Entropy growth during free expansion of an ideal gas
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To illustrate Boltzmann’s construction of an entropy function that is defined for a microstate of
a macroscopic system, we present here the simple example of the free expansion of a one dimen-
sional gas of non-interacting point particles. The construction requires one to define macrostates,
corresponding to macroscopic variables. We define a macrostate M by specifying the fraction of
particles in rectangular boxes AzAv of the single particle position-velocity space {z,v}. We verify
that when the number of particles is large the Boltzmann entropy, Sg(t), of a typical microstate of
a nonequilibrium ensemble coincides with the Gibbs entropy of the coarse-grained time-evolved one-
particle distribution associated with this ensemble. Sp(t) approaches its maximum possible value
for the dynamical evolution of the given initial state. The rate of approach depends on the size of
Aw in the definition of the macrostate, going to zero at any fixed time ¢t when Av — 0. Surprisingly
the different curves Sp(t) collapse when time is scaled with Av as: ¢t ~ 7/Av. We find an explicit
expression for Sp(7) in the limit Av — 0. We also consider a different, more hydrodynamical,
definition of macrostates for which Sg(t) is monotone increasing, unlike the previous one which
has small decaying oscillations near its maximum value. Our system is non-ergodic, non-chaotic
and non-interacting; our results thus illustrate that these concepts are not as relevant as sometimes
claimed, for observing macroscopic irreversibility and entropy increase. Rather, the notions of initial
conditions, typicality, large numbers and coarse-graining are the important factors. We demonstrate

these ideas through extensive simulations as well as analytic results.

I. INTRODUCTION

According to the second law of thermodynamics, any
spontaneous change in an isolated system leads to an
increase of the thermodynamic entropy, S (as defined by
Clausius). The second law thus provides in a sense an
arrow of time and quantifies the irreversibility that we
observe in everyday physical phenomena. Understand-
ing how such irreversibility emerges from the microscopic
reversible Newtonian dynamics of a many-particle sys-
tem was the remarkable achievement of Boltzmann. He
pointed out the key idea that the observed irreversibil-
ity is the typical macroscopic behaviour given appropri-
ate initial conditions, that becomes a certainty when we
take the system size truly macroscopic. Boltzmann also
provided a clear prescription for the construction of an
entropy function (which we denote as Sp) that is defined
for a single microstate of a macroscopic system in a given
macrostate. This entropy function is defined for a system
in or out of equilibrium. It is equal to the thermodynamic
entropy for a system in equilibrium.

The deep and somewhat subtle ideas of Boltzmann [1]
have been widely discussed [2-5] and clarified in recent
work [6-9]. We mention here a particularly relevant
quote from Ref. [10]: Time-asymmetric behavior as em-
bodied in the second law of thermodynamics is observed in
individual macroscopic systems. It can be understood as
arising naturally from time-symmetric microscopic laws
when account is taken of a) the great disparity between
microscopic and macroscopic sizes, b) initial conditions,
and ¢) that what we observe are “typical” behaviors —
not all imaginable ones. Common alternate explanations,
such as those based on equating irreversible macroscopic

behavior with ergodic or mixing properties of ensembles
(probability distributions) already present for chaotic dy-
namical systems having only a few degrees of freedom or
on the impossibility of having a truly isolated system, are
either unnecessary, misguided or misleading.

The present work is an attempt to provide a numerical
demonstration of some of the above ideas presented in [9]
through a simple example.

Our microscopic model is a gas of N(>> 1) non-
interacting point particles of unit masses confined to
move inside a one-dimensional box of length L. Initially
the gas is in thermal equilibrium (to be defined more pre-
cisely later) and confined, by a partitioning wall, to the
left half of the box. We consider its subsequent evolu-
tion on removal of the partition. In our work we consider
two distinct (families of) macroscopic variables. For the
first, we consider a coarse graining of the single parti-
cle phase space {y = (z,v)} into rectangles A, with
volumes AzAwv and look at the distribution f(z,v,t) of
particles in this space. This leads to a definition of Spg,
that we refer to as Si;. The second macroscopic de-
scription is given by the three locally conserved fields
U = {p(z,t),p(z,t),e(x,t)} corresponding to mass, mo-
mentum and energy — defined using a spatial coarse-
graining. The Boltzmann entropy corresponding to U
will be referred to as SY.

We study the time evolution of the two choices of
macrovariables, f and U, and the associated entropies,
S };, SY. The simplicity of the model allows us to perform
highly accurate simulations with large number of parti-
cles (of order 107) and compute both mean distributions
(averaged over initial ensembles) analytically as well as
empirical ones (with single realizations).



We find that as expected, both S’]]; and SY approach
for long times their equilibrium values with the behaviour
of a typical macrostate being the same as that averaged
over the initial ensemble. There are however some inter-
esting surprises in the time evolution of S’}; (t). The rate

at which S};(t) increases depends strongly on Av with

dS];(t)/dt apparently going to zero as Av — 0. How-
ever, upon rescaling time, t — 7/Awv, the different curves
collapse to a single curve S]J;(T). This curve has small
decaying oscillations near its maximum. We obtain an
analytic expression for Slé, (1) which agrees with the ob-
servations. There are no such surprises for SY(¢) which
increase monotonically to the equilibrium value.

We point to some of the earlier studies related to this
issue. The evolution of Boltzmann’s entropy has ear-
lier been investigated numerically in interacting systems
such as fluid models [11-14], in systems evolving via
maps [15]. Some subtleties for dense fluids were pointed
out by Jaynes in [16], discussed further in [17] and nu-
merically investigated in [18]. The one dimensional gas
of equal mass hard point particles and hard rods was ex-
tensively studied earlier as one of the tractable models
where dynamical properties can be obtained analytically
and where the question of entropy increase has been in-
vestigated. Some of the interesting questions addressed
concern dynamical correlations and the evolution of the
single particle distribution function [19-25]. The Euler
hydrodynamic equations for the hard rod system were
first obtained in [26] and have more recently been dis-
cussed in [27] as an example of an interacting integrable
model, where it is also shown that there are dissipative
Navier-Stokes corrections which vanish when one goes
from rods to point particles. The effect of integrability-
breaking on entropy growth was studied in [28] for hard
rods in a harmonic trap. Boltzmann’s ideas also appear
in recent discussions of thermalization in isolated quan-
tum systems [29, 30]. In contrast to these earlier stud-
ies, the present work considers the case of a completely
non-interacting system, namely the ideal gas in one di-
mension.

The plan of the paper is as follows. In Sec. II we de-
fine the Boltzmann entropy for a general classical macro-
scopic system. We then describe the precise model, the
different definitions of entropy that are studied and the
choices of macrostates. In Sec. III we present our nu-
merical results on the evolution of the macroscopic fields
and the entropy functions for the two different choices of
macrovariables. This section also contains the derivation
of the expression for S }; (7) in the rescaled time 7. For s¥,
we present an analysis of the results based on the “hydro-
dynamic” equations for the macroscopic fields. In Sec. IV
we study how these macrovariables and the associated
(Boltzmann) entropies evolve with time for atypical ini-
tial conditions. A geometric picture of the dynamics in
phase space is provided in Sec. V and we conclude with a
discussion in Sec. VI. Some exact results for the evolution
of the macroscopic fields are presented in App. A.

