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Probability Spaces

Elements of a probability space:

• An outcome space Ω;

• A collection F of subsets of Ω: members of F are called events;
A ∈ F is the event that the outcome is in A;

• A function P which assigns to each event A ∈ F a probability P(A).

Example: (Coin toss, one-period binomial model)

Ω = {−1, 1}, F =
{
{−1}, {1}, ∅, {−1, 1}

}
(all subsets of Ω).

P({1}) = p, P({−1}) = q = 1− p, P(Ω) = 1, P(∅) = 0.

Note: P({ω}) = q(1−ω)/2p(1+ω)/2
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Probability Spaces: Axioms

Axiom on F :
F is a σ-algebra

This means:

(i) Ω ∈ F
(ii) If A ∈ F , so is Ac = Ω− A.

(iii) If A1,A2, · · · belong to F , so does
∞⋃
1

An and also
∞⋂
1

An.

If F is a σ-algebra, if A1, . . . ,An belong to F , so do
n⋃
1

Ai and
n⋂
1

Ai .
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Probability Spaces: examples of σ-algebras.

Example 1: The collection of all subsets of Ω is a σ algebra, no matter
what Ω is.

Example 2: Let Ω = {1, 2, 3, 4, 5, 6}. Let

C =
{
{1}, {2}, {3}, {4}, {5}, {6},Ω, ∅

}
G =

{
{1, 2, 3}, {4, 5, 6},Ω, ∅

}
• C is not a σ-algebra; it is not closed under finite unions (eg.
{1} ∪ {2} = {1, 2} 6∈ C); it is not closed under complementation (eg.
{1}c = {1}c = {2, 3, 4, 5, 6} 6∈ C.
• G is a σ-algebra.
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Examples of σ-algebras, continued

Example 3: Let A1,A2, . . . ,An be disjoint and
⋃n

1 Ai = Ω. Let F be the
collection which contains the empty set and every set which is a union of a
sub-collection of {A1, . . . ,An}.
Thus, G =

{
∅,A1, . . . ,An,A1 ∪ A2, . . . ,Ai ∪ Aj , . . . ,Aj ∪ Aj ∪ Ak , · · · ,Ω}.

Example 4: Let Ω = [0, 1]. Let G be the collection of all finite or
countable unions of subintervals of [0, 1]. This is not a σ-algebra. This set
is not closed under taking complements.

Example 5: Given any collection G of subsets of Ω, there is always a
smallest σ-algebra of subset containing G. It is denoted σ(G) and called
the σ-algebra generated by G.
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Axioms on P

P must satisfy

(i) For every A ∈ F , 0 ≤ P(A) ≤ 1.

(ii) P(Ω) = 1.

(iii) (Countable additivity) If A1,A2, . . . ,An, . . . belong to F and are
disjoint then

P
( ∞⋃

1

Ai

)
=

∞∑
i=1

P(Ai )

Note: (iii) implies that if A1, . . . ,An are disjoint events in F ,

P
( n⋃

1

Ai

)
=

n∑
i=1

P(Ai )
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Probability Space: Examples

Definition

(Ω,F ,P) is called a probability space if F is a σ-algebra and P satisfies
axioms (i),(ii),(iii).

Example 1: Roll of a die; Ω = {1, 2, 3, 4, 5, 6};
F is all subsets of Ω;
p1, . . . , p6 are non-negative numbers such that p1 + · · ·+ p6 = 1, and

P({k}) = pk , 1 ≤ k ≤ 6,

for any A ⊂ Ω, P(A) =
∑
k∈A

pk
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Example 2: (General discrete space)
• Ω = {ω1, ω2, . . . }
• F is all subsets of Ω
• p1, p2, . . . are non-negative and

∑∞
1 pi = 1.

