(-) is a PVM, but in
general it is not.

The final density matrix after & is completed, given that the outcomes were Z; = z; and
Z2 =12, is

C€2,22 (e—th/hpleth/h) _ %2’12 (e—th/ﬁcgl,Zl (p)eth/h)

"=p= - - = - - . 66
P =m tr G, (e Hihp e HITRY ~ tr 6, (e HIME, , (p)etHt/h) (66)
That is, the superoperators corresponding to & are given by the composition law
Clerin (p) = Crzy (71" C1 2, (0) ), ©7)

which is completely positive as a composition of three completely positive superoperators:
%), the unitary evolution, and 65 .,. If & and &, are ideal measurements, so that € ;,
and 6, ., are of the form (59), then

Ceron(P) = Poye P p Py TP, (68)
which is not itself of the form (59), unless t = 0 and P, ;, commutes with P, .,. This exem-
plifies how € can be different from (59).

5.6 The Law of Operators

How does one know which POVM (EZQ”)Ze 2 and which family (%”ZQ”)ZEQ» of superoper-
ators should be associated with &? In practice, this is part of the working knowledge, and
it is sometimes obtained by trial and error, or by symmetry arguments, or other methods of
guessing. It is also often suggested by “quantization rules,” but we prefer here a rule that is
generally valid (and does not appeal to classical physics).

The Quantum Law of Operators

e Suppose we are given the density matrix p,,, for the ready state of the apparatus, its
Hamiltonian H,p,, and the interaction Hamiltonian H;. Let

U, = 67%(H5Y5+H3PP+H1” (69)

be the unitary Schrédinger evolution operator for the composite (system U apparatus). Let
the experiment & start at time s and be finished at time ¢, so that the result can be read off
at ¢ from the apparatus.'' Let P;*" be the projection to the subspace of apparatus states in
which the pointer is pointing to the value z. Then

EQ" = trypy ([Liys ® pappl U [ Lsys ® PP]U,—y) (70)
and
C2(p) = tapp ([ Liys ® P [Us—s[p ® pappl U, [ Lsys ® PI]), (71

where tr,,, denotes the partial trace over the Hilbert space of the apparatus. We check the
compatibility property (56) in Appendix B.

1I'This assumption is to be understood in an operational sense: It is assumed that we humans can read off
the result when looking at the apparatus. This is different from assuming that the result can be read off from
the wave function of (the system and) the apparatus, which is notoriously not the case, a fact known as the
measurement problem of quantum theory.
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In other words, the superoperator %”ZQ” is obtained by solving the Schrédinger equation
for the apparatus together with the system, then collapsing the joint density matrix as if
applying the collapse rule to a “quantum measurement” of the pointer position, and then
computing the reduced density matrix of the system.

To obtain that E?"(-) is a POVM, we need that ) _, 2" is trace-preserving. Indeed,

Y CX(p) = Y w(Uins[p ® pupplU;" [ Lys ® PIT7)

X e
= tr(Ut—s [/0 ® ;Oapp]U[*_S |:Isys ® Z Pzapp]) = tr(Ut—s [)O ® papp]Ut*_s) =trp,
€%
provided
D PP = Ly, (72)
e

(This equation amounts to the statement that the experiment always has some outcome. This
is normally not true, as, e.g., the apparatus might get destroyed by some accident with small
but nonzero probability. However, we may deal with this trivial problem by assuming that
the set 2 of all possible outcomes contains one element representing the possibility that the
experiment was not properly carried out.)

6 The GRW Formalism
6.1 The Formalism

The GRW formalism is very similar to the quantum formalism. There are only three differ-
ences: (i) the unitary Schrodinger evolution (49) between the experiments is replaced with
the master equation (1) with H = Hyy, N = Ny, and Ay = A}”; (ii) the POVM ESRV ()
associated with an experiment & as its “observable” may be different from E?(-), and
(iii) the superoperators %ZGRW (encoding the “observer-induced collapse”) may be differ-
ent from %ZQ”. Thus, it reads as follows. (Further detail about its precise meaning will be
provided in Sects. 6.2—-6.4 and 7.1-7.2.)

