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SOME NONLINEAR WEAK ERGODIC THEOREMS*

ROGER D. NUSSBAUM"

Abstract. Let C be a cone with nonempty interior in a Banach space and, for j _>- 1, let f’ be a

sequence of maps. It is frequently assumed that each f is homogeneous of degree and order-preserving
with respect to the partial ordering induced by C; but it is not assumed that f(C-{0})c . If F,
f,,J’,-i""" fl, the composition of the first m f, and if d denotes Hilbert’s projective metric, then theorems
(usually called weak ergodic theorems in the population biology literature) can be proved ensuring that,
for all x and y in 7, lim d(F (x), F (y)) 0 and (if C is normal) lim II(Fm (x)/II Urn (x)ll)
(F,.(Y)/IIF,.(Y)II)I1-0. If u e t is fixed and assumptions on the f are strengthened, it can be proved that
for every z e t there exists A x > 0 such that lim F,. (x) A (x)Fm(u )II 0, These theorems are applied
to the case where C {x Rn: x->0 for =< =< n} and where the maps f belong to a class M arising in the
theory of "means and their iterations" and in certain problems from population biology.
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1. Preliminaries. In an effort to make this paper self-contained, we begin by
recalling some definitions and theorems from the literature. By a cone C (with vertex
at 0) in a Banach space X we mean a closed, convex subset C of X such that (a)
tC c C for all >- 0 and (b) if x C -{0}, then -x C. A cone induces a partial ordering
on X by

x<_-y if and only ify-xC.

Two elements x, y C will be called "comparable" if there exist positive reals a and
/3 such that

ax<=y<=flx, a, fl>O.
If x and y in C are comparable, we follow Bushell [6] and define

(1.1) M(y/x) inf {/3 > O: y <-_ fix},

(1.2) m(y/x) sup {a > O: ax <= y}.
If u s C-{0}, Cu will denote the set of elements of C that are comparable to u. If u
is an element of the interior of C, Cu is the interior of C. In general Cu satisfies all
properties of a cone except closedness.

Associated to the set Cu is a natural normed linear space E.,

E {x X" there exists a > 0 such that -au <- x <= au}.
For x E., we define a norm Ixl by

]x], inf {a > O" -au <= x <-_ au}.

A cone C in a Banach space X is called "normal" if there exists a constant M
such that
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for all x, y C such that x =< y. A cone C is "total" if the closure of the linear span
of C equals X. If C is a cone, C* will always denote the set of continuous linear
functionals X* such that (x)>-0 for all x C. It is not hard to see that if C is a
total cone, then C* is a cone.

The basic technical tool we will use in this paper is the so-called "Hilbert’s
projective metric" d. If C is a cone in a Banach space X and u C-{0}, then for
x, y C, define/3 M(y/x), a m(y/x), and

(1.3) d(x, y)= log (-),
(1.4) a(x, y)= log (max (/3, a-l)).

We can easily prove (see [6]) that the projective metric d satisfies all properties of a
metric except that d (y, x) 0 if and only if y Ax for some A > 0. On the other hand,, which was introduced by Thompson [36], is a metric on C,. If E- {x C," ]lxll- 1},
(E, d) is a metric space, and it is natural to ask if (E, d) is complete. It is proved in
[37] that (E, d) is complete if and only if

(1.5) sup (llxll" 0_-< x-<_ u <,
and (1.5) is satisfied if and only if E is a complete normed linear space. Also, one
can show that (C,, d) is complete if and only if (1.5) is satisfied. It should be noted
that the results in [37] are closely related to much earlier theorems of Thompson [36]
and BirkhotI (see Theorem 5 in [5] and Remark 1.1 in [25]). Notice also that if C*
and (u) > 0 and

r. {x C" 4,(x) },

then (E, d) is complete if and only if (E, d) is complete, because (E, d) and (E, d)
are isometric.

If K {x e N"" x _>-0 for 1-< i-< n}, K will be called the "standard cone in N".
Obviously, K is normal, so if E={xe/’=x 1} or E {xe/" x 1} the
remarks above show that (E, d) and (;, d) are complete.

