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Abstract
We consider the fluctuations in the number of particles in a box of size Ld in Zd, d⩾ 1, in the
(infinite volume) translation invariant stationary states of the facilitated exclusion process, also
called the conserved lattice gas model. When started in a Bernoulli (product) measure at density
ρ, these systems approach, as t→∞, a ‘frozen’ state for ρ⩽ ρc, with ρc = 1/2 for d= 1 and
ρc < 1/2 for d⩾ 2. At ρ= ρc the limiting state is, as observed by Hexner and Levine,
hyperuniform, that is, the variance of the number of particles in the box grows slower than Ld.
We give a general description of how the variances at different scales of L behave as ρ↗ ρc. On
the largest scale, L≫ L2, the fluctuations are normal (in fact the same as in the original product
measure), while in a region L1 ≪ L≪ L2, with both L1 and L2 going to infinity as ρ↗ ρc, the
variance grows faster than normal. For 1≪ L≪ L1 the variance is the same as in the
hyperuniform system. (All results discussed are rigorous for d= 1 and based on simulations for
d⩾ 2.)
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1. Introduction

An important quantity in the study of particle systems inZd (or
Rd) is the fluctuation in the number of particles in a domainD;
an indicator of the size of such fluctuations is the variance of
the number of particles in D. We will restrict our attention to
particle systems on Zd in which each lattice site can contain at
most one particle. Consider then a translation invariant system
in which the probabilities of configurations are described by a
measure µ and the particle density is ρ, and let NL be the num-
ber of particles in a cubical domain of size Ld. The expected
value of NL is ρLd for all L, and we shall denote its variance by
V(L). In general V(L) is related to the pair correlation function:
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V(L)/Ld → S(0) as L→∞, where S(k) is the Fourier trans-
form of the total pair correlation function [15].

For many systems of this sort, such as equilibrium systems
which are described by aGibbsmeasure with integrable poten-
tials and are not at a phase transition, V(L)≃ CLd as L→∞,
with C the compressibility. For an ideal lattice gas (i.e. one
with no interactions between different lattice sites) in equi-
librium, the Gibbs measure µ is a Bernoulli product measure
and C= ρ(1− ρ). There are also many cases of interest, such
as systems at equilibrium critical points or the voter model in
d> 2 (for which the result follows from (2.4) of [13]), in which
V(L) grows faster than Ld and S(0) is infinite.

Our interest here is in the opposite case, in which V(L)
grows more slowly than the volume, i.e. S(0) = 0. These are
the so called hyperuniform systems [15] (originally called
super homogeneous systems). In fact we shall restrict our con-
siderations to the particular situation in which the measures
studied describe the final stationary states of stochastic lat-
tice systems started from a Bernoulli product measure and
evolving according to the facilitated exclusion process (FEP)
(also called the conserved lattice gas model). As we shall
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describe in detail below, these systems undergo a transition
from frozen to active final states at some critical density ρc, at
which density the system is hyperuniform.

The approach to this hyperuniform state as ρ→ ρc depends
on the direction of approach and is very different, for ρ↗ ρc,
from what one might expect in general, which is that the con-
stant C= C(ρ)would approach zero (as in the ideal lattice gas
when ρ→ 1). Rather, when the approach is from lower densit-
ies, C(ρ) continues to have its ideal gas value for all ρ, but
the values of L at which the approximation V(L)≈ C(ρ)Ld

is valid become larger and larger as ρ↗ ρc. For approach
from above we do have C(ρ)↘ 0 as ρ↘ ρc. In particular
for d= 1, where ρc = 1/2, it follows from (54) of [9] that
C(ρ) = ρ(1− ρ)(2ρ− 1), since the stationary measure for the
lattice model studied there, with particles covering 2 sites, is
shown in [1] to coincide with the stationary measure for the
FEP at densities ρ > 1/2 after interchange of particles and
holes.

In the remainder of the paper we first (section 2) intro-
duce the facilitated exclusion systems that we study and review
earlier work, in particular the work by Hexner and Levine [8]
discussing, for the two-dimensional model, the hyperuniform-
ity of the system at the critical density and the approach to this
hyperuniformity as ρ↗ ρc. We then, in section 3, propose a
more detailed, but still phenomenological, characterization of
the L-dependence of the variances V(L) for d= 1,2, support-
ing the proposal by a procedure we call power scaling. We
also present a simple argument, rigorous for d= 1, for the fact
that in all these models, and at all densities ρ < ρc, the vari-
ance grows as ρ(1− ρ)Ld for sufficiently large L (that is, the
prefactor C mentioned above is then ρ(1− ρ)).