The GRW Formalism

e A system isolated from its environment has at every time ¢ a density matrix p, which
evolves according to the master equation (1).

e With every experiment & with discrete value space &, beginning at time s and ending
at time ¢, there is associated a POVM ES®V(.) on 2 acting on %,;. When the experi-
ment & is performed on a system with density matrix p;, the outcome Z is random with
probability distribution

P(Z =z) =tr(p, ESRV). (73)

e With & is further associated a family (€ °%V).c o of completely positive superoperators
acting on TRCL(J%,s) with the compatibility property that for all trace-class operators p,

tr(pESY) = r €%V (p). (74)
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In case Z = z, the density matrix of the system at time ¢ immediately after the experiment
& is
€ (py)

=p == 7 75
pr=p TET () (75)

For the same reasons as for the quantum formalism, we assume a discrete value space % .
In theories (such as GRWm and GRWf) with a clear PO, on the other hand, one might
consider experiments using an “analog” rather than “digital” display, for example ones in
which the outcome is displayed as the center-of-mass position of a pointer. However, even
in this case it is reasonable to regard the outcome as discrete, since it is hard to regard
microscopic details of the pointer’s PO as a means to display information about the outcome.

Corresponding to the simplified quantum formalism, one can also formulate a simplified
GRW formalism: For suitable (but not all) experiments & it so happens that ES®V(.) is a
PVM (i.e., that ESRY(B) is a projection for all subsets B C ), that 2 is a subset of R,
and that %GRW (p) = P,p P, for suitable projections P;,. In this case, all the data encoding
1nf0rmat10n about & needed for computing outcomes (i.e., 2, ES®V(.), and (€°RV),c »)
can be encoded into a single self-adjoint operator, A = _, zP.. The differences be-
tween the simplified quantum formalism and the simplified GRW formalism are: the unitary
Schrodinger evolution is again replaced with the master equation (1); the class of experi-
ments & for which the simplified quantum formalism is appropriate when & is performed
in a quantum world may be different from the class of &'s for which the simplified GRW
formalism is appropriate when & is performed in a GRW world; and even if, for an exper-
iment &, both the simplified quantum formalism and the simplified GRW formalism are
appropriate then the operator ASRY may be different from A,

The GRW Law of Operators

e Suppose we are given the density matrix p,p,, for the ready state of the apparatus, its
Hamiltonian H,p,, and the interaction Hamiltonian H;, so that H = Hyys + Hypp + H.
Let the experiment & start at time s and be finished at time #, and let ¢ : §2,,) — &
be the function that reads off the outcome of & from the flashes between s and ¢. Then

ECRY () is given by the following generalization of (45):

ESRW = trapp([lsys ® papp]G(§7] (Z))) (76)
= trapp/ : df sys ® Papp L[3 ) (f)Lls t)(f) (77)
1@
where f = fosuapp and Ly, ) = L?fifapp and
G (p) = trapp / | df Lisn(Np ® pup]Li; (). (78)
(7@

We check the compatibility property (74) in Appendix B.
Before we begin the derivation of the GRW formalism, we have to elucidate a bit more
what exactly it asserts.

6.2 Isolated System

The “system” is mathematically represented, as described in Sect. 2.5, by a splitting .52 =
Fys @ Fny of Hilbert space, as well as a splitting F = Fyy U Fepy of the flashes, grounded
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in either a set Zy, of labels or a region Ry, C R3 (or both) selecting Fys. When we say that

a system is isolated or does not interact with its environment, we mean two things: First, the
Hamiltonian does not contain an interaction term, that is,

H= Hsys ® Leny + Isys ® Heny- (79)

Second, the collapse operators associated with flashes of the system act only on % but
not on 7%, and vice versa:

A?ys (X) ® Leny ifi e xgys and x € Rsys7

80
Iiys ® AS™(x) otherwise. (80)

Ai(x) = {
This second condition, apart from expressing that the splitting S = S, ® &, is com-
patible with the splitting F = Fy, U Feyy, is necessary because otherwise the system could,
despite the absence of an interaction Hamiltonian, interact through collapses with the envi-
ronment; e.g., an initial product wave function could become entangled.
A basic mathematical fact about isolated systems is the factorization formula

L(f)= Lsys(fsys) ® Lenv(fenv) 81
and similarly
L[s,t)(f) = L;{s[) (fsys) ® L?;l,\;)(fenv)- (82)
They are analogs of the formula
Ut — e*iHSy;t/h ® e*iHenvl‘/h — UIS}’S ® Utenv (83)

for the unitary time evolution, which holds when (79) does. In (81) and (82), fiy (respec-
tively feny) is the set of flashes belonging to the system (respectively the environment) and,
as the notation suggests,

