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Abstract

How to compute the probability distribution of a detection time, i.e., of the
time which a detector registers as the arrival time of a quantum particle, is a
long-debated problem. In this regard, Bohmian mechanics provides in a straight-
forward way the distribution of the time at which the particle actually does arrive
at a given surface in 3-space in the absence of detectors. However, as we discuss
here, since the presence of detectors can change the evolution of the wave function
and thus the particle trajectories, it cannot be taken for granted that the arrival
time of the Bohmian trajectories in the absence of detectors agrees with the one
in the presence of detectors, and even less with the detection time. In particu-
lar, we explain why certain distributions that Das and Dürr [7] presented as the
distribution of the detection time in a case with spin, based on assuming that
all three times mentioned coincide, are actually not what Bohmian mechanics
predicts.
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1 Introduction

In a time-of-arrival experiment, one places detectors along a surface Σ in 3-space and
asks for the time TD and place XD recorded for the detection of a particle. In Bohmian
mechanics, a particle has a well defined position X(t) at any time t, so there is a fact
even in the absence of detectors about when and where the particle first arrives at
Σ. However, the presence of a detector can change the Bohmian trajectories, even if
no detector clicks. After all, as we discuss, the detector may effectively collapse away
parts of the wave function that would have influenced the trajectory. That is, possibly
XWOD(t) ̸= XWID(t), where WOD means without detector, WID means with detector.
As a consequence, possibly

TWOD ̸= TWID (1)
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for the first arrival time without detectors,

TWOD ≡ inf{t ≥ 0 : XWOD(t) ∈ Σ} (2)

and likewise with detectors. We write PWOD (PWID,PD) for the probability distri-
bution of TWOD (TWID, TD).

To underscore the importance of these concepts for the paper’s comprehension, al-
beit with some repetition, we will examine them from a different perspective. For ease
of visualization, consider the following experiment, which parallels a scenario to be dis-
cussed below: within an empty cylinder at some initial time, a particle’s wave function
ψ is initialized on the bottom base, moving towards the top base. The cylinder’s bound-
aries are impenetrable walls, allowing the quantum dynamics to unfold freely. Atop the
cylinder sits a detector—a macroscopic device with internal circuitry that triggers upon
interaction with the particle, displaying a time TD on a connected computer screen.

Now, imagine removing the detector from the top base: TWOD represents the time
when, according to Bohmian mechanics, the particle first crosses the top base. This
time is theoretically computed based on ψ, the initial position, and the particle’s Hamil-
tonian. Restore the detector and repeat the experiment with the particle in the same
initial state and position. This reintroduces a many-body system involving the de-
tector’s constituents in an initial ready state, exactly as in the first scenario. In the
first scenario, TD represents the numerical result displayed on the computer screen as
a consequence of the macroscopic amplification process triggered by the microscopic
interaction between the particle and the relevant part of the detector. On the other
hand, TWID denotes the time when the particle first crosses the top base, influenced
by the many-body wave functions governed by a many-body Hamiltonian, theoretically
predicted from the particle’s Bohmian trajectory within this many-body system. These
three times are clearly conceptually distinct. Our objective in this paper is to explore
the relationships among them, if any.

Das and Dürr [7] computed PWOD for a particular setup involving a spin-1/2 par-
ticle in an axially symmetric wave guide. Assuming that the presence of the detector
would be a “mild disturbance” and thus that TWOD = TWID = TD up to negligible
errors, they suggested that the prediction of Bohmian mechanics for PD agrees with
PWOD.

Recently, we proved in [19] that the specific distribution PWOD computed in [7]
cannot be the prediction of Bohmian mechanics for PD because it is not given by a
positive-operator-valued measure (POVM), not even approximately. (See Appendix A
for background on POVMs.) Here, we give more detail about the proof and related
considerations, including a more detailed analysis of the distributions compatible with a
POVM. We provide as well further, alternative arguments for PWOD ̸= PD, including
some discussion of the relations among TWOD, TWID, and TD. In particular, we suggest
that even XWID = XD and TWID = TD can’t be taken for granted.

To be sure, there are situations in which the presence of detectors does not signif-
icantly influence the trajectories, for example in far-field detection (i.e., as t → ∞, at
great distances from the support of the initial wave function) as considered in scattering
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theory. In that case,
TWOD = TWID = TD, (3)

at least approximately, and PD can be computed by computing PWOD. Specifically,
for Σ the sphere around the origin of large radius R, the distribution of TWOD is (with
small relative error) given by a POVM, in fact a projection-valued-measure (PVM),
namely corresponding to the quantum observable mR/|p̂| with p̂ = (p̂x, p̂y, p̂z) the
momentum operator and m the particle’s mass.1 But in near-field detection, there is
no obvious self-adjoint operator that could serve as the observable for TD, which is
the origin of the perennial debate about how to compute PD. This situation has led
in orthodox quantum mechanics to a multitude of guesses about PD, as well as to
premature claims that it is impossible to determine PD for a detecting surface because
of the quantum Zeno effect.

A moral from our discussion is that detection time is not the same thing as arrival
time. It turns out to be wise to keep in mind the advice often emphasized in orthodox
quantum mechanics that we should not take measurement for granted, that the appa-
ratus often plays an active role that must be taken into account. Note, however, that
the difference between detection time and arrival time is clearly meaningful and visible
in a precise theory such as Bohmian mechanics, whereas in the framework of orthodox
quantum mechanics what is happening on the microscopic level is too vague for this to
be so.

The remainder of this paper is organized as follows. In Section 2, we recall the
equations of Bohmian mechanics, describe the setup considered by Das and Dürr in [7],
and discuss some reasons for expecting that PWOD ̸= PD. In Section 3, we analyze
POVMs on C2, provide alternative proofs of the no-go theorem of [19], and discuss why
superluminal signaling would be possible if PWOD = PD. In Section 4, we consider
different equivariant equations of motion and discuss their relevance to the question
whether TD = TWOD, as well as whether TD = TWID. In Section 5, we conclude. We
also have two appendices. In Appendix A we review POVMs and how they arise. In
Appendix B we respond to a comment of Das and Aristarhov [6].

2 Arrival Times

2.1 Bohmian Arrival Times

Bohmian mechanics, a one-parameter family. We consider a 1-particle wave
function Ψ = Ψt(x) that is spinor-valued and obeys Schrödinger’s equation

iℏ
∂Ψ

∂t
= − ℏ2

2m
∆Ψ+ VΨ , (4)

where V (x) is a Hermitian 2 × 2 matrix for every x ∈ R3. As the Bohmian equation
of motion for the particle position X = X(t), two different possibilities are sometimes

1Moreover, for large R, the joint distribution of (TWOD,XWOD) is given by the observable
(mR|p̂|−1, R|p̂|−1p̂).