We also need to recall some results about positive linear operators. Suppose that
C is a cone in a Banach space X and that L" X-X is a bounded linear operator
such that L(C)c C. Assume that Lx and Ly are comparable for all x, y e C such that
Lx 0 and Ly 0 and define a number A(L), the "projective diameter of L(C)- {0}"
by

(1.6) A(L)=sup{d(Lx, Ly): x,y C, Lx#O and Ly#O}.

If Lx 0 for all x C, we define A(L)= 0. If L is as above and A(L)< o we shall say
that "L has finite projective diameter."

If x,yC-{O} are not comparable, define d(x,y)=o. If x,y C-{0} and
M(y/x) < c, define

(1.7) osc (y/x)= M(y/x)- m(y/x).

If M(y/x)=c, define osc(y/x)=o. If L is a bounded linear operator such that
L(C) c C and Lx and Ly are nonzero and comparable for all x, y C-{0}, define

k(L)=inf {k>O: d(Lx, Ly)<-_kd(x, y) for all x, y C-{0}},

N(L) =inf{A >0: osc(Ly/Lx)<-A osc(y/x) for x, y C-{0}}.
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It is easy to see that k(L) -< 1 and N(L) -< 1. However, if A(L) < c, results of Birkhott
[4], [5] and Hopf [19], with refinements of Ostrowski [27], Bauer [2], Bushell [6], [7],
and others [20], [37] imply that

(1.8) N(L) k(L) tanh (A(4L)) < l.

As a particular example, note that if K is the standard cone in R and L is an
n x n matrix, all of whose entries are positive, then A(L) < o. In fact, it is not hard to
prove that A(L)=supi.jd(Lei, Lej), where ei, l<=i<-n, is the standard basis of Rn.
From this observation and (1.8) we derive an explicit formula (see [6], [35]) for A(L)
and k(L).

If C is a cone and D c C, a map f" D C will be called nonexpansive with respect
to d if

(1.9) d(f(x),f(y))<-_d(x,y) for all x,yD.

We have the obvious modification for d. A map f: D- C will be called "order-
preserving" if f(x)<-_f(y) for all x, y D such that x<-_y. The map f will be called
"homogeneous of degree 1" on D if

f(tx)=tf(x) for all t>0 and xD such that txD,
and will be called "subhomogeneous" on D if f(tx) > tf(x) for all t, 0< -< 1, and
x D such that tx D. It is an easy exercise that if u C-{0}, D C, and f: D D
is order preserving and homogeneous of degree 1, then f is nonexpansive with respect
to d" see [6], [25], [29]. Thompson [36] observed that, iff" C, - C, is subhomogeneous
and order-preserving, then f is nonexpansive with respect to d. Potter [29] observed
that, for q, C* with q,(u) > 0, the restriction off to + {x C." q,(x) 1} is nonex-
pansive with respect to d.

Now suppose that C is a cone in a Banach space X, u C-{0}, and S is a
collection of maps f’C,-+ C,. In most of this paper we will assume that f is order
preserving and homogeneous of degree 1 for every f S. Suppose that f S, 1 =<j < oo,
is a sequence of functions in S and define

(1.10) F. =f.f._f._2’’ "A
for n --> 1. We are interested in finding further conditions ensuring that for all x, y C,

(1.11) lim d(F,,(x), F(y)) 0.

Such results are called "weak ergodic theorems" in the population biology literature
[11], [17]. The linear theory is well understood: see the excellent survey article [11]
by Cohen. If (1.5) is satisfied, it is known (see eq. (1.20a) in [25]) that there exists a
constant M such that

(1.12)
IIx-yll<-M[exp(d(x,y))-l] for all x,yE,- {x Cu. Ilxll- 1}.

Using (1.12) we can see that if (1.5) and (1.11) hold and the functions f are
homogeneous of degree 1, then

(1.13) lim F, (x)[[ F, (x)[[ - Fn (y)[[ F, (y)[[-1[] 0.