The proposal in section 3 is based on data from simula-
tions, some new, in two dimensions; in section 4we describe in
more detail the FEP process in d= 1. In that case we can estab-
lish rigorously a version of the general structure described in
d= 2. We give exact values for the exponents characterizing
the behavior of the variance in different ranges of L; these are
different from those in d= 2, and in d= 1 there is also a dif-
ference, for L small, between the exponents for L odd and for
L even. In section 5 we give a hint of the rigorous derivation of
these results; full proofs will be given elsewhere. In the con-
cluding sectionwemention results for some other relatedmod-
els and discuss open problems.

2. Facilitated systems

We shall be concerned here primarily with certain station-
ary states, in Zd, of the symmetric FEP, also known as the
Conserved Lattice Gas process. In this system a site of the lat-
tice can be occupied by at most one particle, and a particle can
jump to a neighboring empty site only if it has also an occupied
neighbor site.

The stationary states of this system have been investig-
ated numerically for d⩾ 2 [8, 11, 14] and theoretically for
d= 1 [1–3, 6]. These investigations suggest that the system,
when started with an initial random configuration at density
ρ, approaches, as t→∞, either a frozen state in which all

particles are isolated and hence unable to move, or an act-
ive stationary state in which there is a finite density of act-
ive particles: those with an occupied neighboring site. The
transition (often called a transition to an absorbing state or an
absorbing phase transition) occurs at a density ρc ⩽ 1/2 (for
ρ > 1/2 it is geometrically impossible for all the particles to
be isolated). For d= 1, ρc = 1/2, but rather surprisingly, when
d⩾ 2 the simulations find values of ρc to be much smaller than
1/2. We discuss below the determination of ρc as well as its
dependence on which of several different ways the dynamics
of the model is defined.

Another surprising observation, due to Hexner and Levine
[8], is that, in 2d and 3d, the frozen limiting state of the system
at ρc is hyperuniform: V(L)∼ Lλ1 , with λ1 ≈ 1.57 in 2d and
λ1 ≈ 2.76 in 3d [8]. (Throughout we will relate two quantities
by ‘≃’ or, respectively, by ‘∼’ to express the fact that asymp-
totically their ratio is equal to 1 or, respectively, is bounded
away from both 0 and ∞.) Hexner and Levine also discuss in
detail how V(L) grows with L for ρ close to, but less than, ρc.
They find a crossover, as L increases, from a scale on which
V(L) grows as Lλ1 to a scale on which the growth is as Ld (in
each case for L large on the relevant scale). In the current paper
we are particularly interested in the transition region between
the two behaviors, the location of which moves towards larger
values of L as ρ↗ ρc.

Dynamics and the determination of ρc: Several different
implementations of the dynamics have appeared in the liter-
ature. The jumps may occur either in continuous time, with
each particle attempting to jump at rate 1, or in discrete time,
with all active particles attempting to jump simultaneously at
integer times; the target site for the jump can be (1) chosen
at random from all neighbors, with a jump occurring only if
the chosen site is empty, or (2) chosen at random from just the
empty neighbors. (In the discrete time case several particles
may attempt to jump to the same site; in this case, one is chosen
at random to succeed.) For example, discrete time updating
with rule (2) is used in [8, 14]; continuous time updating is
used with rule (2) in [11] and with rule (1) both in [12] and,
for exclusion processes (in which no facilitation is required for
a jump), in the mathematical literature of interacting particle
systems [10].

To investigate ρc for d= 2 one simulates the dynamics in a
square box in Z2, with periodic boundary conditions, starting
with a random distribution at some density ρ < 1/2. In this
setting it is easy to show, using the theory of finite stateMarkov
processes, that for any initial state the system must eventually
freeze. This means that a non-frozen steady state with ρ < 1/2
cannot exist in finite volume, and hence that if one were to
try to define a critical density for a finite system as we have
done for the infinite system, one would find a value of 1/2. To
avoid mentioning this uninteresting result further we reserve
the term ‘critical density’ and the notation ρc for the infinite-
system value.

Nevertheless, there are several methods for determining an
approximate value of ρc from such simulations; we discuss two
of these. The first method is straightforward, depending only
on the observation of dramatic growth in the freezing time for
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Figure 1. Mean value of the number J of jumps per particle
required to freeze the system, versus density ρ, for the 2d FEP with
four different dynamics; Jd22 denotes the curve for the distrete time
rule (2) model, etc. Also shown, and denoted J1, are results for the
1d continuous time FEP. The (dashed) vertical lines are at the
critical densities. The inset shows an expanded view of the curve Jc12
near its critical value ρc = 0.3308.

ρ near ρc. The second method requires making some assump-
tions about the behavior of the infinite system as ρ↘ ρc. It
gives precise values for ρc (which depend, however, on the
size of the simulated system). For the sake of definiteness we
will adopt here the value which we obtain from this method in
a box of side L= 1024.