II. BOLTZMANN’S ENTROPY, DEFINITION
OF THE MICROSCOPIC MODEL AND CHOICE
OF MACROSTATES

A. Boltzmann’s entropy

The microstate of a classical system of NV particles of
unit mass confined in a box, denoted by X, is speci-
fied by the positions x; and velocities v; = p;, with
i1=1,2,..,N, ie, X = (X1,X2,...XN,V1,V2,...,VN).
The dynamics of the system is given by a Hamiltonian
H(X).

We now consider a macroscopic or “coarse-grained”
description for the case N > 1. A simple example of
such a description is provided by the macrovariable Nyegg
which gives the total number of particles in the left half
of the box. Clearly, this is a function of the microstate
X and we can write Neg(t) = M(X(t)), with M(X) =
Nleft (X)

In general we can describe
specifying a set of macrovariables M(X) =
{M(X), My(X), ..., M, (X)}, with resolution
AM = {AM;} [9]. We identify these macrostates
with the elements of a partition of the full phase space
I' into sets I';; of the form

a macrostate by

Ty ={X €T|M; < Mj(X) < M; +AM;,j= 171(})
1

These provide a coarse-grained description in the sense
that many different X correspond to the same range of
values of the macrovariable M (X), and hence to the same
set I'yy.

Each microstate X belongs to some set I'j; corre-
sponding to the coarse-grained value of the macrovari-
able M = M(X) (thus for X € T’y as in Eq. (1),
M(X) = M). Boltzmann’s insight was to associate to
each microscopic state X an entropy, through the set
I'j; to which it belongs [6, 8, 9, 31]:

Sp(X) = Sp[M(X)] = In [Ty, (2)

where we have set Boltzmann’s constant kg = 1. The
volume of the set I'j; is

N
Tyl = / [] dxidp: 1[X € Ty, 3)
=1

where 1 represents the indicator function. As the sys-
tem evolves under the Hamiltonian dynamics, the mi-
crostate is given by X (¢) while the macrovariable evolves
as M(t) = M(X(t)). Consequently the correspond-
ing set I'y,(t) = Lir(x (1)) also evolves, thereby speci-
fying the time evolution of the Boltzmann entropy as
Sp(t) = Sp[l'y(t)]. Boltzmann argued that for an iso-
lated system starting from a microstate corresponding
to a low entropy Sp(0), the system evolves in such a
way that Sp(t) “typically” increases for macroscopic sys-



tems even though the microscopic evolution is completely
time-reversal symmetric. (In what follows we shall drop
the hats on the macrovariables, slightly abusing nota-
tion.)

Among all possible macrostates of a system there are
two very important ones: the equilibrium macrostate
M4 and the initial macrostate Mi,i. The entropy of the
initial macrostate Sg(t = 0) = Sp(Min;) is low by as-
sumption. On the other hand, the macro-region 'y, is
overwhelmingly large compared to other macro-regions
associated to other macrostates. It is so large that it
contains most of the phase space volume of 'y, an en-
ergy shell, assumed to contain all the macrostates M.
More precisely, for large IV, the ratio of their volumes
ITar,,|/ITe| = 1 — e N where ¢ is a positive constant
[31-33]. This property corresponds to equilibrium be-
cause the system should stay in (or near) I'y,, for long
times, consistent with the observed stationarity in ther-
modynamic equilibrium.

Since 'y, takes up almost all the volume of I' g, when
the system starts from a microstate X belonging to a
non-equilibrium macrostate Mi,; such that Sg(Mini) <
Sp(Meq), its microscopic dynamics should ‘typically’
take the microstate to regions I'y; of larger phase space
volume and thus of larger entropy Sp and eventually to
I'pz,,, unless the dynamics given by the Hamiltonian has
strong constraints, for example additional conservation
laws, or the initial state X is very special [34]. Hence
we expect the quantity Sp(M) to increase for the ma-
jority (in fact the overwhelming majority) of microstates
in I'py,,, except for a few whose total volume relative to
ITas,;| goes to zero in the N — oo limit. Because of
this expectation one can make direct connection between
Sp(Meq) and S (the thermodynamic entropy) in an equi-
librium state as suggested by Boltzmann. For an isolated
system in equilibrium with energy E, volume V and N
particles [8]

S(E,V,N) ~ Sp(Me(E,V,N)), forlarge N. (4)

We briefly comment here on why Gibbs’ definition of
entropy cannot be used in the nonequilibrium situation.
We recall first that the Gibbs entropy of an equilibrium
canonical ensemble gqq is defined as

N
S6loe(X)] = — / [[dridpi 00a(X) M oa(X), )

and this can be identified for macroscopic systems with
the thermodynamic entropy S. Extending this definition
to the non-equilibrium situation described by an evolv-
ing ensemble p;(X) one obtains the corresponding Gibbs
entropy Sg(t) = Sglo:(X)]. However, we note that the
volume preserving dynamics is described by the Liouville
equation

do/0t = {H, 0}. (6)

This ensures that this entropy does not change with time,

i.e., dSq(t)/dt = 0.

A general study of the Boltzmann entropy and the
coarse grained Gibbs entropy, related to the F, in
Eq. (11), is given in Chapters IV and V of Ref. [35]. The
discussions there are enlightening. Another book with a

clear analysis of the issues discussed in this article is by
Oono [36].

B. Definition of the model and choices of
macrostates

Our model consists of N non-interacting point particles
of mass 1 confined in a one dimensional box of size L. The
Hamiltonian of the system H = Zjvzl 1;32- /2 consists of
only kinetic energy. In between collisions with the walls
(at z = 0, L), each particle moves at constant velocity.
On collisions with the walls, the velocities are reversed.

We now describe the two families of macrovariables
that we will consider in this study.

Choice I — The distribution of particles in
the single-particle phase space: We consider u-
space {(z,v)} and divide it into cells A,, each of size
|Ay| = AxzAwv. For a given microstate X = {z;,v;} we
specify the number of particles N, in each cell. We then
obtain the particle number density in each cell:

N,
L= e 7
fo =T "

This satisfies the normalization ) fo|As| = N. The
set { fo } specifies our first family of macrovariables, with
its corresponding macrostates. The “number” of mi-
crostates (volume) for a given specification of {N,} is
given by [Car| = TI,[1A4|N"/N,!]. Thus, with S =
In |T'pz], we have using Stirling’s formula for large N the
entropy per particle

1

up to an additive constant.

To get a handle on the behavior of sé we also consider,
for a finite number of particles, an average over initial mi-
croscopic configurations chosen from a phase space dis-
tribution oo({z;, v;}):

N
Fz,v,t) =) (3(zi — 2)d(v; —v)) 9)

=1

which we note is the single-particle marginal obtained
from the full phase space density o;({x;,v;}) with initial
distribution gg. For our ideal gas, F'(z,v,t) obeys the
autonomous equation

O F + v, F =0, (10)

and can be computed analytically as shown in App. A.
We can now define a coarse-grained distribution corre-



FIG. 1. Plot of evolution of the empirical particle density fa(t) = fa(t)/N (black dashed lines) starting from a single initial
microscopic configuration in the two-dimensional p-space for grid size Az = Av = 0.5 and N = 10", L = 4. In the single
initial configuration, the positions of the particles are distributed uniformly between (0, L/2) and the velocities are drawn
from the Maxwell distribution given by Eq. (16) with canonical temperature Ty = 2.5. We observe that fa(t) approaches
towards its equilibrium form at large times, however the convergence is oscillatory as can be seen from the recurrences at
times ¢t = 16, 32, 48, 64 to very close to the equilibrium form. The evolution is also compared with the analytical result
for the averaged single particle distribution F, = Fu(t)/N from Egs. (11) and (A8) which is obtained after averaging over
initial configurations chosen from uniform position distribution over (0, L/2) and Maxwell velocity distribution at temperature
Ty = 2.5 (this is the equilibrium state in the left half of the box). The good agreement between f. (t) and F,(t) is a consequence

of typicality.

sponding to a partition of the u-space as
1

B |A04| T,WEA,

F, dx dvF(x,v,t), (11)

and a corresponding coarse-grained entropy:

1
sk = - > |AL|FaInF,. (12)

Note that this has a similar form to Eq. (8); however, here
we have used mean distributions instead of the empirical
distributions used there. These will in fact typically be
more or less the same, a consequence of the law of large
numbers.