Lsys((xl , 1, il)» ey (x)17 by, ln)) = A‘n/ze_NgysA(fn_tO)/z

% llsys(xﬂ)l/zljs}’S N A??S(xl)l/zUsys (84)

in h—ly—1 -t

with Ny = #.Z,y,, and similarly for L™, L}’ , and L{7).
For (82) it is sufficient that the system “sys” be isolated during [s, ). Equations (81)
and (82) follow from (83), (80), the definitions (10) and (12) of L, and L, and the fact

that (A® B)(C ® D) = (AC) ® (BD).
6.3 Density Matrix

Density matrices can arise in two ways: either as representing a statistical mixture (or en-
semble) of wave functions, or as the reduced density matrix of a system entangled with
another system (which we will call system b in the following, while system a is the system
of interest). Both types of density matrices are allowed in the GRW formalism: the system
under consideration may be entangled with system b (but not to the apparatus of the ex-
periment), and the wave function (of the two systems together) may be random. It is part
of the statement of the GRW formalism that, in this case, (i) the density matrix p, of the
system still evolves according to the master equation (1) as long as it remains isolated (from
system b, from the apparatus, and from everything else); (ii) the statistics of the outcome
Z depends only on the density matrix of the system (and not on how it arises); (iii) in case
Z = z the system’s reduced density matrix after the experiment is given by (75).

We note that the density matrix p, of a system, of which the GRW formalism asserts that
it evolves according to the master equation (1), does not provide a complete description of
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the quantum state of the system, even when the initial density matrix pp was pure. After
all, the master equation corresponds to averaging over the flashes between the initial time 0
of the system’s isolated evolution and the time s at which the interaction with an apparatus
begins, while the stochastic GRW evolution of the wave function ¥, corresponds to taking
these flashes into account.

6.4 Conditions of Applicability

Let us make explicit the assumptions we will make in the derivation of the GRW formalism,
i.e., the conditions under which the GRW formalism is applicable. The system, called system
a in the following, may be entangled with another system called system b. We suppose
that

1. the experiment & involves a splitting of the world into four parts: system a (the “object”
of &), system b, the apparatus of &, and the rest of the world;

2. & begins at time s and ends at time ;12

3. system a, system b, and the apparatus together form a GRW system (i.e., the system
is isolated) during the time interval [s, ¢), and this system possess a wave function ¥y,
s<t <t

4. at time s, the apparatus is not entangled with system a U b,

Ws = Waub ® ¢a (85)

where ¥, is the (possibly random) wave function of systems a and b together at time s,
¢ is the (possibly random) wave function of the apparatus at time s;

5. Y.up and ¢ are independent random variables;

6. during [s, t) the apparatus interacts only with system a, while system a and the apparatus
do not interact with system b;

7. the outcome Z is a function ¢ of the flashes of the apparatus during [s, ¢); this assumption
can be weakened by allowing that Z is read off from the flashes of both system a and the

apparatus,
Z=¢(F3™), (86)

while we need to exclude a direct dependence of Z on the flashes of system b.
6.5 Smallness of Deviations from the Quantum Formalism

In this subsection, we characterize the “quantum regime” of the GRW theories, i.e., the
regime in which the GRW formalism agrees with the quantum formalism. We do so in a
sketchy way by comparing the laws of operators in the quantum and the GRW formal-
ism, (70) and (76), which we repeat here for convenience:

EzQu = traplv([lsys ® paPP]Ut*fs[ISYS ® Pzapp] Uf*f)’ 87)
ES =ty [ dfUs® pap] L (L (1), (89)
Tz

We take for granted that p,p, is the same in both expressions, and that it is sufficient to
consider p,,p = |¢) (¢|. We provide a condition under which

ESRV ~ EQ, (89)

12This assumption will be relaxed in Sect. 8, where we allow that the experiment’s run-time is not fixed
before the experiment.
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The condition is the conjunction of the following:

1. During the experiment &, collapses are likely to occur only in the apparatus, not in the
system,

P(F; =0)~ 1. (90)

[s,2

Equivalently, the average time between collapses in the system is much larger than the
duration of &,

) >t —s, 1)
where A is the collapse rate per particle.