3



considered, corresponding to λ = 1 or λ = 0 in the general form

dX

dt
=

ℏ
m
Im

Ψ†∇Ψ

Ψ†Ψ
(X) + λ

ℏ
2m

∇× (Ψ†σΨ)

Ψ†Ψ
(X) (5)

=
ℏ
m
Im

Ψ†(I2 − iλσ×
)
∇Ψ

Ψ†Ψ
(X) , (6)

where σ = (σx, σy, σz) is the triple of the Pauli matrices, Ψ†Φ denotes the scalar product
in the spinor space C2, × the cross product in 3d, and I2 the 2 × 2 identity matrix.2

In [7], λ = 1 was considered, which arises in the non-relativistic limit of the Bohmian
equation of motion associated with the Dirac equation. In fact, |Ψ|2 is equivariant for
every λ ∈ R. TWOD can be computed for every initial position X0 by solving (4), (5),
and (2). Since X0 is random with distribution |Ψ0|2, TWOD is random, too, and its
distribution can in principle be computed.

Note that even if V (x) is real-valued (i.e., a multiple of I2), so that the Schrödinger
equation (4) does not even couple to spin, then the equation of motion (5) still couples
to spin for λ ̸= 0, leading to a spin dependence of TWOD and the question whether TD
might depend on the spin as well.

Setup. Das and Dürr [7] considered the real-valued potential V given by

V (x, y, z) ≡
{
∞ if z < 0
m
2
ω2(x2 + y2) if z ≥ 0 ,

(7)

where ω > 0 is a constant. This potential does two things: it provides a reflecting wall
at z = 0 and acts as a wave guide that will keep the wave function near the z-axis.

For any unit vector n in three-dimensional space, consider the spinor |n⟩ in C2

defined uniquely up to a phase θ by the condition n = ⟨n|σ|n⟩. Explicitly,

|n⟩ = eiθ
(

cos(α/2)
sin(α/2) e−iβ

)
(8)

with α and β spherical coordinates of n, i.e., α ∈ [0, π] the angle between n and the
z-axis and β ∈ [0, 2π) the angle between (nx, ny) and the x-axis (azimuthal angle).

The initial wave function is taken to factorize,

Ψ0 = |n⟩ ⊗ ψ0 (9)

with arbitrary unit spinor |n⟩ and a certain fixed choice of ψ0. The surface considered
is

Σ = {(x, y, z) ∈ R3 : z = L} (10)

for some L > 0. It follows that Ψt = |n⟩ ⊗ψt with ψt the solution of the corresponding
scalar Schrödinger equation, and that ψt(x, y, z) vanishes for z < 0 and all t (but can
be non-zero for z > L).

2Equation (5) has perhaps been considered so far only for λ = 0 or λ = 1. But for the purpose of
our analysis we shall allow other real values as well.
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Figure 2. Arrival time histograms for spin-up
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wave functions, L = 100 and w = 103

graphed along with the semiclassical arrival time distribution Psc(t) (dashed line) and the quantum (convective) flux
distribution Pqf(t) (solid line). We see agreement between P0|0

Bohm(t) and Pqf(t). For the up-down case, no arrivals are
recorded for t > 42.9 (= tmax). Note the disagreement of all distributions with Psc(t). Each histogram in this figure has been
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2 is a consequence of property (14b).

For d = 50mm and L = 5mm (Fig. 2), a modest d t ⇡ 10ms will successfully resolve 8 lobes (main + 7 smaller lobes), while
d t ⇡ 0.1ms will resolve as many as 83 lobes (main + 82 smaller lobes). However, we must also understand that only a few data
points (about

⇣
2

p2

⌘
N
n4 in N experiments) contribute to the nth lobe, especially when n � 1. This number, being independent of

any tunable parameters like L, w , etc., sets an intrinsic limit on the experimenter’s ability to resolve the distant lobes.
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Figure 1: PWOD in the setting of [7], here denoted by Π
α|β
Bohm, for two different spinors

|n⟩; the blue curve (α = 0) corresponds to n parallel to the z-axis, the red curve (α = π
2
)

to n perpendicular to the z-axis. (Reproduced from [7]. The inset shows a detail of the
red curve in magnification.)

Findings for PWOD. Das and Dürr found that the distribution PWOD,n of TWOD

for given n, with spin-dependent law of motion (5) with λ = 1, depends strongly on the
choice of the spinor |n⟩. This is visible in Figure 1 as the difference between the red
and the blue curve, and in Figure 2 as the non-constancy of either the red or the black
curve. We will derive below that PD (and its mean) can depend on n only in very
limited ways that are incompatible with the n-dependence of PWOD = PWOD,n. We
also note for comparison that for the spin-independent law of motion (5) with λ = 0,
the trajectories and therefore TWOD are of course independent of n.

2.2 The Decoupling Argument

Before we discuss the no-go theorem of [19] in Section 3, we describe another, much
simpler argument to the effect that TWOD ̸= TD in the setting of [7]. We will call it the
decoupling argument:

Assume that the initial wave function Ψ0 of the particle is of product form (9) with
any unit spinor |n⟩ and any normalized scalar function ψ0. One of the remarkable
features of PWOD is its dependence on n. Although the Hamiltonian Hp of the particle
does not couple to the spin, i.e., is of the form

Hp = I2 ⊗ H̃p (11)

relative to the factorization of Hilbert space into spin and position degrees of freedom,
the Bohmian equation of motion (5) does couple to the spin, which is why the trajec-
tories (and hence TWOD) depend on |n⟩. Now we regard the detectors as a quantum
system coupled to the particle by means of an interaction Hamiltonian Hint. If Hint

does not couple to the spin of the particle, i.e., if

Hint = I2 ⊗ H̃int , (12)
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Figure 2: The red and black curves show, for two values of the parameter ω from (7),
the expected arrival time ETWOD, here denoted by ⟨τ⟩, in the setting of [7] as a function
of α, the angle between n and the z-axis. (Reproduced from [7]. The red and black
curves are not related to the red and black curves in Figure 1.)

then also the full wave function Φ of particle and detectors together at any (late) time
will be of the form |n⟩ ⊗ something, where the “something” does not depend upon
n. Thus the |Φ|2 distribution of the apparatus’s pointer position or records will be
independent of n, so that PD will as well. This shows that the Bohmian prediction for
PD differs from that for PWOD, so TWOD ̸= TD, provided (12) holds. This completes
the argument. The mathematical content is that

assuming (11) and (12), PD cannot depend on n. (13)

The decoupling argument shows two things: First, that (3) is not an innocent as-
sumption, as it is provably false whenever (11) and (12) are true. Second, that it is
reasonable to expect that the observed distribution in the experiment is independent
of n when (11) holds, as (12) sounds like a reasonable assumption, one that would be
satisfied, at least to a high degree of approximation, for many apparently reasonable
detection procedures. However, since observations in actual experiments include rela-
tivistic effects in principle, and since the relativistic Hamiltonian of an electron (i.e., the
Dirac Hamiltonian) does not decouple from spin as in (11) (and not either as I4⊗H̃p for
C4 as the spin space), the relativistic (and thus also the observed) distribution for TD
should not (exactly) be independent of n. On the other hand, the no-go theorem of [19]
does not assume (11) or (12), which is why it provides a relevant piece of information
that goes beyond the decoupling argument.