Note that if (1.5) is satisfied, C E, is a normal cone with nonempty interior C,
in the Banaeh space E,, so by working in E, we can assume that C is normal with
nonempty interior.
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In fact, the question we are asking is motivated by a particular class of maps M
defined on the interior of the standard cone K in Rn, so we recall the definition of M
(see [24], the Introduction to [25], and 4 of [23]). Recall that a probability vector tr

is a vector tr K such that ni= tri 1. If r is a real number and tr a probability vector,
define Mrs"/ - R by

If r 0, define

(,Y’ ) /Mro.(X) O’iX

Mo(X) x, ,.
i=1

Such maps, of course, have an extensive classical theory, described in 18]. For 1 <= <- n,
let F be a finite collection of ordered pairs (r, tr), with r a real number and tra

probability vector. For (r, tr)e F let cr be a positive real number and define f"/
(0, oo) by

(1.14) f(x) X c,M(x).
(r,o’)F

Define f to be the ith component of a map f:/ -/. If f"/ ->/ can be written in
this form, we will writef M. Iff can be written as in (1.14) in such a way that r->_0

for all (r, or) F and 1 <_- <_- n, we say thatf M/; iff can be written as in (1.14) such
that r<0 for all (or, r) Fi and 1 <_-i_-< n, we say thatf M_. Note that iff is a linear
map such that of(K) /, thenf M+fq M_. We define //(+, _) to be the smallest
set of maps f: K ->/ such that M(+ M/,

_
M_) and d/ (f//+, ///_) is closed

under addition of functions, composition of functions, and multiplication by positive
scalars. The class arises in the theory of "means and their iterations"; see [1], [12],
[15], [23]-[26]. It is proved in [26] (this is not hard) that if f J//, then f extends
continuously to K andfl/ is C. We will see that establishing weak ergodic theorems
may already be nontrivial when S-- and C K. Existing nonlinear weak ergodic
theorems as, for example, in the work of Fujimoto and Krause [16], are frequently
inapplicable. On the other hand, we have not attempted to give an all-inclusive abstract
framework: there are examples to which our general theorems are not directly applicable
but which can be handled with theorems from [16].

2. Some nonlinear weak ergodic theorems. The following definition will play a
crucial role in our subsequent work.

DEFINITION 2.1. Let C be a cone in a Banach space X and D a subset of C such
that all elements of D are comparable. Suppose that f" D--> D, j _-> 1, is a sequence of
maps and define F,, =fmf-""" f to be the composition of the first m functions f,
1 -<j _-< m. We say that (f) has "the bounded orbit property" (with respect to Hilbert’s
projective metric) if for every x D, there exist y D and R > 0 (possibly depending
on x) such that

d(Fm(x),y)R for all m>_-l.

If each of the functions f is nonexpansive with respect to d, it is an easy exercise
(left to the reader) to prove that (f) has the bounded orbit property if and only if
there exist Xo, Yo D and Ro> 0 such that

d(F (Xo), Yo) =< Ro for all m _-> 1.
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If D Cu for some u C- {0} and each of the functions f:D--> D in Definition
2.1 is homogeneous of degree 1 and order-preserving, select C* such that O(u) > 0
and define E, {x Cu: O(x)= 1} and hi:D-> D by

h(x) f(x)/(f(x)).

It is another easy exercise (again left to the reader) to prove that (hi) satisfies the
bounded orbit property if and only if (f) does. The maps h can also be considered
maps of D1 5: to itself and (h) satisfies the bounded orbit property on D1 if and
only if (h) satisfies the bounded orbit property on D.

Suppose that C is a cone with nonempty interior in a finite-dimensional Banach
space X and f: t D--> t is homogeneous of degree 1 and order-preserving. We can
define f =f for all j-> 1 and ask whether (f) satisfies the bounded orbit property with
respect to d. It is a special case of results in 4 of [25] that (fj) satisfies the bounded
orbit property if and only if f has an eigenvector v t (so f(v)= by). Note that if f
extends continuously to C, it certain,ly has an eigenvector in C- {0}, but the question
of whether f has an eigenvector in C may be quite subtle, even if f /_. The reader
is referred to [25], [26] for further details. Even the simple-looking four-dimensional
mapf M_ in [34] requires some care. For a complete, rigorous analysis see [26].