The first approach is to count the number of particle jumps
required for the system to freeze; for a somewhat vaguely
defined density ρ̃c this number increases very rapidly as ρ↗
ρ̃c. Let J= J(ρ) be the number of required jumps divided by
the number of particles in the system. Figure 1 plots the mean
of J(ρ), over 200 trials, against ρ, for the four types of dynam-
ics discussed above; the data are for a box of side L= 1024.
(We have also shown in this figure the values of ρc; clearly
one could take ρ̃c = ρc, since the sharp increase in J(ρ) at ρc
is clear.) For comparison the results of a 1d simulation (in a
periodic system of 217 sites) of the continuous time FEP, for
which ρc is known to have value 1/2, are also shown.

In fact the situation is not quite as simple as suggested
above and by the main part of figure 1: for the 2d models there
is a sharp increase in J as the critical density is approached, but
a much more rapid one just past that density. This is shown,
for the continuous time rule (1) model, in the inset. In contrast,
for the 1d model the increase occurs well before the critical
value.

The second method [11] is first to determine an approxim-
ate value of ρc, perhaps by the method discussed above, and
then to simulate the system at several slightly higher densit-
ies. At such densities the simulation will enter a long-lived
metastable state which is presumably close to a projection of
the infinite-volume active state at that density. Let ρa = ρa(ρ)
denote the density in this state of active particles; then ρa van-
ishes as ρ↘ ρc and one hypothesizes that it does so with a
power law: ρa ≃ C(ρ− ρc)

β . ρc, C, and β are then taken to be
the parameters which give the best fit to this relation, using

a least-squares fit for the linear relation between logρa and
log(ρ− ρc). With this method we find, from simulations in
an L×L box with L= 1024, that (i) for the continuous time
models, ρc = 0.3308 for dynamics defined by rule (1) and
ρc = 0.3471 for rule (2), and (ii) for the discrete time mod-
els, ρc = 0.2685 for rule (1) and ρc = 0.2391 for rule (2). For
all four models the values of β lie in the interval [0.621,0.628].

3. Phenomenological description

As noted in the introduction, we wish to study the model
in the region ρ⩽ ρc; from now on we restrict our atten-
tion to this region and write δ := ρc− ρ⩾ 0. Let µ(ρ)

t be the
infinite-lattice measure at time t when the initial measure is
the Bernoulli (product) measure of density ρ, which we denote
µ
(ρ)
0 , and let

νρ := lim
t→∞

µ
(ρ)
t (1)

be the corresponding final state. We will always assume that
νρ is frozen; we know of one model for which this is not true
when ρ= ρc, the 1-d discrete-time symmetric FEP [7], and
will describe this in section 6 but not consider it here.

The following picture of the behavior of the variances V(L),
under the measure νρ, as ρ↗ ρc, emerges from simulations
of the FEP in two dimensions and theoretical considerations
in d= 1; we discuss it, however, in an arbitrary dimension d.
Suppose that ρ < ρc and that δ ≪ 1. Then:

(P1) There are three regimes in L, which we call regimes
of ‘small,’ ‘intermediate,’ and ‘large’ L, although we
emphasize that since we are speaking of asymptotic res-
ults, our descriptions always assume that L is in fact suf-
ficiently large.

(P2) In the regime of small L the variances grow approxim-
ately as in the hyperuniform state at ρc: V(L)≃ C1Lλ1

(see section 2).
(P3) At some (approximately defined) scale L1 = L1(δ) the

variances enter the regime of intermediate L, in which
they grow as V(L)≃ C2(δ)Lλ2 with λ2 > d> λ1 and
C2(δ)> 0.

(P4) The growing variances reach size of order Ld at an
(approximate) scale L2 = L2(δ); for L> L2, the regime
of large L, the variances grow so as to coincide, even
up to prefactor, with the variances in the initial measure:
V(L)≃ ρ(1− ρ)Ld.

(P5) As ρ↗ ρc, L1(δ) and L2(δ) increase as Li ∼ δ−γi for
some exponents γ1,γ2, with γ2 > γ1 > 0.

We illustrate (P1)—(P5) in figure 2, a log-log plot of the
variances V(L) in the continuous time, rule (1), 2d FEP for
δ= 0.1, 0.01, 0.001, and 0. The data is from a 2048× 2048
system. Also shown are the lines V= C1Lλ1 (here C1 = 0.104
and λ1 = 1.57), V= ρc(1− ρc)L2, and, for δ= 0.01, the line
C2(δ)Lλ2 (withC2(0.01) = 0.0157, λ2 = 2.47) and approxim-
ate values of L1 = L1(0.01) and L2 = L2(0.01). The inset will
be discussed below.
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Figure 2. Log-log plot of the variances V(L) in the continuous time
rule-(1) 2d FEP for four density values, together with the
approximating straight lines giving the power law growth described
in (P1)–(P5). The values of L1, L2, and C2 shown correspond to
δ= 0.01. The inset shows the conjectured limit of the data under
power scaling; if C2(δ) = Dδθ as in remark 1 then A= e−θ .