6



2.3 How the Presence of Detectors Changes Trajectories

Let us flesh out our statement that the presence of a detector can change the Bohmian
trajectories, even if it does not click.

Consider a double-slit experiment with a detector in the left slit. It will effectively
collapse the 1-particle wave function to a wave packet that passed either through the
left or the right slit, depending on whether the detector clicked or not. A wave that
passed through one slit only will lead to different Bohmian trajectories (no interference
fringes, possibility to cross the symmetry plane between the slits) than a wave that
passed through both. In this example, the presence of the detector perhaps has only a
minor effect on the arrival time at the screen, but a major effect on the arrival place at
the screen. But there are three aspects to note: first, that the effect on the trajectories
is not a mild disturbance, but a drastic change of the trajectory; second, that using
better detectors will not make the change less drastic; and third, once we realize that
the presence of detectors can drastically change the trajectories, we have to expect that
in another case also the arrival time would be affected.

Since in the double-slit experiment with a detector in a slit, the Bohmian trajectory
is changed beyond the plane containing the detector and the two slits, one might won-
der whether, in general, the trajectory is not changed before the surface Σ containing
detectors. This cannot be taken for granted: even neglecting that a part of the wave
might be reflected from a detecting surface, we notice that in the free evolution of ψ in
the absence of detectors on Σ, parts of ψ beyond Σ can in general also propagate back
to the region before Σ and contribute there. Thus, if parts of ψ get collapsed away
when passing Σ, ψt in the region before Σ will be different from what it would have
been in the free evolution. As a consequence, also trajectories will be different from
what they would have been in the free evolution.

3 POVMs

In this section, we discuss several ways of proving the no-go theorem mentioned above,
which asserts [19] that there is no possible experiment (for which the experimental design
does not depend upon n) that would, when applied to a particle in the setup of [7] with
Ψ0 = |n⟩ ⊗ ψ0, have outcome with distribution PWOD,n for every n. The theorem
means, in other words, that there can be no experiment or procedure that yields the
arrival time TWOD unless the procedure itself directly incorporates information about
the direction n of the spin state; it shows in particular that if the experiment consists
of putting on Σ the kind of device commonly regarded as a detector, however it might
work, the distribution PD of its outcome TD will not in general agree with PWOD.

By experiment we shall henceforth always mean one whose design is independent
of n (respectively Ψ0). By way of contrast, suppose we were to measure the position
of the particle at the initial time and then use our knowledge of the quantum state of
the particle to compute (what would have been) its trajectory and thereby its arrival
time TWOD. Such a procedure would not count as an experiment according to this
stipulation.

We start from the known fact that for every experiment that can be carried out
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on a system with arbitrary initial wave function Ψ0, there is a POVM E0(·) such that
the outcome statistics are given by ⟨Ψ0|E0(·)|Ψ0⟩. This fact is a theorem in Bohmian
mechanics [12], [25, Sec. 5.1]. In particular, PD must be given by some POVM E0(dt).
But, as we will show, PWOD is not given by a POVM.

3.1 Spin POVM

Since Ψ0 factorizes according to (9) into a spinor |n⟩ and a scalar function ψ0, if we
regard ψ0 as fixed and |n⟩ as variable, then the spin dependence of the outcome statistics
is captured by the POVM

E(dt) = ⟨ψ0|E0(dt)|ψ0⟩, (14)

where the inner product is a partial inner product taken in the position degrees of
freedom but not those for the spin. Thus E(dt) is a spin POVM, a POVM on R acting
on C2; as such it is given by 2 × 2 matrices. It follows that for Ψ0 = |n⟩ ⊗ ψ0, the
distribution of the detection time is

Pn(dt) ≡ ⟨n|E(dt)|n⟩ . (15)

For example, the most familiar spin POVM is for the measurement of the z-component
σz of spin for a spin-1/2 particle, which is given by

E = 1
2

(
δ(t− 1) + δ(t+ 1)

)
I2 +

1
2

(
δ(t− 1)− δ(t+ 1)

)
σz (16)

with I2 the 2× 2 identity.
In the following, we point out several properties of distributions arising from spin

POVMs that are incompatible with the n-dependence of PWOD found in [7]; each of
them proves the no-go theorem asserting that PWOD ̸= PD. Such a property was first
pointed out in [19].

3.2 Properties of Distributions from POVMs

Trace property. Since |n⟩ and |−n⟩ form an orthonormal basis of spin space C2,
and since the trace of an operator is the same in any basis, we have that for any spin
POVM E(·),

⟨−n|E(·) |−n⟩+ ⟨n|E(·)|n⟩ = TrE(·) is independent of n. (17)

In particular,
Pn(dt) + P−n(dt) is independent of n. (18)

Now let x,y, z be the unit vectors in the x, y, z direction. As a consequence of the axial
symmetry of the setup of Das and Dürr, PWOD,n is independent of β; thus

PWOD,−x = PWOD,x . (19)

They also proved that
PWOD,−z = PWOD,z . (20)
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If PWOD of [7] came from a POVM E, then we would have that PWOD,n = Pn for all
n, so that P−x = Px and P−z = Pz. But then, by (18),

Px = 1
2
(Px + P−x) =

1
2
(Pz + P−z) = Pz (21)

and hence PWOD,x = PWOD,z, in contradiction with the strong difference between
them found in [7] (clearly visible as the difference between the red and blue curves in
Figure 1). This is our first proof of the no-go theorem.

In fact, there cannot even exist a spin POVM E that agrees with PWOD,n for merely
the three directions n = x,−x and z. This is so because in this case the trace property
would imply that Pz ≤ 2Px, which is clearly incompatible with what we see in Fig. 1.
This is our second proof of the no-go theorem.

Remark. Apart from arrival time questions, Eq. (17) can be used to show that the
spin state |n⟩ itself (or the associated direction n) is not measurable; that is, there is
no experiment that could, upon the input of a particle with arbitrary spin state |n⟩,
yield n as the result. Indeed, if such an experiment existed, it would be associated
with a POVM F (du) on the unit sphere {u ∈ R3 : |u| = 1} acting on C2 such that
⟨n|F (du)|n⟩ = δ(u− n) du. But δ(u− n) + δ(u + n) clearly depends upon n, so that
by (17) no such POVM exists.