We will need the following simple geometrical lemma to prove our first weak
ergodic theorem.

LEMMA 2.1. Let C be a cone in a Banach space X and let S be a subset ofC. Assume
that all elements ofS are comparable and that there exists p > 0 such that d (x, y) <-_ p for
all x, y S. Ifw C and w xl + x2 forpoints xl x2 S, we have that xl >-- Aw or x2 >- Aw,
where h 1/2 exp (-p).

Proof. Suppose that w xl +x as above and that d(xl, x2)= r <- p. It suffices to
prove that

xl-->w or x_=>/xw where=1/2exp(-r).

It follows easily from the definition of Hilbert’s projective metric that

(2.1) d(x1, W) 7" and d(x2, W) ’o

In fact, we have strict inequality in (2.1) if - > 0. Formulae (2.1) imply that there exist
positive constants ct and/3j for j 1, 2 such that

(2.2) aw<-_x<-w and (fl/aj)-<_exp (-).

Assume that a < for j 1 and j 2. Then we obtain

(2.3) x <-_ flw a/I g flj/a w <- cw,
where

(2.4) c (1/2)( a/ tz < 1/2.
By adding (2.3) for j 1 and j 2 we obtain

(2.5) w Xl + x <- (cl + c2)w cw.

Since the constant c in (2.5) is less than 1, we have a contradiction, and therefore it
must be true that 31 _->/z or a2 /./,o [[]

We will actually use Lemma 2.1 in the following less general version.
LEMMA 2.2. Let C be a cone in a Banach space X and let A X - X be a bounded

linear operator such that A(C) C and A has finite projective diameter (so A(A)<
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for A(A) as in (1.6)). Then if z C and z x + y for x, y C, we have Ax >-_ AAz or
Ay >= AAz, where

A (1/2) exp (-A(A)).

Proof. In the notation of Lemma 2.1, define S by

(2.6) S (Ax: x C and Ax 0},

so the diameter p of S with respect to Hilbert’s projective metric is A(A). If Ax =0
or Ay 0 for x and y as in the statement of the lemma, the result is obvious. Otherwise,
if we define w Az, Xl Ax, and x2 Ay, Lemma 2.2 follows immediately from Lemma
2.1.

With these preliminaries we can establish our first weak ergodic theorem. In
reading the statement of Theorem 2.1 below, recall that if A and B are linear maps
and C is a cone, we say that A -< B (in the partial ordering induced by C) if A(x) <- B(x)
for all x C.

THEOREM 2.1. Let C be a cone with nonempty interior in a Banach space X and
for each j >- 1 let f" (? be a map that is order-preserving and homogeneous of degree
1. For m >- 1 let F,, f,,f,-i "fl denote the composition of the first m maps f and let
Fo denote the identity. Assume that there exist u I, an integer p >-1, a real number
R > O, and a sequence of bounded linear operators Ai: X X, >= 1, with the following
properties:

(a) For every j >- 1, f is continuously Frdchet differentiable on BR(F-l(U)), where
BR(y) {x " d(x, y) < R}.

(b) The operator Ai satisfies A,()c () for all >- 1.
(c) Ifg =pf-i "f-/ and G,, g,g,_ g F,p, then g(x) >= A for all

x BR(G_I(u)) and allj >- 1.
(d) There exists a positive constant k such that A G_I(u)) >- kg G_ u)) forj >-_ 1.

IfA has finite projective diameter, let A(A) be the projective diameter as in (1.6),
and otherwise define A(A) =oo and exp (-A(A)) =0. Then if we have that

N

(2.7) lim E exp (-A(Aj)) o,
Nj=

it follows that

(2.8) lim d(F,,(x),F,,(y))=O forallx, y.
m.oo

Also, if C is normal, (1.13) is satisfiedfor all x, y . In particular, ifAj A for allj >- 1
and A A < oo, then (2.8) is satisfied.