Power scaling:We can further justify the conclusions (P1)—
(P5) by collapsing the data under an appropriate scaling. In
[8] a multiplicative scaling, which in our terms would be L→
δγ1L,V→ δλ1γ1V, partially collapses the observed L-V data for
the 2d FEP. As remarked there, however, such a scaling cannot
give complete collapse, since there are different exponents in
the different regimes. Instead we introduce a power scaling:

(L,V(L))→
(
Lα(δ),V(L)α(δ)

)
, (2)

which corresponds to a linear rescaling in the log-log plots,
carrying straight lines to straight lines of the same slope. The
exponent α(δ) must be chosen so that the scaling limit exists
when δ→ 0; we choose α(δ) =−(logδ)−1, which leads to
limits for the two ‘special’ points, (L1,C1L

λ1
1 ) and (L2,Ld2),

of figure 2(a):(
L1,C1L

λ1
1

)
∼
(
δ−γ1 ,C1δ

−γ1λ1
)
−→
scale

(
eγ1 ,Cα(δ)

1 eγ1λ1

)
−→
δ↘0

(
eγ1 ,eγ1λ1

)
, (3)

and similarly, under the same scaling and limit, (L2,Ld2)→
(eγ2 ,eγ2d). Thus under this scaling the plot of figure 2
approaches the limit shown in the inset of that figure.

The effect of power scaling for actual data—specifically,
that of the continuous time, rule (1) model at seven different
densities, from δ= 0.01 to δ= 0.0001—is shown in figure 3.
Also shown are approximate values of eγ1 and eγ2 obtained
from (3). The constants c1, c2, and c3 used in the figure for
the curves y= cixλi are chosen to fit the data shown; in the
δ ↘ 0 limit c1 and c3 would have value 1, but the logarithmic
convergence of α(δ) to zero with δ is too slow for this limit to
be apparent.

Further discussion: The existence of a regime of small Lwith
behavior as described in (P2) can be readily understood, given
that hyperuniformity holds for νρc as described in section 2.

Figure 3. Log-log plot of the variances V(L) in the continuous time
rule-(1) 2d FEP after power scaling, for density values δ= 0.01,
0.004, 0.002, 0.001, 0.0004, 0.0002, and 0.0001. Also shown are
approximating straight lines giving the power law growth and the
approximate values eγ1 and eγ2 , which here correspond to
γ1 ≈ 0.61, γ2 ≈ 1.06.

For as δ ↘ 0 the state νρ should converge to νρc , which implies
that the distribution under νρ of the number of particles in a
box of size Ld, and hence in particular the variance V(L) of that
number, should converge to that for νρc . (Of course for larger
and larger L we must require smaller and smaller δ.) Thus for
0< δ ≪ 1 we should have that V(L)≃ C1Lλ1 , provided that L
is large but not too large.

The fact that the fluctuations are as in the initial meas-
ure for sufficiently large L, that is, that as described in (P4),
V(L)≃ ρ(1− ρ)Ld there, is also easily understood. For, since
the configurations are becoming frozen as t↗∞, we expect
that each particle will, with probability one, move only a finite
distance during the evolution. Thus the number of particles in
a sufficiently large box is, to high relative accuracy, the same
at the end of the evolution as it was at the beginning [6], and
the fluctuations in this number should also be the same as for
the original Bernoulli measure.

There must thus be a region of transition between the region
of small L with slow growth V(L)≃ C1Lλ1 and the region of
large L with normal ρ(1− ρ)Ld growth; the growth in this
intermediate region must be faster than V(L)≃ ρ(1− ρ)Ld to
connect the smallish slow-growth variance for small Lwith the
normal growth variance at large L. One possibility is that of
(P3), V(L)≃ C2(δ)Lλ2 with λ2 > λ1 and λ2 > d, but we see
no a priori reason for this to hold; one might also have, for
example, normal growth V(L)≃ CLd with prefactor C larger
than ρc(1− ρc).

Remark 1. Suppose that in fact V≃ C2(δ)Lλ2 in the interme-
diate region, as in (P3), and that for some constant D, C2(δ)≃
Dδθ as δ ↘ 0. (This is in fact true for the d= 1 case, with
θ= 1 andD=

√
8/π/3; see section 4). This will then determ-

ine the exponents γ1 and γ2 of (P5): matching values of V(L)
at L1(δ) and L2(δ) yieldsC1L

λ1
1 = DδθLλ2

1 and ρc(1− ρc)Ld2 =
DδθLλ2

2 , from which we obtain that Li(δ)≃ Biδ−γi with

γ1 = θ/(λ2 −λ1) , γ2 = θ/(λ2 − d) , (4)
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and

B1 = (C1/D)
1/(λ2−λ1) , B2 = (ρc (1− ρc)/D)

1/(λ2−d)
.
(5)

However, the status of B1 and B2 is somewhat different from
that of γ1 and γ2, as we discuss in remark 2 in section 4.