We note that if we let |A,| — 0 in Egs. (11) and (12)
then for any fixed ¢,

1
sk = st = N /d:z:dvFlnF, (13)

which, since the evolution of F satisfies Eq. (10), makes

s independent of ¢ . This would also be the case for 32
when A, — 0, N — oo, and f, is suitably normalized.
This is due to the fact that we are dealing with a non-
interacting system so that st is just, up to normalization,
the Gibbs entropy of the entire N-particle system (whose
distribution can be taken to be the evolving product of
F’s), which does not change under the time evolution.
We shall see later that even for the ideal gas if we look

on a time scale proportional to 1/Av we will see sh ~ sjl;

increase with time albeit non-monotonically.

Choice II - The spatial distribution of mass, mo-
mentum and energy: We divide the box (0, L) into
K cells §,, a = 1,2...K, each of size ¢ = L/K. For a
given microscopic configuration X, let N, be the num-
ber of particles in cell §, and let P, and E, be the total
momentum and total energy of these particles. In this
case the macrostate is defined by these set of locally con-
served quantities U = {N,, P,, E,} and we obtain the
Boltzmann entropy S% = In|T'y| where |[T'y| is the vol-
ume of the phase space region 'y corresponding to the
macrostate U. For large N this entropy per particle at-
tains the form

v 1
Sg = SWB = N ;pae 5(pa, €a), (14)

where s(pq,€q) is the ideal gas entropy per particle for
density p, = N, /¢ and internal energy density ¢, = [F,—
Pg/(ZNa)]/g = €q _pg/(2pa)v with Pa = Pa/gvea = Ea/g
being the momentum density and total energy density
respectively. This is given explicitly (up to additive con-
stant terms) by:

s(p€) = —Inp+ %m (;) . (15)



III. RESULTS FOR THE TIME EVOLUTION OF
MACROSTATES AND ENTROPY INCREASE

A. Choice I of the macrovariables
1. Numerical results

We consider N = 107 particles initially uniformly dis-
tributed in the left half (0, L/2) of the box with box size
L = 4. For our non-interacting point particle system, the
choice of system size L is inconsequential and hence we
arbitrarily set L = 4. Since we keep the system length
fixed, changing N corresponds to changing the density
in our system. There is no upper bound to the density
since there is no effective interaction between the parti-
cles. In real systems the number of particles would scale
with the volume. The initial velocities of our microstate
are drawn from the Maxwell distribution given by

1 1/2 02
geq(v, Tp) = 5T exp _ﬁ , (16)

with temperature Ty = 2.5. This is the canonical en-
semble corresponding to the equilibrium macrostate with
particles in the left half of the box. We thus choose a
single random realization from this canonical ensemble
as our initial microstate. Equivalently we can choose the
initial configuration from a microcanonical ensemble with
total energy E' = NTy/2. The region I'yy,,, then consists
of all X € I'g such that N (X) = N.

We divide the u-space (z-v space) of the system into
grids of size A, = AxzAv and calculate the evolution of
the empirical single particle density f, given by Eq. (7)
by performing microscopic simulations of the evolution of
the given microstate. In Fig. (1) we plot f, = fo(t)/N
at different points z,,v, in p-space and at different
times, for Az = Av = 0.5. We observe that f,(t) ap-
proaches its equilibrium form non-monotonically in time
with near-recurrences to the equilibrium distribution. At
large times, the f,(¢) finally reaches the equilibrium form
where particles are uniformly distributed between (0, L)
and velocities are Maxwellian with temperature Ty = 2.5.
We also compare the empirical f,(¢) (black dashed lines)
and mean distribution F, (t) = F,(t)/N (red solid lines),
calculated for the same grid size, at different times. The
mean distribution F, () is computed analytically from
Egs. (11) and (A8). We find good agreement between the
empirical density f,(t) and the mean distribution F,(t)
— a consequence of the typicality implied by the law of
large numbers for this non-interacting model. We have
verified that this agreement is also valid when we choose
the initial random configuration from a microcanonical
distribution with energy per particle given by Ty /2.

In Fig. (2) we show the evolution of the corresponding

entropy sé (t) [given by Eq. (8), where we fix the additive
constant so that at t = 0, this agrees with Eqs. (14,15)]
during free expansion, for the same random single re-
alization and parameters as in Fig. (1). We plot sé(t)
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FIG. 2. Top figure: A comparison between sk (t) obtained
from simulation of a single realization, and sx (t) obtained
after an ensemble average, plotted as a function of time dur-
ing free expansion. For evaluating sz(t) we use the same
single initial condition used in Fig. (1) for N = 107 in a
box of size L = 4. We compute s%,(t) for different grid
sizes |Aa| = AzAv by keeping Az = 0.5 fixed and vary-
ing Av = 0.5 (red empty squares), 0.25 (blue empty inverted
triangles), 0.1 (yellow empty circles), and 0.05 (green empty
triangles). The solid lines are s& () obtained analytically from
Eq. (12) for Ty = 2.5. We again observe excellent agreement
between s%;(t) and sX (t) and notice that they both eventually
increase and saturate to the equilibrium value. However the
approach to this equilibrium value is oscillatory with decaying
amplitude and period 2L/Av. Also note that the growth rate
at any given time decreases with decreasing Awv.
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FIG. 3. Plot showing the dependence of growth of the entropy,
st (t), for different spatial resolutions Az. For any given Av
we find that there is a weak dependence on the size of Az at
early times. The parameter values and initial conditions are
the same as in Fig. (1).
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FIG. 4. Plot showing the distribution of N = 10° particles in the (x,v) plane at different instants of time. These results
correspond to a single realization of the time-evolution of the system, for the same parameters and initial conditions as used in

Fig. (1).

for different grid sizes by keeping Az fixed and vary-
ing Av. The solid lines correspond to the entropy sX (t)
[given by Eq. (12)] calculated from the exact expression

for the mean distribution F'(z,v,t). We observe that

there is very good agreement between s]}; and sk, as

expected. Both the entropies grow, initially monotoni-
cally with time, touching a value slightly above the final
equilibrium value and then exhibit small oscillations in
time with a period 7, = 2L/Av; these eventually die
and the entropy saturates to its equilibrium value. Note
that these oscillations were also seen in the recurrences
in Fig. (1) and we will discuss their origin in the next
subsection.

Though the final increase of entropy appears to be al-
ways equal to In(2), we observe in Fig. (2) that the en-
tropy growth rate decreases with decreasing Av. In other
words, at any fixed time, with decreasing Av one observes
a correspondingly lower entropy. On the other hand we
see in Fig. (3) that the entropy growth rate shows conver-
gence on decreasing Az. This can be understood from
the plot of the p-space distribution shown in Fig. (4).
We see that with time, the system keeps developing more
and more structure in the velocity direction, while, in the
spatial direction it becomes more or less homogeneous af-
ter some time. Thus, decreasing the grid size Az does
not give us more information about the system, while
decreasing Av does.