Proof. By the triangle inequality it suffices to prove (2.8) for all x e ( and for
y u. As has already been noted, each map f is nonexpansive with respect to d, so
for any x , d(Fm(X), F,(u)) is a monotonic decreasing sequence of reals. Thus to
prove (2.8) it suffices to prove that

(2.9) lim d(G(x), G(u))=0 for all xe (.
joo

Fix a number R1,0 < R < R, and suppose we can prove that there exists a sequence
of numbers h with 0<h=< 1, such that if d(y, G(u))<-R, j>=O, then

(2.10) d(g+,(y),g+l(G(u)))<-_A+ld(y, G(u)),
N

(2.11) lim I-I A=0 for anym>=l.
N-oo j_--



442 ROGER D. NUSSBAUM

Repeated application of (2.10) and (2.11) then implies that if d Gin_ (x), Gm_ (tl)) <- R
for some m >= 1, then

d(GN(x), GN(u))<=( ] h) forall N>-m,
j=m

which establishes (2.9) in the case d(x, u)<= R1.
If d(y, Gj_l(U))=p > R1, Proposition 1.9 in [25] implies that there exists yl on

the line segment connecting y to G_l(u) such that

(2.12) d(y, Yl) --/9 R and d(yl, Gj_(u)) R

Using the nonexpansivity of gj and (2.10) we obtain from (2.12) that

(2.13) d (g(y), G(u)) <- p R1 / AR1.
If p _-< R2, R_ > R1, we obtain from (2.13) that

(2.14) d(gj(y), Gj(u)) <-_ txd(y, G_l(U)),
where

(2.15) tx gE- (1- hj) gl]gf 1.

Formula (2.14) was proved under the assumption that R1 < p --< R, but because/x ->_ hi,
the equation holds for p _-< R.

If d (x, u)_-< R, the nonexpansive property of G implies that

d(G(x), G(u))<-R2 for all j>-0.

Thus by repeated applications of (2.14) we obtain

d(GN(X), GN(U))<=( I tzj) d(x, u),
j=l

so (2.9) will follow if we can prove that

(2.16) lim (/x)=0./Nr-

If Aj -< 1/2 for infinitely many indices j, we can easily see that there exists a constant < 1
such that 0<=/x <-c for infinitely many indices c and (2.16) will be satisfied. Thus we
can assume that 1/2 < )t -<_ 1 for j -> m, so < -< 1 for j -> m. Under these conditions it
is well known and easily checked that

N

lim H h=O:> 2 -log(hj)=oo:> 2 (1-h)=oo,
N- j= j=

N

lim I-I /x./=O:> E -log(/zj)=oo::> E
Nj=m j=m j=m

Because (1-1x)=(R/R2)(1-Aj), the equations above imply that (2.16) is
satisfied.

Thus it suffices to prove that (2.10) and (2.11) can be satisfied. For a fixed

0 C* -{0} it suffices (by homogeneity) to define uj Gj(u)/q(G(u)) and to prove that

d(gj+l(Uj), gj+l(Y)) <= Aj+ld(y, uj)

for all y such that q(y)= 1 and d(y, u)<=R < R. Recall (see Lemma 4.1 in [25] or
argue directly) that

V,,(u) {y: d(y, u) <- R,}
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is convex. For notational convenience, define Gj+ g, Aj+ --A, and uj v and let a
and/3 be positive numbers such that

av<=y<=v and log(/a)=p=d(y,v).

The normalization q,(y) O(v) 1 implies that a =< 1 and/3 -> 1. If we define

wt=(1-t)(av)+ty and zt=(1-t)y+t(v), 0-<t-<l,

we obtain

g(y) g(av) g’(w,)(y av) dt,

g(Clv) g(y) g’(z,)(flv y) dr.

If we recall that g’(zt) >- A, we obtain from the preceding two equations that

Note that

A(y av) + A(v y) ( a )Av,

so Lemma 2.2 implies that there exists a positive constant y Yj/I (1/2) exp (-A(A+I))
such that

A(y av) >= y(/3 a)Av or A(v y) >= y(/3 cr)Av.

For definiteness we assume that

(2.18) A(y av) >= 3,(/3 a)Av.

The proof in the other case is essentially the same.
Next, remember that we assume the existence of a positive constant k, independent

of j >- 0, such that

(2.19) A(v) A+(u) >= kg(v) kg+,(uj).