4. The FEP in one dimension

We now turn to the FEP in one dimension, that is, on Z, still
in continuous time. Note that in this case a particle can jump
only if exactly one of its two neighboring sites is occupied, so
that at most one jump, either left or right, is possible for each
active particle (so there is now no difference between the two
dynamical rules (1) and (2) of section 2). For this model we can
establish rigorously a slightly modified version of the proper-
ties (P1)–(P5), as we now discuss; the proof also determines
explicitly the various parameters λ1, λ2, C1, C2, δ1, and δ2
which appear in (P2), (P3), and (P5) and confirms the beha-
vior Vρ(L)≃ ρ(1− ρ)L in the region of ‘large’ L (see (P4)).

In this section we write Vρ(L) for the variance of the num-
ber of particles in an interval of length L under the measure
νρ of (1). The key input for our analysis of this quantity is the
explicit knowledge [6] of νρ, ρ⩽ ρc = 1/2, for this model. As
a consequence our results also hold for several other models,
for which the measure νρ agrees with that in the 1d FEP, as we
discuss in section 6. The measure ν1/2 at the critical density is
of special interest:

ν1/2 =
1
2

(
δη∗ + δη†

)
, (6)

where η∗ and η† are the two configurations in which holes and
particles strictly alternate. ν1/2 is (trivially) hyperuniform; in
particular,

V1/2 (L) =

{
1
4 , if L is odd,

0, if L is even.
(7)

Plots of Vρ(L) for four values of ρ are shown in figure 4.
(The data plotted in figure 4were obtained by direct simulation
of the known final measure νρ, without actually simulating the
time evolution; this method permits the evaluation of Vρ(L)
for large values of L.) It is clear that the behavior of Vρ(L),
in contrast to that of the variances in the models discussed in
section 3, depends, for small L, on whether L is even or odd;
this may be thought of as the legacy, at small values of δ, of
the δ= 0 behavior of (7). Moreover, from the figure we can
observe that:

• For odd L the variances appear to behave as described in
(P1)–(P5), with C1 = 1/4, λ1 = 0 and λ2 = 3/2.

• For even L the ‘small’ growth region described by (P2) is
absent: for small and moderate values of L the variances
grow as C2(δ)L3/2.

• The values of δ used in the figure differ by factors of 10, as
do the (approximate) straight lines C2(δ)L3/2 giving V(L) in

Figure 4. Variances in the 1d FEP for four values of the density.
The solid curves correspond to even values of L, the dashed ones to
odd values. The black lines are for comparison purposes: V = 1,
V= L/4, and V= cL3/2 (dotted).

the intermediate (and low, for L even) density region. This
suggests that C2(δ) vanishes linearly in δ as δ ↘ 0: C2(δ) =
Dδ for some constant D. From (4) we then have γ1 = 2/3
and γ2 = 2.

The following result, whose proof will appear in a sub-
sequent publication, gives a formal description of this behavior
as well as the value of the constant D:

Theorem 1. Let NL be the number of particles on the sites
1,2, . . . ,L for the FEP with density ρ= 1/2− δ, 0< δ < 1/2.
Then:

(a) For L odd,

Varνρ
(NL)≃


1
4 , for L≪ δ−2/3,

2
3

√
2
π δL

3/2, for δ−2/3 ≪ L≪ δ−2,
1
4L, for L≫ δ−2.

(8)

(b) For L even,

Varνρ
(NL)≃

{
2
3

√
2
π δL

3/2, for 1≪ L≪ δ−2,
1
4L, for L≫ δ−2.

(9)

Here we are using a slight extension of our earlier notation: if
A(δ,L) and B(δ,L) are real valued functions whose asymptotic
behavior in Lwe wish to compare, and K(δ) is a positive func-
tion, then we write A(δ,L)≃ B(δ,L) for L≪ K(δ) (respect-
ively for L≫ K(δ)) if for any ϵ> 0 there exists a δ0 > 0 and a
number t> 0 such that 1− ϵ < A(δ,L)/B(δ,L)< 1+ ϵ when
δ < δ0 and L< tK(δ) (respectively L> tK(δ)).