To understand the dependence of sg on Awv consider
the limit of vanishing grid size. For large IV, correspond-
ing to f, defined for a given microstate X = {z;,v;},
one can define a smooth function f(z,v,t) such that
N, = fw,veAa dzdvf(z,v,t) and [dzdvf(z,v,t) = N.
The Eq. (8) then becomes

sjl;(t) ~ —%/dm dv f(z,v,t)In f(x,v,t), (17)

up to an additive constant. In the large N, small grid

size limit, the function f = limag—0,Av—0 ImMy oo f/N
satisfies the equation

8tf+ Uazf: 07 (18)

using which it follows that its associated “entropy”
sh(t) = —/d:c dv f(z,v,t)In f(z,v,t), (19)

obeys ddé(t) /dt = 0. Thus it would seem that there is no
entropy increase in the large N, A, — 0 limit. However,
as is apparent from the numerical findings in Sec. III, for
any fixed grid size |A,| the exact sé, or its approximation
on the right hand side of Eq. (8), will typically increase
(if initially its value is not at its maximum) over time.
For N large and |A, | small, significant increase may not
begin for a very long time (the time at which f(z,v,t)
develops structure on the scale |A,]), a reflection of the
fact that the entropy in Eq. (19) does not change with
time.

The situation is different for a gas of hard spheres of
diameter a in 3D where in the Boltzmann-Grad limit,
a — 0,N — oo with Na? = b > 0, one can define the
macrostate by a smooth one-particle empirical density
which satisfies the Boltzmann equation, given by Eq. (18)
modified by collision terms on the right [3, 37]. As shown
by Boltzmann’s H-theorem, this leads to increase of the

entropy 4 é.

2. Scaling analysis for the evolution of entropy

We now return to the question of the observed oscil-
lation period 7, = 2L/Aw in Fig. (2). This is easiest to
understand once we consider a mapping of the dynamics
of particles in a box of length L to the dynamics on a
circle of length 2L. This mapping corresponds to the pu-
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FIG. 5. This figure shows a collapse of the data presented in
Fig. (2) for different values of Av, on plotting the entropy as a
function of the scaled time 7 = tAv/(2L). The dashed curve
is the analytic prediction from Eq. (20) Inset: A zoom up of
the plot. The horizontal dotted line corresponds to the en-
tropy given by the right hand side of Eq. (17) with f = pogeq,
where po = N/L and geq is in Eq. (16). The small over-
shoot (of s%,) that we see for larger Av arises since a coarse-
grained velocity distribution is effectively broader than the
Maxwellian from which it comes, leading to a larger effective
temperature.

space map ¢ taking [0, L] xR to [0,2L] x [0, 00) and given
by (x,v) — (z,v) for v > 0 and (z,v) = (2L — x, —v)
for v < 0 . With this mapping we see that two parti-
cles, initially at the same spatial point but with velocity
difference Av (size of the velocity grid), will meet again
(possibly in different locations) at times n7,, where n is
an integer. Furthermore, at the times ¢ = n7,, all points
that are initially within a cell AzAv will lie on a narrow
strip that winds around precisely n times around the cir-
cle and still within Av [see Fig. (6)]. Thus, the spatial
distribution of points becomes exactly uniform within the
region v to (v + Awv) at the times ¢ = n7, and this ex-
plains the fact that sk (in Eq. (12)) reaches its maximum
value at these times. At intermediate times, the winding
on the circle is incomplete and we get a lower entropy.

In Fig. (5) we show plots of the entropy time-evolution
data for different values of Av [from Fig. (2)] as a function
of the scaled time 7 = tAv/(2L) = t/7,. We find a
remarkable collapse of the data to a single curve. The
physical picture in the preceeding para in fact leads to
an analytical understanding of this and we can obtain an
explicit expression for the evolution of the entropy in the
scaled time variable — this is given by the function:

P 1. T 1 [?
s ()= —Inpg + 3 In 3 5/0 dzR(z,7)In R(z,7),
(20)

where pg = N/L and R(z,7) is known explicitly (see be-
low); the integral above can be numerically computed. In

Fig. (5) we find excellent agreement betwen the collapsed
data and the analytic result.

We now present the details of our analytic understand-
ing of the observed scaling and of Eq. (20). For this
we use the mapping between the dynamics with reflect-
ing boundary conditions and the dynamics in a peri-
odic box. The dynamics on the circle simply consists
of rotations at constant positive velocities which implies
F(z,v,t) = F(x —vt,v,0) [with F periodic in = with pe-
riod 2L]. We claim that the following space averaged dis-
tribution function will in fact capture the evolution of the
entropy of the system at the rescaled time 7 = tAv/(2L):

_ 1 2LT
F(z,v,7) = 37 ), dr'F(z — 2',v,0). (21)
We define a corresponding Gibbs entropy per particle:

Pir)=—x

2L oo B B
da:/ dv FIn F'. (22)
N Jo 0

More precisely we now show that in the limit Az —
0,Av — 0, we get

lim sK(2Lr/Av) = sP(7), (23)

which explains the observed scaling. With the system
defined on the circle let us consider the averaged distri-
butions:

F,(Az, Av)
1 To+AT Vo +AV
= XoAu / dx'/ dv'F(2' 0" t)  (24)
1 ;(¥+A$ ZQJFA’U
= AA / d:c’/ dv'F(z' —v't,0',0)
zAv [, o
1 Vo +Av
~ = Kv/ dv'F(zq — V't 04, 0)
1 atA’U
= A /0 dr'F(xq — vat — 2,04, 0), (25)
= F(zq — Vat, Vo, t;T). (26)

Since x is on the circle, we have for small Az and small
Av,

1 _ _
sh(t) = -~ Z |[AG|F(Z0 — Vat, Vo, T) In F(2q — vat, Vo, T)

%

1 2L B -
— ;/0 dzAvF(x — vat, v, T) In F(x — vat, v, T)

1 2L B B
_N;/o drAvF (2,04, 7)In F(2,04,T)

1 2L o0 _ _
R —— da:/ dvF(z,v,7)In F(z,v,T)
0 0



where we used the translational invariance in going from
the second to the third step. We note that this re-
sult explains the main observations in Fig. (5), namely
slowly decaying oscillatory approach to the final value,
with precise returns at integer values of 7. Since F
has period 2L, we can write it in the form F(z,v,0) =
pog(v) + ¢(x,v,0) where pg is the average density in
the original box, g(v) = pg' 02L dxF(x,v,0)/(2L) is
the averaged global velocity distribution [g is normal-

ized to 1/2 on v > 0] while ¢(x,v,0) has period 2L
and mean zero (i.e. fOQL dzg(x,v,0) = 0). Hence clearly
Y(z,v,7) = OQLT dx'¢(x — 2',v,0)/(2L) is periodic in T
with period 1. Then we have from Eq. (21) that

_ z,0,T

F(z,v,7) = pog(v) + M (28)

T

We see that for integer values of 7 = 1,2,3, ..., F attains
the value pog(v), which yields the time-maximum of the

entropy s’ given by:

_ 2L [e%s)
sho == | o [ dopnao) nlpog(o)
— g2 / dvgi(v) nfg(v)). (29)

We also see that the deviations of F, from the value
pog(v), that occur at values of 7 between these integers
are at most of order 1/7, implying that the same thing
is true for the entropy.