P({ωi}) = pi for each i ,

for any A ⊂ Ω, P(A) =
∑
ωk∈A

pk
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Why not always take F to be all subsets of Ω?
Isn’t it enough to assign probabilities to all individual outcomes, as in the
previous examples?
Example 3. (Uniform probability measure on [0, 1].)
• Ω = [0, 1]
• F is the smallest σ-algebra containing all subintervals of [0, 1]. (the
Borel σ-algebra)
• Theorem: There is a unique probability measure P on F such that

P((a, b)) = b − a, for any 0 ≤ a < b ≤ 1.

Notes: 1. P({x}) = 0 for every x ∈ [0, 1]. P(A) = 0 for any countable set
(A = {x1, x2, . . . }). It is only meaningful to assign positive probabilities to
events with uncountably many elements.

2. F is not the same as the collection of all subsets of [0, 1] and it is not
possible to extend P to this collection so that it satisfies the additivity
axiom.

Daniel Ocone () Lecture 1 September 13, 2011 9 / 29



Independence

Definition

Events A1, . . . ,An are independent if for any 1 ≤ i1 < i2 < · · · < ir ≤ n,

P(Ai1 ∩ · · · ∩ Air ) = P(Ai1) · · ·P(Air )
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Multi-period market example.

• Ω =
{
ω = (ω1, . . . , ωn); , ωi is −1 or 1 for each i

}
;

• F is the collection of all subsets of Ω;
• Want: (i) market movement in different periods to be independent.

(ii) Fix 0 < p < 1. Probability of ωi = 1 (“up”) for each i equals p.
q = 1− p.

Thus P
({
ω;ωi = xi

})
= q(1−xi )/2p(1+xi )/2, and

P
(
{ω = (x1, . . . , xn)}

)
=

n∏
1

P
(
{ωi = xi}

)
=

n∏
1

q(1−xi )/2p(1+xi )/2

= q(1/2)
Pn

1(1−xi )p(1/2)
Pn

1(1+xi )

For any A ⊂ Ω,

P(A) =
∑

(ω1,...,ωn)∈A

q(1/2)
Pn

1(1−ωi )p(1/2)
Pn

1(1+ωi )
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Multi-period model

This is a probability model for independent movements in each period of a
multi-period, binomial model.

Note: In the formula

P
(
{(ω1, . . . , ωn)}

)
= q(1/2)

Pn
1(1−ωi )p(1/2)

Pn
1(1+ωi )

N(ω) =
1

2

n∑
1

(1 + ωi ) = number of 1’s in (ω1, . . . , ωn)

n − N(ω) =
1

2

n∑
1

(1− ωi ) = number of −1’s in (ω1, . . . , ωn)

Can write instead P
(
{(ω1, . . . , ωn)}

)
= qn−N(ω)pN(ω)
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Random variables: Orientation

In elementary probability, a random variable X is treated as a symbol for
the numerical outcome of a random experiment or phenomenon, and
specified by it probability mass function (when X is discrete) or its
cumulative distribution function or density function (when X is
continuous.)
In the measure-theoretic approach to probability adhered to in this course,
a random variable is always a function on a probability space. A
probability space is always used as the underlying model. A random
variable X assigns to each possible outcome ω a value X (ω). Since the ω
that actually occurs in a given trial is random, the value of X is random.
Not any function qualifies as a random variable, as we shall see....
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Multi-period, binomial model; examples.

Even though we have not yet defined what qualifies a function as a
random variable, we give an important example:

Multi-period binomial model: Ω =
{

(ω1, . . . , ωn); ωi ∈ {−1, 1}
}

,

F = all subsets.

Random variables of interest:

• Number of 1’s in first k periods: Nk(ω1, . . . , ωn) :=
1

2

k∑
1

(1 + ωi ).

• Number of −1’s in first k periods: k − Nk(ω) =
1

2

k∑
1

(1− ωi )

• Prices (we derived this formula in a previous lecture):

S(tk)(ω) = uNk (ω)dk−Nk (ω)S(0)

(in this formula we abbreviate (ω1, . . . , ωn) by ω)

• The payoff of a contingent claim at T : V (T )(ω), ω ∈ Ω.
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Random variables; further orientation.