Remark 2. As mentioned in remark 1, the Bi of (5) have a
somewhat different status from the γi of (4), as we now dis-
cuss in the context of the 1d model. The latter are unambigu-
ously determined by theorem 1, since (8) and (9) would be
false for any γ1 ̸= 2/3 and/or γ2 ̸= 2 (indeed, even for the 2d

5
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Figure 5. Log-log plot of the limiting functions Fodd and Feven

under power scaling. Compare with the inset in figure 2.

model the values of these exponents are fairly clear directly
from the data (see figure 3)). But this is not true for B1 and
B2, since (8) and (9) are compatible with any choices of con-
stant coefficients in front of the powers of δ in the L-ranges
of these equations. No dramatic change in the behavior of the
variance occurs exactly at the Li = Biδ−γi , andwe do not know
the size of the transition regions between ‘small’ and ‘inter-
mediate’ and between ‘intermediate’ and ‘large’. The theorem
itself is compatible with these regions being very large indeed.
Nevertheless, we emphasize that the Bi are sharply defined, as
described in remark 1, as giving the locations of the intersec-
tions of the asymptotics for the three regions.

It is an immediate consequence of theorem 1 that the plots
of Vρ(L) against L (figure 4) collapse under the power scal-
ing (2). Specifically, if as δ→ 0, L→∞ through odd (respect-
ively even) values in such a way that Lα → x (withα= α(δ) =
−1/ logδ), then Vρ(L)α → Fodd(x) (respectively Vρ(L)α →
Feven(x)), with

Feven (x) =

{
e−1x3/2, for 1⩽ x⩽ e2,

x, for e2 < x;
(10)

Fodd (x) =

{
1, for 1⩽ x⩽ e2/3,

Feven (x) , for e2/3 < x.
(11)

The limiting functions Feven and Fodd are plotted in figure 5.

5. Sketch of the proof

In this section we wish to give some hints as to how theorem 1
can be established, with particular emphasis on a heuristic dis-
cussion of the Vρ(L)≃ DδL3/2 behavior in the intermediate-
L (and, for L even, low-L) region. For (setting aside any dif-
ficulties in giving formal proofs) the behavior Vρ(L)≃ 1/4
for L odd and ‘small’ (that is, L≪ δ−2/3) is readily under-
stood in terms of the δ= 0 behavior (7) and the discussion
in section 3. The behavior for ‘large’ L, L≫ δ−2, is also dis-
cussed in section 3; on a more formal level, it is proved in [6]
that

lim
L→∞

Vρ (L)
L

= ρ(1− ρ) , (12)

which is almost the result of theorem 1, lacking only the uni-
formity as δ ↘ 0 with which the limit is achieved.

In the remainder of this section we take L to be a vari-
able satisfying 1≪ L≪ δ−2. We will freely drop lower-order
terms, approximate sums by integrals, etc; thesemanipulations
can all be justified.

The key ingredient for understanding the L3/2 behavior is
the renewal structure of the stationary state νρ, ρ < 1/2. In
this state adjacent 1’s have probability zero; thus the state is
supported on configurations of the form

· · ·1 0 1 0 1 0 1 0 0̂ 1 0 1 0 · · ·1 0 0̂ 1 0 1 0 1 0 · · ·1 0 0̂ · · ·
(13)

= · · ·0 (1 0 )
X−1 0 (1 0)X0 0 (1 0)X1 0 (1 0)X2 0 · · · .

(14)

For νρ the 00’s in (13)—or more specifically the second 0 of
such pair, marked as 0̂ in (13) and corresponding to a 0 outside
the parentheses in (14)—are the renewal events of a renewal
process [6]. This means that, if we condition on the occurrence
of a such an event at the origin, so that the Xi may be well
defined—for example by noting that renewal events are separ-
ated by distances 2Xi+ 1, and letting 2X1 + 1 be distance from
the origin to the first renewal event on the right—then theXi are
independent random variables that are identically distributed.

The independence of the Xi is easily understood: because
adjacent empty sites cannot be created during the evolution,
the double zeros in (13) must have been present for all t, 0⩽
t<∞, so that the portions of the system to the left and right of
each, independent under the initial Bernoulli measure, evolve
independently. Note that since under νρ the probability that a
site is occupied is ρ and the probability of occupied adjacent
sites is zero, the density of the renewal events is 1− 2ρ= 2δ.

The distribution of the Xi is that of a random variable X
with

P(X= n) = Cnρ
n (1− ρ)

n+1

=
1+ 2δ
2 · 4n

Cn
(
1− 4δ2

)n
, n= 0,1,2, . . . (15)

where Cn is the nth Catalan number,

Cn =
1

n+ 1

(
2n
n

)
≃ 4n

n3/2
√
π
. (16)

In (16) we have used Stirling’s formula. Thus for n≫ 1 and
δ ≪ 1,

P(X= n)≃ 1+ 2δ
2n3/2

√
π

(
1− 4δ2

)n ≃ 1
2n3/2

√
π
e−4δ2n. (17)