If we use (2.17)-(2.19) we obtain

(2.20) ag(v) + ky(/3 a)g(v) <- g(y) <= fig(v),
where log(/a)=d(y, v) and y=(1/2)exp(-A(Aj+)). Formula (2.20) implies that
ky <= 1 and

(2.21) d(g(v) g(y))<=log( )a+ky(-a)

If we define s =/3/a, with 1 =< s<=exp (R), and recall that d(v, y)=log (s), we obtain
from (2.21) that d(g(v), g(y)) d(g+l(u), g;+(y))<=Aj+ld(u, y), where

(I(S)
(2.22) /j+l sup

l<sexp(R1) (02(S)

with ql(S) log Is(1 + ky(s- 1))-] and qE(S) log (s).
Because q(1)-0, the generalized mean value theorem implies that for each s,

1 < s-<exp (R1), there exists tr with 1 < tr < s such that

(2.23) (01(s)/(02(s ( (O’)/(0(O’) (1 ky)(1 + ky(tr- 1 ))-1,



444 ROGER D. NUSSBAUM

SO

(2.24) Aj+I-" 1-() exp (--A(Aj+I)),

The same sort of argument that we have used already proves that

N

lim I-I A-0 for every rn->l
N-x3

if and only if (2.7) is satisfied.
This completes the proof of (2.8); the remaining assertions of the theorem are

straightforward and left to the reader, l-1
Remark 2.1. Let hypotheses and notation be as in Theorem 2.1. However, do not

assume condition (d), and suppose that (gj) satisfies the bounded orbit property. Then
condition (d) is equivalent to the following condition (d’)"

(d’) There exists a positive constant kl such that

Aj(u) >- k&(u) for all j>_- 1.

We will prove that (d’) implies (d); the opposite implication is proved similarly. If u
is as defined in the proof of Theorem 2.1, the bounded orbit hypothesis implies that
there exist positive constants c and d, j-> 1, such that

CjUo<= U <-_ duo and d/ c <= M,
where M is a constant independent of j. It follows that

cjg.,+(Uo) <= &+l(U) <= d.i&+l(uo),

cjAj+ tlo <= Aj+ ttj <= djAj+ uo
If we use these inequalities and hypothesis (d’) we find that

&+(u) <= d&+,(Uo) <- k-(ldAj+,(Uo) <- k-(l () A+,(t)

<- k-(1MA+ U
which is equivalent to hypothesis (d).

It may be unclear how we can expect to find operators A such as those in Theorem
2.1. The next corollary shows that under mild assumptions a scalar multiple of
g(Gj_l(U)) can serve as Aj.

COROLLARY 2.1. Let C be a cone with nonempty interior in a Banach space X, and
letf" - , j 1, be a sequence of maps that are order-preserving and homogeneous of
degree 1. For a fixed p >- 1, let & and Gm be as defined in Theorem 2.1, and assume that
there exist r > 0 and u such that f is C on B(F_ (u)) for all j >- 1, where B(x)
{y " d (y, x) < r}. Define u G(u)/II G(u)ll and assume that there exist positive
constants c and p <-r such that, if d (x, U-l)< p and j >-_ 1, then

(2.25) g(x) _>- cg(uj_).

Finally, assume that the operators B g(G-I(u)) g(u_l) satisfy

(2.26) Y exp (-A(B)) oo,
j=l
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where A(Bj) is given by (1.6) if Bj has finite projective diameter, and that they satisfy
exp (-A(B)) 0 otherwise. Then it follows that

lim d (F, (x), F, (y)) 0 for all x, y .
If C is normal, (1.13) is also satisfied for all x, y .

Proof. Define A cB for c as in (2.25). It suffices to prove that the hypotheses
of Theorem 2.1 are satisfied. Formula (2.25) implies (taking p R) that hypothesis (c)
of Theorem 2.1 is satisfied.