For the special initial condition F(z,v,0) = po[l +
acos(ma/L)|h(v)8(v), with h(v) any even velocity distri-
bution, we get F(z,v,7) = po{l — a[sin[r(z/L — 27)] —
sin[rx/L]]/(2nT)}h(v). We thus explicitly find here that
F = poh(v) for 7 = 1,2,3,..., with 1/7 deviations for
intermediate values as described above. In particular F
approaches poh(v) as 7 — oo.

Next, we consider the case discussed in Sec. (IITA)
where the gas is initially confined on the left half of the
box. The initial distribution considered is of the product
form F(z,v,0) = p(z)geq(v)0(v) and we then get:

B 1 2LT

F(x,v,7 = gcq(v)H(v)E/o dr' p.(z — '), (30)
where p.(z) is the initial density profile on the cir-
cle [0,2L], given by p.(x) = 2pg for x € [0,L/2] U
[3L/2,2L] and zero -elsewhere. To perform the
above integral, we Fourier-decompose the density pro-
file as p.(x) = .7 ane™ /L where a, =

) [ o

B pe(z)e /L Hence we obtain:

inm(z/L—T) &
_ ane sin(nnt
F(a,0,7) = ga®)6(0) |po + D ()
n#0

(31)

For our initial condition with a half-filled box one finds

an = 2pg sin(nm/2)/(nm) for n # 0. Hence we get

F(2,0,7) = geq(v)0(v)poR(z/L,7), where (32)
R(z,7)
_ 1+%i cos[nm(z — 7)] Sle(nﬂ'/Q) sin(nwr)

(33)

The product form of F leads to simplifications for the
entropy given by Eq. (22) and, we finally obtain Eq. (20)
[after fixing additive constants so that at ¢t = 0, it agrees
with Eqgs. (14,15)].

B. Choice II of the macrovariables
1.  Numerical results

We again start from a typical single realization with
N =107, L = 4 and Ty = 2.5 (the same as that used in
Fig. (1)). In this case we partition the box into K = 40
cells each of size £ = L/40 = 0.1 and calculate the cor-
responding empirical density p(z,t), velocity v(z,t) =
p(x,t)/p(x,t) and energy e(x,t) fields. Suppressing the
time dependence, we have that p, = p(z4),ps = p(za),
and e, = e(x,), x4 € 04, With corresponding tempera-
ture field T'(x) = 2e(x)/p(z) —v?(x). In Fig. (7), we plot
these fields at different times. The solid lines are the
analytically obtained averaged fields p, o, and T given
by Eqs. (A9), (A11), (A13). The details of the analyti-
cal calculation of mean fields are provided in App. A. We
find excellent agreement between the empirical and mean
densities, as expected. We also find that at long times
these fields converge to their equilibrium values given by
the uniform fields p(x) = po, v(z) = 0 and T(x) = Tp.
Unlike for the case of the f-macrovariable, here we do
not see an oscillatory approach to the equilibrium state.
In fact from the analytic results (see App. A) one can see
that the approach to equilibrium at long times takes the
form A(x,t)— Aeq(z) ~ B(z) e~ with a = Tom?/(2L3),
where A(x,t) can be any of the three fields p,v, T dis-
cussed above, Acq(x) represents its equilibrium value and
B(x) is some real known function. Next, we compute
the empirical density field for different values of N. In
Fig. (8) we plot the evolution of p(x,t) for the different
values of V and compare them with the respective mean
profiles p(x,t) at different times (black dot-dashed lines).
We notice that the empirical density shows fluctuations
for small N which decrease for increasing IV, leading to
better agreement of the empirical profiles with the aver-
aged ones.

We next insert these three fields into Egs. (14) and
(15) to obtain the intensive empirical entropy s%(¢). In

. Fig. (9) we plot s%(¢) with time ¢ for different cell sizes £.

The solid lines correspond to theoretical computation of
sY(t) using the analytical expressions of the mean fields
p(z,t), p(x,t) and é(x,t) given in App. A. In this case

we see that the increase of s¥(¢) is monotonic and the
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FIG. 6. Plot showing the evolution of N = 10° particles, in the (z,v) plane, where the particles move on a circle of length
2L = 8. The particles were initially distributed uniformly in a small box with Az = 0.25, Av = 0.5. With time the box gets

continually stretched and, at times that are multiples of 2L/Av = 16, the stretched pieces wind completely around the box.

Comparing with Fig. (2) we see that the dips in sé (t) occur at times = 24,40, at which the winding around the length 2L is

complete.

o 2 7
[
2 S <
IR A5t )
o 1> L 1=
. A: -2
o =3+ =
= XHl e
;; 0.5 = 2 =
= 1 r [
a
0 | I I (=== S e T = = = 0.1 I I I I I
0051 15 2 25 3 35 4 0 05 1 15 2 25 3 35 4 0051 15 2 25 3 35 4
X X X

FIG. 7. Plot of the ‘typical’ spatial profiles of the three conserved fields density p(z,t), velocity v(x,t), and temperature T'(z,t)
at different times ¢ = 0 (magenta crosses), 0.1 (green empty squares), 0.4 (black empty triangles), 1 (yellow empty diamonds),
2 (red inverted empty triangles), and 4 (blue empty circles) obtained from simulation of a single configuration with N = 107
particles. The density is normalised by the mean value po = N/L. Initial configuration is one realization of the canonical
ensemble for particles in the left half (0,L/2) with L = 4. The initial positions of the particles are distributed uniformly
between (0, L/2) and the initial velocities are drawn from Maxwell distribution given by Eq. (16) with canonical temperature
To = 2.5. The solid lines are analytically obtained fields p,o = p/p, and T given by Egs. (A9), (A11), (A13) (see App. A for
details). The excellent agreement between the empirical densities and the mean densities once again establish typicality.

entropy growth rate converges as we decrease the cell need to refer to the argument later. So consider the one-
size £. The final increase of entropy is again equal to dimensional Euler equations:
In(2), as expected.

Dup + 0u(pv) = 0, (34a)

0:(pv) + 0.(pv* + P) = 0, (34b)

Ot (pé + ;pUQ) + 0, |:U (pé + %pv2 + P)} =0, (34c)

2. Entropy increase for 8% and hydrodynamics

We now explore the connection between the increase of
the entropy S% and the behavior of the U-macrovariables ~ where é(z,t) = e/p —v?/2 (note: € is the internal energy
in the hydrodynamic limit. It is believed that the Euler density and € = €/p) is the internal energy per particle
equations for the three conserved fields describe, in a and the pressure, for an ideal gas system is given by P =
suitable regime, the hydrodynamics of a one-dimensional
fluid of interacting particles. At the level of the Euler
equations there is no entropy increase. While this is well
known, we provide an argument for it here, since we will
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FIG. 8. Testing the dependence of typicality on the number
of particles N. We plot the empirical density p(z,t) (nor-
malised by po = N/L) for different N and at different times,
along with the mean density. The agreement of the empirical
profiles with the averaged ones (dashed-dotted lines) becomes
better as N is increased.
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FIG. 9. Plot of entropy per particle, s%, as a function of time
during free expansion. Parameter values are: L = 4, N =
10°, T = 2.5. We consider the same single initial configuration
as in Fig. (1). The different plots correspond to partitions of
size £ = 0.2,0.4,1. Unlike in Fig. (2), here we see a monotonic
increase and a convergence of the growth rate on decreasing £.
The solid lines correspond to the mean field analytic profiles
and we find very good agreement with the entropy computed
from the empirical fields.