Relation to Pauli matrices. Any Hermitian 2× 2 matrix M can be written in the
form

M = m0I2 +m · σ (22)

with some real m0 and some real 3-vector m. We thus have that

E(dt) = e0(dt)I2 + e(dt) · σ (23)

and thus
Pn(dt) = e0(dt) + e(dt) · n (24)

for suitable e0 and e = (ex, ey, ez).
Note that by (24) e0(dt) = 1

2
(Pn(dt) + P−n(dt)) (yielding (18) once again). Thus

e0 must be a probability measure. As a consequence, the signed measures eν (for
ν = x, y, z) must have vanishing total mass,

∫∞
−∞ eν(dt) = 0. Moreover, any such e0 and

e correspond via (23) to a spin POVM if and only if e2 ≤ e20, since, as it is not hard to
see, this amounts to positivity.

Axial symmetry. Now take the axial symmetry of the setup into account. Then
were PWOD given by a POVM E, E itself would have to be axially symmetric, so that
its dependence on σ would be via only σz. Thus it would be of the form

E(dt) = e0(dt)I2 + ez(dt)σz , (25)

which leads to
Pn(dt) = e0(dt) + ez(dt) cosα. (26)
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Setting α = π/2 we would thus have that e0 = Px; setting α = 0 and α = π and adding
we would obtain that 2e0 = Pz+P−z. But this—or (18)—implies that Pz+P−z = 2Px,
and hence that PWOD,z + PWOD,−z = 2PWOD,x, in contradiction with what we see
in Figure 1. This is our third proof of the no-go theorem. (Note that the positivity
condition for an axially symmetric POVM (26) is that |ez| ≤ e0.)

Condition for spin independence. It follows from (24) that for any unit vector a,
Pa − P−a = 2e · a, so the vector e = e(dt) can be expressed for any orthonormal basis
a,b, c as

e = 1
2
(Pa − P−a)a+ 1

2
(Pb − P−b)b+ 1

2
(Pc − P−c)c . (27)

Therefore,

if P−a = Pa, P−b = Pb, and P−c = Pc for orthonormal
vectors a,b, c, then e(dt) = 0, and Pn is independent of n.

(28)

Now use (19) and the fact that, by axial symmetry, PWOD,−y = PWOD,y, as well
as (20); if PWOD came from a POVM, then PWOD,n = Pn for all n, so P−x = Px,
P−y = Py, and P−z = Pz. By (28), Pn must then be independent of n, so PWOD,n is
then independent of n, but we know it is not. This is our fourth proof of the no-go
theorem.

Sinusoidal dependence. Let us go back to (24). In terms of the spherical coordi-
nates α, β mentioned in Section 2, (24) becomes a combination of the first (and 0-th)
spherical harmonics:

Pn(dt) = e0(dt) + ex(dt) sinα cos β + ey(dt) sinα sin β + ez(dt) cosα. (29)

If this is to agree with PWOD,n, which is axially symmetric, it must be independent of
β and thus of the form

Pn(dt) = e0(dt) + ez(dt) cosα, (30)

as we argued earlier.3 But the dependence of PWOD,n(dt) on α is not of the form (30).
This can perhaps be seen most easily by considering the expected detection time.

3A perhaps slightly more convenient formula for Pn in the case of axial symmetry is obtained by
expanding the POVM E (25) in terms of I2 − σz and σz instead of I2 and σz:

E(dt) = A(dt)(I2 − σz) +B(dt)σz, (31)

so that
Pn(dt) = A(dt)(1− cosα) +B(dt) cosα. (32)

Setting α = 0 and π/2 we see that A = Px and B = Pz, and (32) becomes

Pn(dt) = Px(dt)(1− cosα) + Pz(dt) cosα. (33)
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Expected detection time. It follows from (30) that were PWOD,n given by a
POVM, also the expectation ETD of TD would depend on α in a sinusoidal way: We
would have that

ETD =

∫ ∞

0

t Pn(dt) (34)

=

∫ ∞

0

t e0(dt) + cosα

∫ ∞

0

t ez(dt) (35)

= τ0 + τz cosα (36)

with τν ≡
∫∞
0
t eν(dt) (for ν = 0, z). Compare this to the graph of the dependence of

ETWOD on α found in [7], reproduced here as Figure 2. They are clearly incompatible.
This is our fifth proof of the no-go theorem.

The sinusoidal dependence of ETD on α can also be obtained from (25):

ETD = ⟨n|M |n⟩ , (37)

where the matrix M is the mean of the POVM E(dt),

M =

∫ ∞

0

t E(dt) = τ0I2 + τzσz , (38)

yielding (36).

Approximate measurement. We’ve seen that there is no POVM that will make
Pn coincide with PWOD,n even for at least the 3 directions z,x,−x and certainly not
for all 4 directions z,−z,x,−x. This remains true when we replace “coincide” with
“coincide approximately”:

For every spin POVM E there is a direction n among
z,−z,x,−x such that

∥PWOD,n − Pn∥ ≥ ∥PWOD,x − PWOD,z∥/2 .
(39)

Since the right-hand side as computed in [7] is a non-negligible quantity, this relation
means that PWOD,n cannot be close to Pn for all 4 directions.

To verify (39), consider the triangle inequality in the version

∥Dz +D−z −Dx −D−x∥ ≤ ∥Dz∥+ ∥D−z∥+ ∥Dx∥+ ∥D−x∥ (40)

for Dn = PWOD,n−Pn. By (18), the contributions from P cancel on the left-hand side.
By (19) and (20), the left-hand side equals 2∥PWOD,x −PWOD,z∥. Finally, it can’t be
the case that each of the 4 summands on the right-hand side is less than a quarter of
the left-hand side, which completes the proof of (39). (A similar statement, involving
the positive part of PWOD,z − 2PWOD,x, could be made for just the 3 directions.)
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3.3 Previous Results

To put the no-go theorem into context, we mention a couple of similar previous results.
First, in [12], it was shown that, according to Bohmian mechanics, there is no

experiment that could measure the velocity dX/dt of a given single particle.4 One
method of proof is to show that the distribution of dX/dt is not given by a POVM;
the situation is different with the asymptotic (long-time average) velocity, which is
measurable.