What restrictions should qualify X as a random variable? Recall X is a
function on a set Ω which comes from a probability (Ω,F ,P).

Suppose U is a subset of the real line; for example an interval [a, b], or
(−∞, b]. We want to discuss the probability that the value of X follows in
an interval. This is the probability of the event{

ω; X (ω) ∈ U
}

But to discuss the probability of this set, it is necessary that{
ω; X (ω) ∈ U

}
∈ F .

Daniel Ocone () Lecture 1 September 13, 2011 15 / 29



Random variables; measurable functions

Let F be a σ-algebra of subsets of Ω.

Definition

A real-valued function X on Ω is F-measurable (or measurable with
respect to F) if{

ω; X (ω) ≤ a
}
∈ F for all real numbers a.

Examples:

1. If F is the collection of all subsets of Ω, all real-valued functions X on
Ω are F-measurable.

2. Let Ω = {1, 2, 3, 4, 5, 6}, F =
{
{1, 3, 5}, {2, 4, 6}, ∅,Ω

}
.

Let X (j) = j .
{
ω;X (ω) ≤ 1

}
= {1} 6∈ F ; thus X is not F-measurable.
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More discussion of measurability

Definition

Let B(R) denote the smallest σ-algebra of subsets of the real line that
contains all open intervals. This is called the Borel σ-algebra of R and it
elements are called Borel sets.

The following are Borel sets: any open set of R, any closed set, any union
or intersection of a countable number of open or closed sets, any
complement of these, etc. The Borel sets will contain almost any subset
that will arise in practice.

Lemma

If X is F-measurable, then{
ω; X (ω) ∈ U

}
∈ F for any Borel set U.

Daniel Ocone () Lecture 1 September 13, 2011 17 / 29



Random variables; Definition

Definition

If (Ω,F ,P) is a probability space and if X is an F-measurable function
defined on Ω, we call X a random variable.

Notes: 1. When Ω is discrete and F is all subsets of Ω, any function X on
Ω qualifies as a random variable.

2. In more complicated examples, measurability can be tricky to check and
we will normally assume it is the case.

3. The concept of measurability will be an important component of the
theory of conditional probability and expectation.

4. Linear combinations of random variable, limits of sequences of random
variables, etc. transformations y = ψ(X ) by continuous or
piecewise-continuous ψ are all again random variables.
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Random variables; simple random variables

Let (Ω,F ,P) be a probability space.

• If A ⊂ Ω, the indicator function of A is

1A(ω) =

{
1, if ω ∈ A;
0, if ω 6∈ A.

If A ∈ F , 1A is a random variable.

• If c1, c2, . . . are real numbers and if A1,A2, . . . are disjoint events in F ,
then

X =
∞∑
i=1

ci1Ai
is a random variable.

Random variable of this form are called discrete random variables. The
sum may be finite:

X =
K∑

i=1

ci1Ai

X takes values only in the set {c1, c2, . . . } and P(X =ci ) = P(Ai ).
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Conversely, assume X is a random variable whose possible values lie in the
set of distinct numbers, {c1, c2, . . . }. Let Ai =

{
ω; X (ω) = ci

}
, for each

i . Then

X =
∞∑
i=1

ci1Ai
.

All random variables on a discrete Ω are discrete.
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One period model with probabilities.

One period model: Ω = {−1, 1}. Assume P({1}) = p,
P({−1}) = q = 1− p.

Let S(T )(1) = uS(0), S(T )(−1) = dS(0), or

S(T )(ω) = uS(0)1{1}(ω) + dS(0)1{−1}(ω)

A contingent claim: V (T )(ω) = V (T )(1)1{1}(ω) + V (T )(−1)1{−1}(ω)
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Example for the multi-period model with independent
market movements

Back to the multi-period model: Ω =
{

(ω1, . . . , ωn); ωi ∈ {−1, 1}
}

,

F = all subsets.
P

(
{(ω1, . . . , ωn)}

)
= qn−N(ω)pN(ω)

N is the total number of 1’s in n independent trials with p the probability
of a 1 in each trial. Thus

N is binomial random variable with parameters p and n :

P(N = j) =

(
n

j

)
pjqn−j 0 ≤ j ≤ n.