pT. These equations can be written in the form

Dp

Ft + p@xv = O, (35&)
Dv 1

— +-9,P=0, 35b
De 1

E + ;P@xv = 0, (350)
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FIG. 10. Verification of entropy production rate as in Fig. (9)
using Eq. (40). The red line is the LHS of Eq. (40) where
SY(t) is calculated from the definition given by Eq. (14) and
the green points are the RHS of Eq. (40) calculated from
hydrodynamics. Inset: Plot of the integrand in Eq. (40) with
space = at different times.

where D/Dt = 0; + v0, denotes the advective deriva-
tive. Now we use the Euler hydrodynamic equations
along with Clausius’ laws of thermodynamics to deter-
mine the entropy production rate in the slowly evolving
local equilibrium state. Clausius’ laws of thermodynam-
ics provide a well-known thermodynamic relation for the
ideal gas, given by TdS = dE + PdL, where S is the
Clausius entropy, E is total internal energy and L is the
volume. Applying this relation to a small volume ¢ with
a fixed number of particles n, we find, after some manip-
ulations,

Tds = dé + Pd(¢/ny),
D _1[b¢_r by

h 5
N D T T | Dt 2Dt

with s(z,t) being the entropy per particle.  From
Egs. (35a) and (35c) we then immediately obtain that

Ds = 0. The total entropy S(t) = fOL ps(z,t) dx also

remains constant, since dS/dt = —fOL dx O (pvs) = 0,
using the boundary conditions v(0,t) = v(L,t) = 0.
The standard mechanisms of entropy growth in the hy-
drodynamic description are either additional dissipative
(Navier-Stokes-Fourier) terms or the formation of shocks.

We now discuss entropy production in our mnon-
interacting gas using a similar description, keeping in
mind that we now do not expect a closed set of hydro-
dynamic equations with the three fields. In fact it is
easy to see that the first two Euler equations in Egs. (34)
continue to hold while the equation for the energy field
e(z,t) no longer holds. Formally the energy field satisfies
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FIG. 11. Plot of the ‘atypical’ spatial profiles of the three conserved fields density p(z,t), velocity v(zx,t), and temperature
T(z,t) at different times obtained from simulation of a single configuration with N = 107 particles. The initial positions of the
particles are distributed uniformly between (0, L/2) with L = 4, and the initial velocities of odd particles are set vo = v/Tp and
of even particles are set vo = —+/To, with To = 2.5. The profiles repeat themselves after a time period 87 with 7 = L/(4y/Tp)
and thus the system does not reach an equilibrium at large time in this ‘atypical’ case. We have used grid size £ = 0.1.
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FIG. 12. Plot of s (t) and s%(t) for the ‘atypical’ initial
configuration and parameters considered in Fig. (11). The
periodic oscillation in both cases imply that the system never
reaches equilibrium. For the left figure we have used grid size
Az = Av = 0.5 and for the right figure we have used ¢ = 0.1.

the exact conservation equation
ore + 0, J =0, (36)

where J(z,t) = %/ dv v3 f(x,v,t) (37)

is the energy current density. It is instructive to rewrite
this equation in the following form:

ore + Oz[v(e + P)] = =0, Js,
where Js(z,t) = J —v(e + P)

(38)
(39)
is the current after subtracting the reversible Euler part.

This current, Js, can be interpreted as a “heat” current.
Then, repeating the steps as before we find that the en-

tropy production rate is finite and given by

as(t) /L 4w O2ls _ /L "
0 0

dt T
where in the last step we used the fact that the current
vanishes at the boundaries. For our system we can com-
pute the fields J,(z,t) and T'(x, t) directly from the exact
solution of the microscopic dynamics and thereby com-
pute the entropy production rate from the above equa-
tion. In Fig. (10) we compare this with the entropy
production rate obtained from the definition given by
Eq. (14) and find perfect agreement between the two.
However, as shown in the inset of Fig. (10), we find that
the integrand is not everywhere non-negative and we are
not able to prove analytically that the entropy production
rate is non-negative. Note that for generic interacting
non-integrable systems, the term J; should be express-
ible in terms of the three basic fields and in fact given
by the Fourier’s law Js = —k0,T. This form would then
guarantee non-negativity of the entropy production rate.

Js0,T
T2

(40)

We briefly comment on the growth of S {3. For the case
of our non-interacting gas, Eq. (18) or Eq. (10) are anal-

ogous to the FEuler equations and the growth of S }; was
purely a result of the discretization of pu-space. Another
well known trivially integrable system is the harmonic
chain. The Euler equations for this system were written
in [38] where it was also noted that a finite space-time
scaling parameter led to a Navier-Stokes type correc-
tion term [39]. Interestingly, for the disordered harmonic
chain, closed form Euler equations can be written for just
the stretch and momentum variables, even though the
system has a macroscopic number of conserved quanti-
ties [40].



12

0.1 =0 X=L/d — 0.1 -4 =L/ — 0.1 96 =L/ —

= x=3L/4 - - - = x=3L/4 - - - = x=3L/4 - - -
0.08 - S/ — - 0.08 - 0.08 -
~ 006 ~ 006 - ~ 006 -

= s S

0,04 F = 0.04 - = 0.04 -
0.02 F o 0.02 F 0.02 F

0 L = '\' / \“ : N O L 1 1 L 0 L 1 1 I I

-10 0 5 10 20 5 0 5 10 20 5 0 5 10

A \' v

FIG. 13. Plot of evolution of the empirical particle density fa (z,v,t) = fa(z,v,t)/N, starting from a single two-temperature
initial microstate, at two spatial locations © = L/4 and x = 3L/4. The initial position of N = 107 particles are distributed
uniformly within (0, L) with L = 4, while the initial velocities of the particles in the left and right halves are drawn from
Maxwell distributions at temperatures 77, = 1 and Tr = 10, respectively. The grid size was taken as Ax = Av = 0.5. At
t = 0 the empirical density fo(z,v,t) is Maxwellian with To = 1 and Ty = 10 at « = L/4 and z = 3L/4, respectively. As
time evolves, the empirical density at any position gets contribution from particles originating initially from both the Maxwell
distributions. After a large time, the distribution fo(x,v,t) is seen to approach the form g(v)/L (shown by the black dash-dot
line in the left-most panel), where g(v) = [geq(v, 1) + geq(v, 10)]/2 and geq(v, To) is given in Eq. (16).
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FIG. 14. Plot of the spatial profiles of the three conserved fields density p(z,t), velocity v(z,t), and temperature T'(z,t) for
the ‘two-temperature case’ at different times ¢ = 0 (magenta circles), 0.1 (green dashed lines), 0.4 (blue dotted lines), 1 (yellow
dash-dot lines), 2 (red dash-dot-dot lines), and 4 (black solid lines) obtained from simulation of a single initial microscopic
configuration with N = 107 particles. The initial condition is the same as that used in Fig. (13). Notice that after a highly
nontrivial evolution, all three profiles become flat and thus the system reaches the equilibrium state at long times.

IV. OTHER INITIAL CONDITIONS we plot the profiles of the three conserved fields density
p(x,t), velocity v(z,t), and temperature T'(z, t) at differ-
ent times. We note that the profiles repeat themselves
after a time period 87 with 7 = L/(4y/Tp). Thus, unlike
for the typical initial configuration in Fig. (7), for this
atypical initial condition the system never settles down
into an equilibrium state for either of our two choices of
macrovariables. We have also looked at the evolution of
the entropies sé(t) and s%(t) for this atypical initial con-
figuration in Fig. (12), where we find, of course, that the
entropy in both cases keeps oscillating for all time.