Second, Vona, Hinrichs, and Dürr [27] already studied whether PWOD is given by
a POVM. Their considerations are not limited to the setting of [7], and many of them
can be applied to rather arbitrary V , Σ, and Ψ0 (evolving in Rd, with or without spin).
They considered the set S of initial wave functions Ψ0 obeying the so-called current
positivity condition

n(x) · j(t,x) ≥ 0 ∀x ∈ Σ ∀t ≥ 0 , (41)

where n(x) is the outward unit normal vector on Σ at x and j is given by Ψ†Ψ times the
right-hand side of (5) or (6). (They considered λ = 0 but any fixed λ could be considered
instead.) From this condition it follows that the distribution of (TWOD,XWOD) has
density n · j and is thus given by an operator-valued measure. However, the operators
need not be positive, since linear combinations of wave functions in S may fail to be
in S. Of course, an operator-valued measure is not sufficient, as the outcome of an
experiment always has distribution given by a positive-operator-valued measure. Vona
et al. established the following result: Let (V and) Σ be given, and let S0 be a set of
normalized wave functions satisfying (41). Suppose there are Ψ,Φ ∈ S0 such that, with
Ψ± := (Ψ± Φ)/∥Ψ± Φ∥, we have that Ψ+ ∈ S0 while Ψ− satisfies

∫

Σ

d2x n(x) · jΨ−(t0,x) < 0 (42)

for some t0 ≥ 0. Then there is no POVM E0 such that ⟨Ψ0|E0(·)|Ψ0⟩ agrees with
PWOD,Ψ0 for all Ψ0 ∈ S0. Moreover there are, at least for V = 0 and Σ a plane, Ψ and
Φ in S as just described, thus establishing that there is at least one Ψ0 ∈ S for which
TWOD ̸= TD.

Our no-go result and that of Vona et al. both concern the non-existence of a POVM
for PWOD, but for different classes of wave functions. Vona et al.’s is for wave functions
obeying the current positivity condition (41) while ours concerns wave functions of
the form |n⟩ ⊗ ψ0 with any n, most of which don’t obey (41). The two results thus
complement each other.

3.4 POVMs and Measurability

When investigating whether in Bohmian mechanics a quantity ξ (such as the first arrival
time at Σ) is measurable, i.e., whether there is an experiment whose outcome is ξ—an
experiment that measures ξ—we have used that it is a necessary condition that the

4Measuring its position and then using the guiding equation to compute the velocity requires knowl-
edge of the quantum state and hence does not count as an experiment according to our stipulation.
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probability distribution of ξ be given by a POVM. Is this condition also sufficient?
No. Here is why. Suppose there is a POVM E such that we have, for the probability
distribution of ξ when the system is in state Ψ, that ProbΨ(ξ ∈ B) = ⟨Ψ|E(B)|Ψ⟩ for
all wave functions Ψ and all sets B. There then remain two possible obstacles to the
existence of an experiment that measures ξ:

1. Maybe no appropriate apparatus leading to E can be built. To be sure, any
POVM E on a system Hilbert space can be expressed in the form

E(B) = ⟨Φ0|U †P (F−1(B))U |Φ0⟩ , (43)

where the inner product is a partial inner product in suitable apparatus variables,
Φ0 is a suitable ready state of the apparatus, U a unitary operator on the Hilbert
space of system and apparatus together, P the position PVM, and F the function
that yields the outcome from the final configuration. Nonetheless, it may not be
possible to physically realize such U,Φ0, and F .

2. The other obstacle is that, even if the POVM of some experiment equals E, the
individual outcome Z of the experiment need not agree with ξ. After all, it is
only guaranteed that the random variables ξ and Z have the same distribution,
but that does not entail they are equal.

For example, consider a simple harmonic oscillator in d ≥ 2 space dimensions,
with Hamiltonian H. Then, since all eigenvalues of H are integer multiples of
the ground state energy ε0 for d = 1, the time evolution operator exp(−iHt/ℏ)
yields the identity for t = t0 := 2πℏ/ε0. Thus we have that the wave function
Ψt0 of the system at time t0 is the same as the wave function Ψ0 at time 0, and
hence similarly for the distributions of the (Bohmian) positions X(t0) and X0 at
those times. Thus the distribution of ξ = X(t0) is given by a POVM, the position
POVM (given by the spectral projections for the position operator). Moreover, a
measurement of X0 is an experiment the distribution of whose result Z (= X0) is
given by this POVM. But, nonetheless, this experiment measures, not X(t0), but
X0 instead. Indeed, if d > 1, the Bohmian position for the harmonic oscillator at
time t0 is in general different from the Bohmian position at time 0, even though
the wave function at these times is the same.

On top of that, here is a trivial example, involving a POVM acting on a one-
dimensional subspace: Regardless of whether or not ξ is measurable, and whatever
the distribution Pξ of ξ for Ψ0, there trivially exists a POVM E, namely E =
PξI, on the 1d subspace CΨ0, that reproduces Pξ; and there trivially exists
an experiment with this POVM, viz., running a random number generator that
creates a number Z with distribution Pξ. Since Z is generated independently of
ξ, the two will in general not be equal.

3.5 Superluminal Signaling

As has been pointed out by Das and Maudlin [8], it is an easy consequence of the spin
dependence of PWOD in the setup of [7] that the hypothesis PD = PWOD would imply
the possibility of superluminal signaling. Here is how.
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Procedure. For sending a bit X ∈ {0, 1} from Alice to Bob at spacelike separation, a
pair of particles is prepared (as for a Bell experiment) in the singlet state ∝

∣∣↑↓
〉
−
∣∣↓↑

〉
,

then one particle is transported to Alice’s lab and one to Bob’s. Depending on whether
X = 0 or X = 1, Alice carries out a Stern-Gerlach experiment on her particle in either
the z- or the x-direction. Because of the rotational invariance of and the perfect anti-
correlations in the singlet state, this will result in a collapsed wave function of Bob’s
particle that is | ± z⟩ (where each sign has probability 1/2) if X = 0 or | ±x⟩ if X = 1.
Now Bob carries out an arrival-time experiment in the setup of [7] on his particle. As
mentioned (see (19) and (20)), PWOD does not depend on the random sign; it does,
however, depend on whether the spin direction is z or x, as shown by the blue and red
curves in Figure 1. So, if PD were equal to PWOD, then Bob would obtain probabilistic
information about X; if Alice and Bob repeat the procedure 100 times with the same
value of X, Bob could decide correctly with high probability whether his observations
are distributed according to the blue or the red curve, and thus determine the message
X that Alice wanted to send.

When one realizes that a hypothesis implies the possibility of superluminal signaling,
one should become very skeptical of the hypothesis, not just because nobody has been
able to experimentally achieve it, but also because there is a general proof that it is
impossible in Bohmian mechanics [24, 2, 16, 17], [25, Sec.s 5.5.9 and 7.6.2]. On top of
that, we can analyze the procedure in terms of POVMs; this is the content of the next
paragraph.

Does It Work? We can easily specify the necessary and sufficient condition for the
impossibility of superluminal signaling by means of an experiment of the sort just
described, one allowing for the choice of any pair n1 and n2 of directions and not just
z and x: It is that

PD,n1 + PD,−n1 = PD,n2 + PD,−n2 (44)

for any pair of unit vectors n1 and n2. After all, 1
2
(PD,n + PD,−n) is the detection

time distribution that Bob will observe if Alice uses the direction n. As we have noted
already in (18), (44) must hold because PD must be given by a spin POVM.