{N = j} consists of the
(n

j

)
sequences (ω1, . . . , ωn) with exactly j 1’s.

Each sequence in the set has probability pjqn−j .
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Expectation of simple random variables

Definition

Let X =
∑∞

i=1 ci1Ai
, The integral of X with respect to P is defined to be∫

Ω
X (ω)dP(ω) =

∫
Ω

∞∑
i=1

ci1Ai
dP(ω) =

∞∑
i=1

ciP(Ai )

if the sum makes sense. This integral is called the expected value of X
(w.r.t. P) and written E [X ] or, EP when it is important to emphasize the
probability measure.

This definition coincides with the definition from elementary probability; if
ci are distinct, E [X ] =

∑∞
1 ciP(Xi =ci ).
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Example; One-period model

One period model: Ω = {−1, 1}, with
P({1}) = p, P({−1}) = q = 1− p,
S(T )(ω) = uS(0)1{1}(ω) + dS(0)1{−1}(ω).
Then

E [S(T )] = E [S(T )(−1)1{−1}+ S(T )(1)1{1}] = qdS(0) + puS(0).

For a contingent claim,

E [V (T )] = qV (T )(−1) + pV (T )(1).
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One period model; Continued

Let d < 1 + rT < u. Then there is a price vector

1

1 + rT
(q̃, p̃) =

1

1 + rT

(u − (1 + rT )

u − d
,
1 + rT − d

u − d

)
We know q̃ + p̃ = 1. Let P̃ be the measure defined by

P̃({1}) = p̃, P̃({−1}) = q̃.

Let Ẽ denote EP̃. Then

S(0) =
1

1 + rT

[
q̃S(T )(−1) + p̃S(T )(1)

]
=

1

1 + rT
Ẽ [S(T )]

and, for any contingent claim, the no-arbitrage price is

V (0) =
1

1 + rT

[
q̃V (T )(−1) + p̃V (T )(1)

]
=

1

1 + rT
Ẽ [V (T )].
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Probabilistic definition of the state-price vector.

Definition

Consider a one-period model with Ω = {ω1, . . . , ωm}, risky assets
S1(t), . . . ,Sp(t), and a money market at risk-free rate r . A measure P on
Ω is said to be risk-neutral if P({ωj}) > 0 for each j , and if for each risky
asset i , 1 ≤ i ≤ p,

Si (0) =
1

1 + rT
EP[Si (T )] =

1

1 + rT

[ m∑
i=1

Si (T )(ωi )P
(
{ωi}

)
].

Usually we use P̃ to denote a risk-neutral measure.
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Risk-neutral measures and state-price vectors

Theorem

If P̃ is a risk-neutral measure,

1

1 + rT

(
P̃

(
{ω1}

)
, . . . , P̃

(
{ωm}

))
.

is a state-price vector. Conversely, a state-price vector defines a
risk-neutral measure.
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Fundamental Theorem of Asset Pricing, restated

Theorem

The one-period model is arbitrage-free if and only if there exists a
risk-neutral measure P̃. In this case, if V (T ) is an attainable contingent
claim, its unique, no-arbitrage price is

V (0) =
1

1 + rT
Ẽ [V (T )].
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Multi-period model

Assume d < 1 + rh < u, where h is the length of each period. Let p̃ and q̃
be defined as in the one-period model. We showed that the value of a
contingent claim at time 0 is

V (0) =
1

(1 + rh)n

∑
ω∈Ω

p̃N(ω)q̃n−N(ω)V (T )(ω).

If we define P̃ on Ω by

P̃
(
{(ω1, . . . , ωn)}

)
= q̃n−N(ω)p̃N(ω),

it follows

V (0) =
1

(1 + rh)n
Ẽ [V (T )].

P̃ will again turn out to be a risk-neutral measure, but we have yet to
define this for the multi-period case.
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