So far we have considered a single typical initial con-
dition for a macrostate in which the initial positions are
uniformly distributed in (0, L/2) and the initial velocities
are chosen from a (uniform) Maxwell distribution. We
found that at large times the system goes to equilibrium,
with the profiles of the conserved fields becoming flat and
the corresponding entropy s%(t) reaching a steady value.
It is also interesting to study the evolution for a single
initial condition, atypical for all the particles being on
the left side.

To do that we first consider a single configuration of
N = 107 particles initially in the left half (0,L/2) dis-
tributed uniformly. The initial velocities of odd particles
are set to vg = /Ty and that of even particles are set
to vg = —+/Tp, with Ty = 2.5. Interestingly, in this
case, each particle comes back to its original position

with its original velocity periodically after a time period
2L/+/Ty. This recurrence is observed in Fig. (11), where

We also consider another initial microstate correspond-
ing to an f-macrostate (choice-I) where the particles are
uniformly distributed over the full box with zero momen-
tum and with two different temperatures on the left and
right half of the box, i.e., with the velocities chosen from
the corresponding Maxwellians. In Fig. (13) we show
the time-evolution of f(x,v,t) while Fig. (14) shows the
evolution of the three fields — density, velocity and tem-
perature. In the former case we see that the long-time
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FIG. 15. Plot of s} (t) and s%(t) obtained from simulation of
a single realization starting from the two-temperature initial
configuration. The initial condition is the same as that used
in Fig. (13). We have used several grid sizes for computing
sé and s%. While both entropies saturate at large times,
only the final value of s% corresponds to the thermodynamic
equilibrium value. Since the final velocity distribution at long
times is not Maxwellian, the saturation value of s}; does not
correspond to the equilibrium value. Observe that the growth
is non-monotonic in both cases. We also see convergence of
s% with coarse-graining scale ¢ while for sg we again see a
decreasing growth rate with decreasing Aw.

form of the single particle distribution is non-thermal,
i.e. non-Maxwellian, as demonstrated and explained in
Fig. (13). On the other hand, the fields p(z,t), v(z,t)
and T'(x,t) are converging to their expected thermal equi-
librium values, as shown in Fig. (14). In Fig. (15) we
compare the evolution of sg and s% for the case where
the left and right halves are initially at temperatures
Tr = 1 and Tr = 10 respectively. We note that both
s% and sé saturate at long times but the increase in en-

tropy is less for sé. This is because the conserved fields
evolve at long times to their thermodynamic equilibrium
values, with uniform density, zero momentum and tem-
perature T = (T, + Tr)/2, with s¥ thus attaining the
corresponding equilibrium value. On the other hand,
the total velocity distribution does not evolve with time
and hence remains non-Maxwellian at all times. Thus
sé saturates to a value lower than the equilibrium one.
From Eq. (28) and the discussion in that section we find
that the saturation value of sz is given by Eq. (29) with
G(v) = [geq(v, T1) + goq(v, Tr)]/2. This agrees with the
measured saturation value in Fig. (15). The invariant
velocity distribution g(v) which is just the mean of two
Maxwellians in fact defines a corresponding generalized
Gibbs ensemble (GGE) that describes the long-time equi-
librium state of the system. Note that the entropy growth
for both definitions of entropy is non-monotonic, unlike
what is seen for sY for free expansion.

V. GEOMETRICAL OVERVIEW

Apart from the macrovariables, U, f, let us also define
another one, corresponding to the global velocity distri-
bution: g(v) = [dzf(z,v)/N. For the equal mass gas,
this is a constant of the motion. Each of U, f and g de-
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FIG. 16. A schematic showing the partition of the full phase
space into subspaces defined by the equilibrium macrostates
feq (boundary shown by dotted-line), Ueq (boundary with
long-dashed line) and geq (boundary with dashed line). The
points X1(0), X2(0), X3(0) correspond to the three initial mi-
crostates considered in our study. The point X;(0) cor-
responds to the free expansion from thermal equilibrium,
X2(0) corresponds to free expansion from the alternate ve-
locity microstate and X3(0) corresponds to the uniform den-
sity non-Maxwellian (two-temperature) initial global veloc-
ity distribution. After a long time, 7, these microstates,
X1(7), X2(7), X3(7), would remain in regions of phase space
as shown in the figure ( making brief excursions out of these
regions on Poincare recurrence time-scales). We note that
X1 () will be contained in Iy, X2(7) is outside I'y,, UT'y,, U
Iy.,, and X3(7) will end up in I'y,, \ I'f,, (all points in I'y,,
that are not in I'y,, ).

fine partitions of 'y : T'g = {T'y} = {T'y} = {T'y}, where
{...} represents the collection of all possible macrostate
values. The last, {I'y}, is a partition of I'p into sets
invariant under the dynamics. Each of the three parti-
tions has a dominant set, I'y,., I'y,,, and Ty, respec-
tively. These are shown schematically in Fig. (16). The
macrostate Ugq corresponds to uniform profiles of the
conserved fields, foq corresponds to a macrostate with
uniform density profile and Maxwellian velocity distribu-
tion, and geq corresponds to a global Maxwellian velocity
distribution. Note that the f partition of I'g is a refine-
ment of the U partition and also a refinement of the g
partition.

As shown in the figure, Iy, is the dominant set in 'y,
and in I’y , while Iy . has tiny regions that are out-
side 'y, and vice-versa. Any initial microstate, X;(0),
inside 'y, , such as the one chosen from thermal equi-
librium in the left half of the box, will eventually be in
the region I'y, N Ty, N Ty, = [y, which corresponds
to “complete” thermal equilibrium. On the other hand
typical microstates such as X3(0), chosen from outside
of I'y,, will end in I'y,, but outside I'y,. and so in this
case we have restricted thermalization. This is seen in



Fig. (15) where sY% is seen to reach its equilibrium value

while sg does not. Finally one has very special atyp-
ical microstates, X2(0), such as in the alternate veloc-
ity case considered in Fig. (12), which remains outside
Iy, Uly,, UTy,, and there is no thermalization at all.
The above features are specific to our system, a non-
interacting integrable model. For non-integrable models
it is expected that almost any initial microstate would
end in I'y, and the system would thermalize completely.

VI. CONCLUSION

We summarize here our main findings. In this paper,
we have studied entropy increase during the free expan-
sion of an ideal gas. In the microscopic description we
start from an initial condition where the molecules are
uniformly distributed in the left half of a box and the
velocities are chosen from a thermal distribution. For
this system we study the evolution of the Boltzmann en-
tropy defined for a single microstate with two choices of
macrovariables: the empirical single particle distribution
f(x,v,t) and the profiles of density, momentum and en-
ergy U = [p(x),p(x),e(z)] (or equivalently p,v,T). The
corresponding entropies are s and sY, respectively. In
equilibrium, both these choices correspond to the ther-
modynamic entropy S.

e The time evolution of the empirical density
f(z,v,t) and the fields p(z,t),v(z,t), T(x,t) were
obtained for a single realization, starting from a
single typical initial microstate chosen from the
equilibrium macrostate where all particles are in
equilibrium in the left half of a box. We found
that these agree, in the large N limit, with the
corresponding fields F,, p,v,T, obtained by aver-
aging over initial microstates taken from the rel-
evant initial Gibbs distribution or, more or less
equivalently, from the same initial macrostate. For
our model, the averaged fields can easily be com-
puted exactly. This demonstrates that the evo-
lution of the macrostates and the corresponding
entropies, for single typical microstates (belonging
to a macrostate M;y;), agrees with the evolution
obtained after averaging over the ensemble of ini-
tial conditions (corresponding to the same initial
macrostate Mip;).