2. The pointer states for different z, i.e., the vectors in the range of P:*", are separated in po-
sition space. To be specific, let there be (macroscopic) regions R, C R? in position space,
mutually disjoint, so that for every ¥, the wave function P;*"v is concentrated on the
subset of configuration space with all “particles” belonging to the tip of the pointer in R,.

3. The duration ¢ — s of & is long enough for macroscopic superpositions of the pointer to
decay,

Lt—s 92

Noph 92)
with Ny, the number of “particles™ at the tip of the pointer.

4. The experiment is such that for every z € 2 and every € S(J&,), the part @, of
¥, =¥ ® ¢ (with ¢ the initial wave function of the apparatus) that would lead to out-
come z under the unitary evolution,

@, = U, \(Iys ® PP)U,_, ¥, (93)

evolves under the GRW collapse evolution associated with the GRW process ¥/, t’ > s,
starting from ¥, to a wave function

D, = L5 (Fis.0) P, 94)
that is with probability & 1 near the range of P;™", i.e.,
D, ~ (Iyys ® PP D, (95)
(In particular, this holds if @, , ~ U,_;®,.)

Condition 1 is satisfied by the standard choice A ~ 107!® s~! for microscopic systems
(say, Ngys < 10%) if the duration of & is less than 100 years. Likewise, conditions 2 and 3
are satisfied if the duration is more than (say) 10~ s and the outcome is represented by the
position of a pointer that is a macroscopic object.

Condition 4 needs elaboration. Why is any further condition needed besides 1-3? That
is because the working of the apparatus might deviate in GRWf from that in quantum me-
chanics. As an extreme example, the apparatus could contain a device that carries out an em-
pirical test of GRWT versus quantum mechanics; such a device is not feasible with present
technology but is in principle; then the apparatus may be so constructed as to do something
different with the system “sys” depending on whether it finds itself in a GRWf world or in
a quantum world. In this case, not excluded by conditions 1-3, ES®Y could be arbitrarily
different from EQ".
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Condition 4 holds in particular for an ideal quantum measurement, i.e., if there is an
orthonormal basis {,} of J%y, such that for each ¥, the outcome is deterministic, Z =
f(n), and equal in GRW and quantum mechanics.!?

We now turn to the derivation of ES®Y ~ EQ" from conditions 1-4.

Consider the GRW flash process F for the initial wave function ¥, = ¥ € S . For any
@ € 7, the process

o Loy (Fon®|?

= (96)
Il Lo, (Flo. ¥ I?

is a martingale, i.e.,
E(Y?|Fog)=Y> Vs<t. (97)

5

Proof: We emphasize that the distribution of F is governed by ¥, not by @. Recall that
Lo, (fi0.0) = Lis,ny (fis.0) L1o,5) (fi0,5))- Thus,

Il Lio.0)(Fio.n) @ |I*
E(Y®?|Fo,) =F /2522 = 1 Fo . 98
(Y Fio.) (nL[o,f)(F[o,f))wnz 0 ©%
:/ df I Lis.oy(fisy) Lio.s) (Fio.s)¥ 12 1 Ls.oy (fis.) Lio.s) (Flo.s) @ 12
P Lo (Fos)® 12 Ly (fiso) Lios (Fios) ¥ 2
(99)
B 1

N | Lo.5)(Flo.s)¥ |1

X (L0, (Fio.9)®| df L}, o (F)Lisay (f) | Lio.s) (Fio.) @) (100)
15,1y

=1

Ly (Fos)®@I> o

Lo (Fos)®I>
This completes the proof of the martingale property.
By the martingale convergence theorem, ¥,? has a limit as # — oo, which we call Y2.
Now consider the experiment &, let s and ¢ denote the times at which & starts and ends, let
I = Fys ® Fpp, regard s as the initial time, consider any ¢ € S(%s), let ¢ € S(I%5,,)

be the initial wave function of the apparatus, and set ¥, = ¢ ® ¢. Set

¢Z = Uf__ls (Isys ® Pzapp) Ui—s ¥ (102)

(101)

and let Yj =Y t?z , 1’ > s, be the martingale associated with @,. By condition 3, the duration

of & is long, so we can approximate the value of Y? at the end of & by Y2 . Set
P r = Lis,ny (Fis) P (103)