We see that if δ is zero then Xi has power-law distribution with
a long tail (in particular, with infinite expectation), but that for
positive δ the distribution is cut off at order n≈ δ−2.
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Now let NL and RL denote respectively the number of
particles and the number of renewal events in the interval
{1, . . . ,L}. It is easy to see that

NL =
1
2
(L−RL−σ) , (18)

where σ may take value 0, 1, or −1, and thus

Var(NL) (= Vρ (L))≃
1
4
Var(RL) , (19)

up to a correction arising from σ. We will show (heuristically)
below, and prove rigorously elsewhere, that

Var(RL)≃
8
3

√
2
π
δL3/2

(
L≪ δ−2

)
; (20)

we will also prove elsewhere that the correction to (19) arising
from σ is negligible for L even and is 1/4 (up to order δ) for L
odd. This gives a heuristic justification of the L≪ δ−2 cases
of theorem 1.

We now consider (20). Let SL be the number of renewal
events in {1, . . . ,L}, conditioned on the occurrence of a
renewal event at the origin. We can express the moments of
RL in terms of those of SL by conditioning on the value Y of
the position of the first renewal event to the right of the origin
(Y⩾ 1):

E
(
RkL

)
=

L∑
y=1

P(Y= y)E
(
(1+ SL−y)

k
)
, k= 1,2, . . . ,

(21)

where E denotes expectation (and we have set S0 = 0). Note
that the equality in (21) does not hold for k= 0, because the
terms with y>L are omitted from the sum, but that this omis-
sion does not matter for k⩾ 1 because RL = 0 if Y >L.

To obtain P(Y= y) we note that, given that there is a
renewal event at −m, m⩾ 0, which happens with probability
2δ, the probability that this is the first renewal event at or to
the left of the origin, and that Y = y, is P(X= (m+ y− 1)/2)
(and in particular is 0 unless m and y have different parities).
Thus using (17) we have, for δ ≪ 1,

P(Y= y) = 2δ
∑

m⩾0, m+y odd

P

(
X=

m+ y− 1
2

)

≃ δ√
π

∑
n⩾y/2

1
n3/2

≃ δ√
π

ˆ ∞

y/2

du
u3/2

= 2δ

√
2
π y

.

(22)

The moments of SL, the other ingredient in (21), may be
obtained from section 3(ii) of [5], once one makes the approx-
imation that the distance between renewal events is distributed
as 2X (rather than 2X+ 1), where nowX is the random variable
having distribution (15) with δ= 0. For it is shown there that
then SL ≃

√
L|Z|, with Z a standard normal random variable,

so that

E
(
S2L
)
≃ L. (23)

Now substituting (22) and (23) into (21) we have, using
1+ SL−y ≃ SL−y,

E
(
R2
L

)
≃ 2

√
2δ√
π

ˆ L

0

L− y
√
y

dy=
2
√
2δL3/2√
π

ˆ 1

0

1− u√
u

du

=
8
3

√
2
π
δL3/2. (24)

Since L≪ δ−2, E(RL)2 = (2δL)2 ≪ E(R2
L), and so Var(RL)≃

E(R2
L), yielding (20).
It is instructive to note that the probability of at least one

renewal event in {1, . . . ,L} is

P(RL > 0) =
L∑

y=1

P(Y= y)≃ 2δ
ˆ L

1

√
2
π y

dy

≃ 4δ

√
2
π

√
L≪ 1, (25)

where we have used L≪ δ−2; thus an interval of L sites typ-
ically contains no renewal events.

An unexpected connection: Within the renewal process
framework just described there is a strong connection between
the exponent λ2 in the region of ‘intermediate’ L and the coef-
ficient C3 in the growth relation V(L)≃ C3L for ‘large’ L.
Specifically, the fact that C3 is bounded away from 0 and ∞
as δ ↘ 0 corresponds, in a sense that we now make precise, to
the value λ2 = 3/2 of the 1d FEP.

Consider then a process of renewal events as described
above, but based on a renewal random variable X with dis-
tribution

P(X= n) =
A(Λ)
nγ

e−n/Λ, n= 1,2,3, . . . , (26)

with 1< γ < 2 and A(Λ) a normalization constant (compare
with (17), which corresponds to γ = 3/2, Λ = (2δ)−2). For
simplicity we assume that X itself, rather than 2X+ 1, gives
the distance between renewal events; since E(X)∼ Λ2−γ these
events have density δ ∼ Λγ−2. We are interested in the beha-
vior of this process as Λ↗∞ (note that A(Λ) is finite and
nonzero in this limit).