e Both Sé and s% increase with time and eventu-
ally reach the expected equilibrium value with an
increase of In(2) per particle. However, while s%
increases monotonically with time, sJ,; shows oscil-
lations which decay with time.

e The entropies are defined in terms of coarse grain-
ing scales |A,| for sé and ¢ for s%. We find that
the entropy production rate for s% does not depend
much on decreasing grid-size £. On the other hand,
sz decreases with decreasing Av. However, we find
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a remarkable scaling collapse of the data for sé(t)
for different Av on plotting them as a function of
the scaled time 7 = tAv/(2L). We provide an an-
alytic understanding of this collapse and compute
the scaling function. This also explains the oscil-
lations and in particular the observation that the
system periodically goes to the maximum entropy
state.

e We showed that the entropy increase for SY can
be related to a microscopic “heat” current, Js, and
formally the local entropy production rate can be
written in the form J,0,(1/T). However, we find
that this is not positive-definite (as expected for
non-integrable systems with heat diffusion). Nev-
ertheless, the integral over all space gives a positive
entropy production.

e Other initial conditions: The results above are
for the specific case of free expansion. We have also
studied other initial conditions. We considered one
example (with an atypical initial microstate with
alternate particles having different velocities, +uvg)
where the system never reaches a steady state and
the entropy shows persistent oscillations. Our sec-
ond example involves particles initially distributed
uniformly in the box but with a non-Maxwellian
global velocity distribution. For this case we find
that s% saturates to its equilibrium value at long

times, while sé does not, corresponding to the ob-
served fact that the macrovariables f and U evolve
in this case to limiting values: U evolves to its equi-
librium value Ueq while f evolves to g/L, corre-
sponding to the dominant f-macrostate given the
total velocity distribution arising from finjtial-

Thus our study illustrates the crucial role of typicality,
large numbers and coarse-grainingthat lead to entropy
increase, irreversibility and approach to thermal equilib-
rium, even in a non-interacting integrable system. The
ideas of ergodicity, interaction and chaos do not seem to
be so relevant.

Thermalization in non-chaotic systems, such as the
Toda chain, has been discussed in other recent pa-
pers [41, 42]. The one-dimensinal hard rod gas, an in-
tegrable model which however has a Navier-Stokes term
in the hydrodynamic equations [27], would be another
interesting case to study from the present perspective. It
will also be interesting to extend the study of the present
paper to interacting systems such as the alternate mass
hard particle gas where the masses of alternate parti-
cles take different values. This non-integrable model has
been studied extensively in the context of the breakdown
of Fourier’s law of heat conduction in one dimension [43—
46] and verification of the hydrodynamic description [47—
50]. For this case we expect important differences from
the present integrable model even though the equilibrium
thermodynamics of both are identical. For example we
expect that the entropy production rate for sé at a fixed
time should converge to a finite positive value even in the



limit of vanishing grid-size, in contrast to what we see in
Fig. (2). Another difference is that we expect is that the
heat current term, J,, in Eq. (39) should be given by a
diffusive term leading to positive entropy production rate
at the local level (in contrast to the inset in Fig. (10)).
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Appendix A: Exact solution for the evolution of
macroscopic fields

Here we present exact results for the evolution of
average fields corresponding to the empirical densities
f(z,p,t) and [p(x,t), p(x,t),e(z,t)]. A similar study on
a ring was done earlier in [51].

The mean density p(x,t), momentum p(z,t) and en-
ergy é(z,t) fields are defined as

N
pla,t) = <Z Oz — J;)> = /dv F(z,v,t),

(A1)
N
Pz, t) = <Z d(xj — x)vj> = /dv v F(x,v,t),
j=1
(A2)
N V2 02
é(x,t) = <Z(5(Ij x)23> = /dv 5 F(z,v,t).
(A3)

Here (...) denotes an average over the initial positions and
velocities, {z;(0),v;(0)}, of all the particles, which are
chosen from the canonical distribution at temperature T'
with all particles in the left half (0, L/2). In the following,
we study the evolution of these fields in time and space
for this system with two reflecting boundaries at = 0
and x = L.

The canonical ensemble implies that we distribute the
particles uniformly in (0, L/2) and draw their velocities
from the Maxwell’s velocity distribution given by

1 /2 —v3
geq(’UO7T) = <M> eXp |:219:| .

As discussed earlier, we can effectively treat the particles
as non-interacting and the problem reduces to a single
particle problem [24]. We then consider a single particle
starting from an initial position zy with initial velocity
vg. The final position, x;, of the particle, taking all pos-
sible collisions into account, can take the following forms:

(A4)

ro + vot — 2nL, if vg>0,v4 >0,
To + vot + 2nL, if vg <0,v; <O,
—xo — vot + 2nL, if vg>0,v; <0,
—xg —vot — 2nL, if vy < 0,v; > 0,

(A5)

Ty =

where v, the velocity at time ¢, can take either values +vg
and n = 0,1,2,3..., is the number of collision(s) that the
particle has with both the boundaries. The distribution
F(z,v,t) is then obtained by averaging over the initial
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position [uniform in (0,L/2)] and velocity [drawn from  geq(vo,T)]:

F(z,v,t) = N(0(z — z)d(v — vy)). (A6)
Using Eq. (A5) we get:
L/2 oo 00
F(z,v,t) = ? /0 dmo/i dvoGeq(vo) Z [0(x — 20 — vot 4+ 2nL)é(v — vg) 4+ 0(x + 2o + vot — 2nL)d(v + vo)],
T (A7)
= 2pOM i [O(x —vt —2nL + L/2) — O(z — vt + 2nL — L/2)], (A8)

27T

where pg = N/L. Now we calculate the three mean fields by performing the integrals in Egs. (A1), (A2), and (A3) to
get

pla,t) = /OO dvF(x,v,t),

—00

L/2
\/ﬁ Z / dxo/ dv e="/2T [0(x —xg — vt 4+ 2nL) + §(x + xo — vt — 2nL)],

By D )
_pon_ioo {erf(Lm %fz> +erf(L/2 \/;;fﬂﬂ (A9)

Using the Poisson resummation formula, this can be rewritten in the alternative series form:

km krx —k2m2 T2
plx,t) = po + 4po Z — sm < 5 > cos (L) exp (2L2> . (A10)

Following a similar approach we obtain the following expressions for the mean momentum and energy:

(o t) / dv vF (z,0,1),
T E e

n=—oo

4poTt = k k —k2m2Tt?
=Y sin (;) sin (;) exp (27;) (A12)

k=1
1 o0
= §/ dv v?F(z,v,t),
2T & N 2nL — L/2+x 2nL — L/2+x —(2nL — L/2+2)?

S V2Tt 2V2Tt 2T
LS 2nL —L/2 —x 2nL —L/2 —x —(2nL — L/2 — x)?
Terf ft + Wois exp T2 . (A13)
poT E2m2Te2\ | (krw ([ kmz —k2n2Tt?
— 4+ 2 OT Z ( 72 Sin 7 COS T exXp T . (A14)

From Eqgs. (A10, A12, A14) one can easily see that the approach to equilibrium has the long-time form e~ with
a=Tnr%/(2L?).
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