By condition 4, @ ; ~ (Iyys ® P*")@_,. By condition 2, the pointer states are separated in
3-space, so the @, , are separated in 3-space. Therefore, only for one value zg of z is Y2

131n this situation, it can in fact be concluded directly that EZGRW = E?u. Indeed, if (Yn|Ez|¥n) =87, f(n)
and 0 < E; < I then E; =}, ¢(s)=; |¥n) (¥l (and thus ESRV =, = E?u)‘ After all, suppose an off-

diagonal entry were nonzero, ¢ := (Y | E;| ¥ ) # 0 for n # m, and let ¥ = ayy, + By, with |oz\2 + |/8|2 =1;
if f(n)=z= f(m) then (Y |E;|¥)=1+2Re(a*cB) can be made > 1 by suitable choice of &, B; if f(n) #
z# f(m) then (Y| E;|¢) = 2Re(a*cB) can be made negative; if f(n) =z # f(m) then (Y |E;|¥) = |oz|2 +
2Re(a*cB) can be made > 1 and can be made < 0.
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nonzero; otherwise, ¥, would be a non-trivial superposition of several pointer states (i.e., of
contributions from the ranges of P:*" for different z), and any further flash would change the
weights in this superposition; but since the Y2 have already converged they cannot change
any more; so @, , &~ 0 except for z = z¢. Since

D,
QEND DL T (104)
| L5,y (Fis,0) s |l
we have that
]
A 0.1 (105)

| L5,y (Fis,0) s |l

and, as a consequence, Y,° ~ 1. The flashes for the tip-of-the-pointer particles around time ¢
will then likely be located in R, so that the outcome is Z = z. Furthermore, since ¥} ~ 1
for z = Z and Y} ~ 0 otherwise, the distribution of the outcome is

z a 2
P(Z=2)~EY; =Y =@ = | (Ly; ® P2 U, ¥ [, (106)

which is the quantum probability. Since 1 was arbitrary, (89) follows.

7 Derivation of the GRW Formalism

After some preparatory considerations in Sect. 7.1, we derive the GRW formalism from
GRWTf in Sect. 7.3.

7.1 Density Matrix
We need to collect some facts about density matrices in GRWH.
7.1.1 Statistical Density Matrix

Set, for ease of notation, 7y = 0. Since the wave function ¥; is random, with its distribution
there is associated the density matrix

o =Bl =

S(#
where S() = (¥ € J€: ||¥| = 1} is the unit sphere in Hilbert space ¢ . In other
words, (107) is the density matrix of a large ensemble of systems, each of which started
with the same initial wave function ¥, but experienced collapses independently of the other
systems.

We note without proof that the density matrix p; obeys the master equation (1). But the
validity of (1) is even wider: Suppose that even the initial wave function ¥ is random, with
distribution given by any probability measure ;o on S(7¢). Then, for t > 0, ¥, is doubly
random, because of the random initial wave function and of the stochastic GRW evolution,
with distribution

Py, (¥, € dP)|D) (D], (107)
)

M:(~)=/Mo(d‘1’o)IP’%(‘1/r €). (108)

Again, the corresponding density matrix

pt=Ew|w,><wt|=/u,<dW)|W><xv| (109)
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obeys (1). To see this, note that it satisfies

o Z/Mo(d‘I’o)/P%(‘l’t € dd)|®)(®]. (110)

where the inner integral obeys (1), so that p, is a mixture of solutions of (1) and therefore is
itself a solution of (1).
Alternatively, p, can directly be expressed in terms of p, according to

o= Fionpn = /ﬂ df Lo (f)poLiyn (f). (111
0.0

From this the master equation (1) can be obtained by differentiation with respect to 7. As
a by-product, it can be read off from (111) that the mapping .%o : po — p, obtained by
evolving the density matrix p according to the master equation (1) is a completely positive
superoperator. It is also clear that .}y, is trace-preserving.

The following proposition is a consequence of the fact that the distribution of flashes is
given by a POVM: If the initial wave function ¥, is random with distribution pg, then the
distribution of the flashes depends only on the density matrix p, associated with o,

IP’(FG):/Mo(d‘I’o)PwO(FG-)Z/Mo(dll’o)(‘l’olG(-)l%)=tr(poG(-)) (112)
with
/00:/ Ho(d¥o)|Wo) (Wl (113)
S(I)

In other words, if two probability distributions fip and po have the same density matrix,
Do = po, then they lead to the same distribution of the PO. For comparison, this is not true in
Bohmian mechanics or GRWm: there, iy and po may lead to different trajectories [9, 22]
respectively to different probability distributions of the m function [3].