For L≪ Λ, which here corresponds to the ‘intermedi-
ate’ region, we may repeat the calculations above. Now (22)
becomes P(Y= y)∼ δ/yγ−1, and since E(S2L)∼ L2(γ−1) from
[5], following (24) we find that E(R2

L) is of order

δ

ˆ L

0

(L− y)2(γ−1)

yγ−1
dy= δLγ

ˆ 1

0

(1− u)2(γ−1)

uγ−1
du, (27)

i.e. of order δLγ . Since E(RL)2 = (δL)2 ≪ δLγ , Var(RL) is of
this same order; thus λ2 = γ.

The asymptotic value of Var(SL) is obtained in [4] (see
problems (19)–(23) of chapter XIII) and the same methods
may be used to determine Var(RL):

Var(RL)≃
Var(X)

E(X)3
L. (28)
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(In fact, (28) also holds with Var(RL) replaced by Var(SL)).
We observed above that E(X)∼ Λ2−γ , and a similar calcula-
tion shows that E(X2)∼ Λ3−γ and so also Var(X)∼ Λ3−γ , so
that from (28), Var(RL)∼ Λ2γ−3L. Thus the coefficient of L
in the region of ‘large’ L is of order unity as Λ↗∞ precisely
when the ‘intermediate’ region exponentλ2 = γ has value 3/2.

6. Related models and open problems

As indicated in section 4, the results that we describe there
and in section 5 apply to several other one-dimensional mod-
els. The continuous time model that we treat in sections 3–5,
in which particles jump to all directions at equal rates, may
be generalized in one dimension to the partially asymmet-
ric model, in which left and right jumps occur at different
rates. These models again have an absorbing phase transition
at ρc = 1/2, and it is shown in [1] that the limiting measure νρ
for ρ < 1/2 (and indeed for all ρ) is independent of the degree
of asymmetry, so that for ρ < 1/2 it is the measure analyzed in
section 5. The latter result is also true in discrete time for the
totally asymmetric FEP [6], in which particles jump only to
the right and then, of course, only if their left-hand neighbor-
ing site is occupied (although here the ρ > 1/2 measures do
not coincide with those of the continuous time model). Thus
theorem 1 holds for all these models.

Given the above, we can understand the structure of the
measure νρ, ρ < 1/2, described in section 5, by viewing it as
the limiting measure for the totally asymmetric model. To do
so we associate with each initial configuration of that model
a random walk on the integers, in which the walker takes a
step to the right (respectively left) at time i if and only if site i
is empty (respectively occupied). Since ρ < 1/2 the walk has
a drift to the right. It is then easy to convince oneself that the
final configuration is completely determined by the initial one,
and that the renewal events in (13) occur at sites i such that the
random walk reaches a new maximum at time i. The inter-
vals between two such maxima, which have the form 2Xi+ 1
in (14), are certainly independent, and their distribution (15) is
determined by the well-known fact that the Catalan numberCn
counts the number of walks (Dyck paths of length 2n) between
two such maxima which are separated by a distance 2n+ 1.

The situation is different for the symmetric discrete-time
model in one dimension [7] (partially asymmetric discrete-
time models have not been studied, to our knowledge). In con-
trast to the models discussed in the previous paragraph, adja-
cent empty sites can be created during the evolution, and the
measure νρ of section 5 is no longer the limiting measure.
In particular, at ρ= 1/2, where the measure (6) is the unique
translation invariant stationary (TIS) measure for the models
of the previous paragraph, now there are two uncountable fam-
ilies of extremal TIS measures, each in correspondence with
the set of all TI measures on {0,1}Z; these describe situations
in which patterns formed by occupied and unoccupied sites
move to the left or right, respectively, with velocity 2. It is
shown in [7] that limt→∞µ

(ρ)
t exists for ρ < 1/2, but little is

known about the nature of the limiting measure. For ρ= 1/2
the existence of the limit is not proven; if it exists it must of

course be a convex combination of the extremal TIS measures
mentioned above, and simulations suggest a highly nontrivial
combination.

Hexner and Levine [8] study several models, other than the
FEP, which exhibit a phase transition to an absorbing state: the
Manna model in one dimension and the ‘random organization’
model in both one and two dimensions. In all cases they find
that the state at the critical value of the density is hyperuni-
form. Their plots showing the dependence of the fluctuations
on L and on the density are generally similar to our figure 2,
so we suspect that the phenomenology that we describe in
section 3 will apply there, also, but we have not investigated
the question.

The complete absence of theoretical results for the FEP
models in dimensions two and higher presents a challenge to
mathematical physicists. For example, one would very much
like to have a proof of the existence of active states at some
density below 1/2 and/or, conversely, a proof that the sys-
tem must freeze when started from a Bernoulli initial distribu-
tion of sufficiently low density ρ (say, ρ < 10−23). On a more
refined level one would like to establish the existence of a crit-
ical density ρc < 1/2 such that final states are frozen for ρ < ρc
and active for ρ > ρc, and then prove that, as suggested by sim-
ulations, the final state at ρc is frozen and hyperuniform.
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