4 TWID versus TD

It may sound innocent to assume that a detector should click when and where the
particle actually arrives, which would imply that

TD = TWID . (45)

And in classical mechanics, this is the case because the interaction between particle and
detector is local. But in Bohmian mechanics, the structure is more involved because,
although the interaction term in the Hamiltonian is still local, it directly affects only
the (entangled) wave function, which in turn affects the motion of the particles; so it
is not obvious whether (45) is correct. More precisely, it is not clear whether there
exists a device D—a potential detector—for which (45) holds. It might well be that
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for any potential detector D, TWID is like the spin state |n⟩, or the wave function, in
that it is measurable, neither by D itself, so that (45) is violated, nor by any other
device. After all, TWID represents the Bohmian arrival time of a particle interacting
with a certain environment (the detector), while TD is the outcome, registered by the
device, produced by the interaction, which is conceptually and physically quite different.
Therefore, the comparison is similar to the earlier comparison between TWOD and TD,
with the distinction between the comparisons being the presence or absence of a certain
environment. (Nonetheless, it could be the case that there is a fundamental difference
between measurement of TWID and TWOD. The latter can in general not be measured
even approximately, whereas for the former, though there may be limitations, it might
well be that approximate measurement is always possible; see also [11, 26].)

4.1 Comparison to Position Measurements

It should be observed that this state of affairs is not confined to time measurements
alone; even when it comes to position measurements, a discrepancy may arise between
the actual position in the presence of a detector and the position recorded by the
detector. As emphasized in the introduction, even the assumption that XWID = XD

should not be accepted without scrutiny. In Bohmian mechanics there is no reason for
exempting position or time from adhering to the principle that quantum measurement
outcomes are the joint result of the combined behaviors of both the system and the
apparatus, a principle which is indeed a direct consequence of the Bohmian analysis of
quantum measurements [12].

We should also note that for most potential measurements of a quantity ξ, there
is no difference between ξWOD (= ξ) and ξWID, so that the measurability of ξ boils
down to whether ξWID = ξD (for some device D). This will be so whenever the time
evolution plays no role in the definition of ξ, unlike for the case of arrival times. For
example, this is the case when ξ is the position of a particle, in quantum state Ψ, at a
given time t, say, time t = 0. The presence or absence of a detector is not relevant to
the meaning of ξ, though it is of course relevant to the position of the particle at later
times.

So let’s consider the simple case when ξ is the position of a particle at a given
time. It is generally believed, with good reason, that this can be measured with un-
limited precision. But even in this case, one could take a step further and argue that
the measurability of position is a contingent feature of the non-relativistic framework
within which the theory is formulated. Consider, for instance, a relativistic scenario,
specifically involving the measurement of the position of a Dirac electron. Suppose,
as is widely believed, that in the one-particle Hilbert space of the electron, compris-
ing exclusively positive energy states, there is an inherent limitation on how narrow
the wave function can be. This restriction is intuitively understandable since a delta
function cannot be exclusively formed with positive energy wave functions. Then the
minimal width of the wave function (and thus, by Born’s rule, the minimal possible
inaccuracy of an experimenter’s knowledge of the electron’s position) would occur on a
scale approximately corresponding to its Compton wavelength. Consequently, any pu-
tative detector probing below that scale would register a specific position that typically
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deviates systematically from the actual position of the electron.

4.2 Different Equations of Motion

It has long been known that different equations of motion, regarded here as different
possible laws of nature, can all leave the Born distribution |Ψ|2 equivariant while leading
to different trajectories. Any such law of motion, as part of a universal theory, leads
to the same probability distribution as in Bohmian mechanics and orthodox quantum
mechanics for any experimental outcome. That is because we should apply this law
of motion to the joint configuration of both the observed system and the apparatus to
conclude that the joint configuration of the apparatus and the system at any time τ
after the experiment has begun, say at time 0, will be |Ψτ |2 distributed; since it can
be arranged that the outcome can be read off from the apparatus configuration for
some τ > 0, the distribution of the outcome must agree with the one obtained from
Bohmian mechanics or orthodox quantum mechanics. That is, the theory with this
law of motion is empirically equivalent to Bohmian mechanics and orthodox quantum
mechanics (even though it need not lead to the same individual outcome as Bohmian
mechanics when starting from the same initial configuration).

Of course, this consideration includes the distribution PD of the detection time of
a particle in an arrival-time experiment. But when applied to the particle alone, a
different law of motion leads to generically different arrival times TWOD on the surface
Σ, and in fact to different distributions PWOD. Thus, for most of such laws of motion,
PD ̸= PWOD.

4.2.1 Examples

Here are four different examples of such laws of motion:

• For the Bohmian equation of motion for the position X(t) of a non-relativistic
spin-1

2
particle, there are the possibilities indexed by λ ∈ R in (5). As mentioned

already in Section 2, PWOD is independent of n for λ = 0 but not for λ ̸= 0.

• Nelson’s stochastic mechanics [21, 18] posits a stochastic particle motion given
by a diffusion process. The process belongs to a 1-parameter family indexed by
the diffusion constant σ ≥ 0 [25, App. A.3], and Bohmian mechanics is included
in the family at σ = 0. The theory is implausible for large σ, but PWOD will
already change significantly for rather small σ.

• Deotto and Ghirardi [10] described further ODEs as alternatives to Bohm’s. The
formulas would not seem convincing as laws of nature, but they do ensure equiv-
ariance.

• Colin, Wiseman, and Struyve [5, 23, 20] considered a |Ψ|2 distributed Markov
process for Dirac wave functions Ψ, called the “zig-zag process” and based on
introducing a further hidden variable in {+1,−1} for each particle representing
“handedness.” In the non-relativistic limit for a wave function factorizing into a
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spinor and a space part, Ψ = |n⟩ ⊗ ψ, the particle carries out, on top of a slow
Bohm-like motion, a fast (speed c), random, back-and-forth motion in direction
±n (see [20] for pictures).

4.2.2 Implications

The existence of different equivariant laws of motion shows, in fact, that (45) can
fail: While the joint wave function Φτ of particle and detector (and records) at a late
time τ fixes PD, different equivariant laws of motion will in general lead to different
trajectories Q(t) of particle and detector together, and we see no reason why in general
these different trajectories should have equal TWID or PWID. For the zig-zag process,
Nelson’s stochastic mechanics, and its extensions with other diffusion constants σ, it
seems rather obvious from the stochastic fluctuations that PWID will be different from
what it is in Bohmian mechanics, for example allowing for many much smaller arrival
times.