Because gi is order-preserving, Bi and Ai cBi are also order-preserving, so
A(C) c C. The homogeneity of g implies that

(2.27) g,(t/i_l) ni(t/i_l) ,
and using (2.27) and the order-preserving property of Ai we conclude that A(t)c t.
Thus hypothesis (b) of Theorem 2.1 is satisfied. Hypothesis (d) of Theorem 2.1 also
follows directly from (2.27). Finally, because A(cB)=A(B), (2.7) is equivalent to
(2.26). l-]

The homogeneity of the functions f in Theorem 2.1 plays less of a role than it
might at first seem to. We illustrate this by stating a result that follows by essentially
the same argument as Theorem 2.1. First, we need a lemma proved by Potter (see [29])
in the case where the function g is defined, order-preserving, and subhomogeneous
on all of .

LEMMA 2.3. (Compare [29].) Let C be a cone with nonempty interior in a Banach
space X, and for @ C*-{O} and A > I define E={xt’q,(x)=l} and D=
{x " A -1 < d/(X) < A }. Assume that f" D --> is order-preserving and subhomogeneous
on D. Then fie is nonexpansive with respect to Hilbert’s projective metric d, so
d(f(x),f(y))<=d(x, y) for all x, y,.

Proof. If Xo and Xl are points in E with d(xo, xl)=p, define xs =(1-S)Xo+SX.
For a given integer n > 1, it follows from Proposition 1.9 in [25] that there are real
numbers s, with sj < S/l for O<=j<n and So=0 and s,= 1 and (writing y=xsj)

d(y, Yj+I) pn -1 for 0<-j < n.

Note that in general s jn-.
Choose n so large that pn-< X. It suffices to prove that

(2.28) d(f(yj),f(y+)) <- d(y, y+) pn-,
for then the triangle inequality gives

rl--1

d(f(xo),f(xl)) <= Y d(f(y),f(yj+l)) <- n(pn-) d(xo, Xl).
j=O

For a fixed j select numbers a and/3 so that

(2.29) ay<-y+<-fly and log()=pn-a.
Because O(y) (yj+) 1, we easily obtain from (2.29) that 0< a _-< 1 -</3 and a- -<
pn-< A and/3 < pn-< A. It follows that the points cty, fl-y+, y, and Yj+I all lie
in D. By using the subhomogeneity and the order-preserving property of f on D we
find that

otf(yj) <=f(otyj) f(Yj+I) and fl-f(y+) <=f(fl-yj+) <-_f(y),
SO
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We can now give a version of Theorem 2.1 for order-preserving, subhomogeneous
operators. Once we know Lemma 2.3, the proof of the next theorem follows by
essentially the same argument as in Theorem 2.1 and is left to the reader.

THEOREM 2.2. Let C be a cone with nonempty interior in a Banach space X and
for fixed C*-{O} and h>l deofine D={x’h-<d(x)<h} and
{x " tp(x)= 1}. Suppose that g" D--> C, j >-1, is a sequence of order-preserving, sub-
homogeneous maps and define

hi(x) gj(x)/ @(gj(x)),
with H, hmhm-1 h and Ho equal to the identity. For some u E define uj I-t(u)
and assume that there exists R > 0 and a sequence of bounded linear operators Aj, j >- 1,
such that:

(a) g is continuously Fr.chet differentiable on BR (uj_l) fq D for all j >- 1, where
BR(y) {X (S" d(x, y) < R}.

(b) A,()c for all i>-I and gl(x)>-A, for allxBR(U,_l)f’lD and i>=l.
(c) There exists a positive constant k such that Aj(Uj_l)=> kgj(u_l) for all j >- 1.

If we have
N

lim E exp (-A(A)) ,
where A(Aj) is given by (1.6), then it follows that

lim d (H, (x), H, (y)) 0 for all x, y E,

and

lim (x) H= (Y)ll 0 for all x, y E

if C is normal.
Remark 2.2. Note that in the statement of Theorem 2.2 there is no integer p

analogous to the one in the statement of Theorem 2.1. If we assume that the g satisfy
a "ray-preserving property" as in [16], then

{g(tx):t>0}{sg(x):s>0} forj_->l and xE.

Then if G, g,g,.-l""g, we can verify (see [16]) that

Gm(x)/ @( Gm(X)) Hm(X).