Since fig and o lead to the same distribution of flashes, we may write P,  for that
distribution. This also means that we can simply talk of the flash process for a given initial
density matrix, as opposed to the flash process for a given initial wave function. As time
proceeds, the density matrix determining the distribution of the flashes evolves according to
the master equation in the sense that

Py (Fit,o0) € B) =P (F1 o) € B), (114)

where the right hand side refers to the distribution of the flashes when starting with p, at
time ¢. This fact follows from the conditional probability formula by averaging over Fig ).

7.1.2 The Marginal Probability Formula

The marginal probability formula expresses that a system which does not interact with its
environment is itself governed by GRWT, even if the system is entangled with the environ-
ment. (Note that this is not true, e.g., in Bohmian mechanics, where the trajectories of the
system’s particles depend on the configuration of the environment, even in the absence of
interaction. As we will see, it is not true in GRWm either.)

The marginal probability formula says that for an isolated system,

Py, (Fsys € B) =P, (B). (115)
Here, Py, is the distribution of the flashes in a universe starting with wave function ¥ at

time #o = 0, and Py, (Fyys € -) is the marginal distribution of the system’s flashes; pgys =
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treny |0) (o] is the reduced density matrix of the system; finally, Ppsys is the distribution of
flashes in a universe containing nothing but the system and starting with density matrix pgys
at time O in the sense of Eq. (112):

Py, () = tr(osys Gys (). (116)

We provide a proof of the marginal probability formula in Appendix C.

The marginal probability formula was first derived by Bell [8] for the purpose of proving
a no-signaling theorem for GRWT. To see the connection, suppose the system is Alice’s lab,
which does not interact with Bob’s lab (e.g., because they are, when considering the relevant
time intervals, spacelike separated); then the distribution of the flashes in Alice’s lab, and
thus in particular the distribution of the outcome of any experiment, does not depend on the
common wave function ¥, except through the reduced density matrix py,, nor on external
fields at work in Bob’s lab (since pgys does not).

The marginal probability formula should not be confused with the following simple con-
sequence of the function property (28): Since Fyy is a function of F, its distribution is given
by a POVM E(-),

Py, (Fiys € B) = (V| E(B)|¥0). (117)

The marginal probability formula goes further in two respects: First, its right hand side
depends only on the reduced density matrix psys, and not on the entire wave function ¥o;
second, the POVM Gy() is not just some POVM but exactly the one that would govern the
flashes if the universe contained nothing but the system.

A related fact is the independence property: If a system does not interact with its envi-
ronment and is initially disentangled from its environment, then the flashes of the system
and those of the environment are stochastically independent, i.e., their joint distribution is a
product:

IP>| sys)®\env)(F§ys € Bsym Fenv € Benv) = IP>| sys)(F%ys € Bsys) IP)|env)(]:‘env € Benv)~ (1 18)

Moreover, in that case the wave function ¥, remains a product at later times.

In GRWm there is a formula that is in a way analogous to the marginal probability for-
mula of GRWT, as it connects pgy, to the PO of the system, namely to my as introduced
in (20). However, it is much weaker as it connects psys not to the entire future history of the
PO, for ¢ > 0, but just to the PO at t = 0. This formula reads

msys(-x5 t :O) = Z mi/dQSys S(QSys,i _x)<QSys|psys|qsyS> (1 19)
i€ Lyys

assuming, for simplicity, that the system is defined in terms of a label set .Z;y,, not of a region
Rys. As before, pgys = treny |W0) (Wol. The formula implies that a different wave function
A # Yy with trey, |J/0)(l170| = treny |Wo) (Wo| would lead to the same mgy,. An analogous
statement holds in Bohmian mechanics: the marginal distribution of Qg at t = 0 depends
only on pgy. Note that in GRWm, my, cannot be obtained from a statistical density matrix.

Returning to GRWI, we call a system a GRW system if the distribution of the flashes of
the system (after time 0) is given by pyys (at time 0), i.e., if (115) holds. The margin