5 Conclusion

Das and Dürr hoped that the experiment they studied could be realized and would yield
outcome statistics in agreement with the PWOD that they computed. Our results show
that Bohmian mechanics predicts otherwise. We have thus shown that the quantity
TWOD is not measurable, that is, that there is no experiment whose outcome conveys
the time at which the particle would have reached the surface Σ in the absence of
detectors. The upshot of our considerations is that arrival times are less accessible
than some might imagine.

Acknowledgments. We thank Dustin Lazarovici and Ward Struyve for useful discus-
sions.

A The General Emergence of POVMs

Consider the statement:

The statistics of the result of every quantum experiment is
governed by a POVM.

(46)

This statement encapsulates a fundamental principle in quantum mechanics. In this
appendix, we will delve into the significance of this assertion, highlighting its status
as a theorem in both standard quantum mechanics and Bohmian mechanics, as well
as other quantum theories without observers, such as stochastic mechanics or GRW
theories. Although these findings are not novel, with roots tracing back more than fifty
years in standard quantum mechanics and over two decades in Bohmian mechanics, we
will present a comprehensive overview covering both cases, drawing inspiration from
the exposition provided in [12]. As an exercise for the reader, one can also explore its
applicability to other quantum theories without observers.
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To elucidate the significance of (46), we shall first recall the nature of a POVM
as a mathematical object and elucidate why it serves as a natural generalization of a
quantum observable represented by a self-adjoint operator. Next, we will expound upon
the precise sense in which a POVM governs the statistics of an experiment, and finally,
we will elucidate why the proof of the theorem (46) pertains to every quantum experi-
ment. This will involve highlighting the general minimal conditions that distinguish a
quantum experiment from any other interaction between two quantum systems.

POVM A positive-operator-valued measure (POVM) is a normalized, countably ad-
ditive set function O on some value space Λ, assigning positive operators O(∆) on
a Hilbert space H to (measurable) subsets ∆ of Λ. Being normalized means that
O(Λ) = I, where I is the identity operator on H. Standard examples for Λ are R, Rn

and discrete sets.
According to the spectral theorem, self-adjoint operators are in one-to-one corre-

spondence with projection-valued measures (PVMs) on R, which constitute a particular
class of POVMs on R whose positive operators are orthogonal projections on the Hilbert
space H. Moreover, when a POVM O is sandwiched between normalized states ψ ∈ H,
it yields a probability distribution

µOψ (∆) = ⟨ψ,O(∆)ψ⟩. (47)

When O is a PVM and ∆ ⊂ R, O(∆) is a spectral projector associated with a self-
adjoint operator A, and (47) provides the usual probability distribution of the results
when A is “measured.” In this sense, POVMs are a natural generalization of the notion
of a quantum observable as a self-adjoint operator. So, returning to the statement (46),
for the statistics of a quantum experiment to be governed by a POVM means that the
probability distribution of its result Z can be expressed as (47), with ψ being the initial
state of the system on which the experiment is performed (further elaboration on this
below).

MVQM The notion of POVM is mathematically equivalent to that of normalized
measure-valued-quadratic-map (MVQM). A measure-valued map on H, ψ 7→ µψ, is
said to be quadratic if µψ = B(ψ, ψ), representing the diagonal part of a sesquilinear
map B, from H ×H to the complex measures on some value space Λ. If B(ψ, ψ) is a
probability measure whenever ∥ψ∥ = 1, the map is said to be normalized. The following
theorem easily follows:

Eq. (47) defines a canonical one-to-one correspondence between
POVMs and normalized MVQMs on H.

(48)

(See [12] for details.)

General Notion of Quantum Experiment Let us list the minimal conditions that
are common to any experiment across different formulations of quantum mechanics.
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1. A quantum experiment involves a system to be “measured” and an apparatus.
The apparatus, being macroscopic, records the information conveyed by the exper-
iment. This information is captured as an output, which is typically represented
by a macroscopic variable such as the orientation of a pointer or a stable record
displayed on a computer screen.

2. The experiment begins at an initial time, say t = 0, at which the appara-
tus assumes a fairly definite initial wave function, often termed the ready state
Φ0 = Φ0(y). Here, y represents a generic microscopic configuration of the ap-
paratus, which includes the positions of particles constituting the apparatus, as
well as fields or any other relevant descriptors for its microscopic characterization.
Further elaboration on this point will follow. With Φ0 is associated a macroscopic
variable representing a null orientation of the pointer.

3. The experiment is performed on a system with an initial wave function ψ = ψ(x).
Here, x denotes the generic configuration of the system to be measured, such
as the position of an electron. However, there are no restrictions on the range of
possible microscopic configurations of the system. Furthermore, the wave function
of the system, as well as that of the apparatus, may encompass internal degrees of
freedom, such as accounting for spin. While Φ0 is fixed as part of the apparatus
setup, ψ varies, as the apparatus is designed to probe the system for a given, but
not fixed, initial system’s wave function.

4. Part of the fundamental notion of an experiment is that the system and apparatus
are independent immediately before the experiment begins. Thus, the initial state
of the composite formed by the system and apparatus is given by5

Ψ0 = ψ ⊗ Φ0. (49)

5. As experiments inevitably conclude, let t = T denote the time at which the
experiment ends. If the composite system formed by the system and apparatus,
with generic configuration q = (x, y), is a closed system during the time interval
[0, T ], its state Ψt = Ψt(q) evolves unitarily over this period. If t 7→ Ut is the
unitary evolution operator generated by the interaction between the system and
apparatus, then the final state of the composite is

ΨT = UTΨ0 = ΨT (q). (50)

6. The experiment comes equipped with a calibration, a macroscopic function Z =
F (q) assigning numerical values to the outcome of the experiment. According

5It might be argued that assuming a sharp preparation of ψ, as well as the ability to set the
apparatus in a definite initial state Φ0, is somewhat unrealistic, as some uncertainty is unavoidable.
This uncertainty, however, can be addressed by considering quantum states to be random, following
appropriate probability distributions; this is particularly true for the apparatus—a macroscopic system.
This approach leads to describing quantum states in terms of suitable density matrices. Importantly,
this mathematical adjustment does not change the conclusions we will reach below; see [12].
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to Born’s rule, the statistical distribution of Z is determined by the probability
measure

ρZψ = ρΨT
◦ F−1 (51)

where
ρΨT

= |ΨT (q)|2 . (52)

The POVM Theorem for a General Quantum Experiment Upon examination,
it’s evident that the mapping ψ 7→ ρZψ , as given by (51), from the initial wave function of
the system to the probability distribution of the result Z, indeed constitutes an MVQM
on the Hilbert space H of the system measured. This conclusion follows because the
mapping can be viewed as a composition of maps ψ 7→ ψ⊗Φ0 7→ ΨT 7→ |ΨT (q)|2 7→ ρZψ ,
where all are linear except for ΨT 7→ |ΨT (q)|2, which is quadratic.

Thus, by Theorem (48), there exists a POVM O such that ρZψ can be expressed as
(47). (As a simple exercise, one may derive the explicit formula (43) for O that involves
Φ0, U = UT , and F , see [12].)

Therefore, the association of every experiment with a POVM, which succinctly
encapsulates the statistical outcomes, is almost a mathematical triviality. This principle
holds not only in standard quantum mechanics, but also extends to Bohmian mechanics,
as we will elaborate next.

The POVM Theorem in Bohmian Mechanics With its increased conceptual
precision, Bohmian mechanics eliminates the vague distinction between microscopic
and macroscopic. While the standard formulation requires postulating that macroscopic
variables such as Z are always well defined, in Bohmian mechanics, they are so because
they are functions of the actual microscopic variables Q = (X, Y ) evolving according
to the guidance law.

The initial Bohmian state (Q0,Ψ0) evolves into the final state (QT ,ΨT ), where
the initial orientation of the pointer, determined by the initial actual configuration Y0
of the apparatus, transforms into the final outcome Z = F (QT ) that quantifies the
experimental result. Since the Born rule governs the statistics for Bohmian mechanics
just as it does for standard quantum mechanics, QT is distributed according to |ΨT (q)|2.
Consequently, Z follows the distribution described by (51), reaffirming the POVM
Theorem (46) within Bohmian mechanics.

The inevitability of this theorem stems from the fact that items 1–6 are necessary
conditions for an experiment, both in the standard as well in the Bohmian case. In the
latter case one could consider item 5 to be too restrictive. However, this is not the case,
as the closedness of the (x, y)-composite, and thus the unitarity of its wave function
evolution, can be ensured by incorporating the largest relevant composite system, and
if necessary the entire environment of the x-system, into y, which, with the x-system,
would thus encompass the entire universe. Accordingly, Ψ0 in item 4 can be regarded
as the wave function of the universe at t = 0.6

6We say “can be regarded” and not “is” because it would be rather unrealistic for the wave function
of the universe at the initial time of the experiment to be a product state as in (49). However, if the
difference between (49) and the actual wave function of the universe could not be ignored, it would
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Here are additional considerations that reinforce the above conclusion:

(a) Since we have assumed unitarity and no additional conditions on the interaction
between the system and apparatus, our analysis applies equally well within the
relativistic framework, where the unitary group of time translations t 7→ Ut is
inherent in any relativistic quantum field theory, forming part of the projective
unitary representation of the Poincaré group. The configuration space may en-
compass any appropriate microscopic variables within this framework, such as
local fermion numbers, as suggested by Bell [3] and further elaborated in [14].

(b) Nothing crucially depends on the specifics of the Bohmian evolution; the same
holds true for other theories with entirely different trajectories, e.g., stochastic
mechanics, provided the Born rule holds (and the theory allows for sufficiently
stable macroscopic records).

(c) Even unitarity is arguably not a necessary condition. Instead, the (approximate)
Born rule for macroscopic variables, a condition satisfied by GRW theories and
spontaneous collapse models for which the evolution of the wave function is not
unitary, would probably suffice [1].

In summary, the universal applicability of the POVMTheorem (46) in both Bohmian
mechanics and other formulations of quantum mechanics is essentially a mathematical
inevitability arising from the unitarity (specifically linearity) of quantum state evolution
and the Born rule. A significant departure from either of these conditions is the only
plausible way to circumvent this conclusion (to appreciate why we say “significant,”
recall item (c) above).

B The Objection of Das and Aristarhov

In a recent preprint [6] Das and Aristarhov object to our use of the POVM theorem,
expressing doubt that the wave function Ψt of system and apparatus in Appendix A
obeys “an autonomous Schrödinger evolution.” They suggest instead that its evolu-
tion, like that of a general (conditional) wave function of a system interacting with its
environment, might be “highly non-linear and non-unitary.” In this regard, we note
the following:

• As we indicated in Appendix A, Ψt can be taken to be the wave function of the
universe, which, in Bohmian mechanics, certainly evolves unitarily.

• More importantly, the idealization that the system-apparatus composite (like that
of any system whose behavior we want to analyze according to a particular theory)
can be sufficiently isolated from its environment to be treated as a closed system
is a standard assumption for the analysis of a system in any theory, be it Bohmian
mechanics, standard quantum mechanics, or any theory whatsoever.

not be reasonable to treat ψ as the wave function of the system.
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• To design an apparatus to fulfill a particular purpose, it would seem to be neces-
sary to treat the apparatus as a closed system. After all, if interactions with the
environment remain significant and can’t be ignored, the apparatus could hardly
be expected to fulfill the purpose for which it was designed.

• Of course, there is no guarantee that an apparatus can be so designed and so
isolated as to justify the idealization required for the analysis. It might well
be, for example, that the workings of the apparatus are just too sensitive to
environmental disturbances. In such a situation we would presumably have little
idea of how the apparatus should behave or what it might reveal. But we could
be quite confident that it would not do what it was designed to do.

• In this regard we note the claim of Das and Aristarhov that while the assump-
tion for the POVM theorem may be correct, “it may be wrong and the actual
distribution of the arrival times will resemble the one calculated in [7].” They
seem to be making the rather implausible claim that the uncontrollable distur-
bances produced by the environment, which itself knows nothing directly about
the system being measured, might nonetheless undo the behavior of the idealized
system-apparatus composite and convert results that significantly differ from the
actual unmeasured arrival times to results that agree with them.

• The conspiratorial claim just described resembles that of the advocates of local
hidden variables who suggest that the apparently random effects of the envi-
ronment for experiments testing Bell’s inequality might produce precisely the
correlations between the choices of the experimenter and the initial state of the
entangled particle pair so as to produce the quantum predictions via only local
mechanisms.
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[27] N. Vona, G. Hinrichs, and D. Dürr: What does one measure when one measures the
arrival time of a quantum particle? Physical Review Letters 111: 220404 (2013)
http://arxiv.org/abs/1307.4366

24

http://arxiv.org/abs/math-ph/0505074
http://arxiv.org/abs/1201.4169
http://arxiv.org/abs/1201.4169
http://arxiv.org/abs/2310.01343
http://arxiv.org/abs/1307.4366

	Introduction
	Arrival Times
	Bohmian Arrival Times
	The Decoupling Argument
	How the Presence of Detectors Changes Trajectories

	POVMs
	Spin POVM
	Properties of Distributions from POVMs
	Previous Results
	POVMs and Measurability
	Superluminal Signaling

	TWID versus TD
	Comparison to Position Measurements
	Different Equations of Motion
	Examples
	Implications


	Conclusion
	The General Emergence of POVMs
	The Objection of Das and Aristarhov