Using this fact we can then give a version of Theorem 2.2 that directly generalizes
Theorem 2.1. Without the ray-preserving property there seems to be no necessary
connection between Gm and H,.

However, the assumption of the ray-preserving property for order-preservin,
subhomogeneous operators can be restrictive. To see this, suppose that f:C- C,
j 1, 2, is order-preserving and f(tx) txJf(x) for 0 < -< 1 and x 7, where 0 < A <- 1.
Then f is subhomogeneous, order-preserving, and ray-preserving. However, f=fl +f_
is subhomogeneous and order-preserving, but not ray-preserving unless A1 2.

Remark 2.3. In 16], Fujimoto and Krause have obtained weak ergodic theorems
for ray-preserving maps of the standard cone K {x ": x >_- 0 for 1 =< =< n} into
itself. If F= {x K: q(x) 1} (q K*- {0}) andf K - K,j > 1, is a sequence of maps
for which we want to establish a weak ergodic theorem, then the assumption of"uniform
pointwise boundedness" in Theorem 4 of [16] (assuming, for simplicity that r 1 in
the statement of that theorem) implies that there exist a, b/ such that

(2.30) a <-_f(x)/ q,((x)) h(x) <- b for all x F.
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Formula (2.30) (or its analogue for r => 1) implies that hi" F f’l/ - F f’l/, j => 1, satisfies
the bounded orbit property with respect to d, but uniform pointwise boundedness
represents a less general condition than the bounded orbit property does. In particular,

iff for j >- 1, m.any examples of interest do not satisfy (2.30) or even the condition
that f(K-{0})c K, but they may satisfy the bounded orbit property. Of course (see
4 of [16]), there are also many examples where the uniform pointwise boundedness

assumption is satisfied.
Remark 2.4. The reader will note that the bounded orbit property is not assumed

in Theorem 2.1, Corollary 2.1, or Theorem 2.2. Nevertheless, the bounded orbit property
plays a crucial role: to verify the hypotheses of Corollary 2.1 or Theorem 2.2 for
examples of interest, we will typically have to verify the bounded orbit property.

In the framework of Theorem 2.1 it is natural to ask if a stronger conclusion can
be obtained. Does there exist v such that

lim d(F,,(x), v)=O and lim IIF.(x)/llf.(x)ll-vll-o for all xe ?

A similar question can be asked for Theorem 2.2. Such results are called "strong
ergodic theorems" in [11]. As we now show, such a theorem can be derived easily
from Theorem 2.1.

THEOREM 2.3. Let C be a cone with nonempty interior in a Banach space X and

f ,j >- 1, a sequence ofm aps that are homogeneous ofdegree 1 and order-preserving.
Assume that there exists v C, vii- 1, such that

(2.31) lim d(f(v), v)=0,

where d denotes Hilbert’s projective metric. Assume there exists R > 0, an integer p >- 1,
and a sequence of bounded linear operators Aj, j>-1, with the following properties:

(a) If gj is defined as in Theorem 2.1, gj is continuously Frdchet differentiable on

BR(V)= {X " d(x, v)< R} for all j>-_ 1.
(b) For all x BR(V) and all j >- 1 we have g(x)>-Aj.
(c) The operators Aj satisfy Aj()c , Aj has finite projective diameter A(Aj), and

(2.32) sup {A(Ai): j_--> 1} <
(d) There exists a positive constant k such that A(v) >- kg(v) for all j >- 1. Then it

follows that limn-. d Fn x), v 0 for all x ;, and lim ,-.oo (x) /II (x)tl v 0

if c is normal.
Proof. By using the triangle inequality and the nonexpansiveness of f we can

verify that
Jp

d(g(v), v)<- Y d(f,(v), v),
i=jp--p+l

SO

lim d(g(v), v)=0.
j-oo

We claim that to prove the theorem it suffices to prove that

(2.33) lim d(G,x, v)= lim d(Fnpx, v)--0 for all x 7.

To see this, note that the triangle inequality and the nonexpansiveness of the f imply
that for np < m < np + p,

m--rip--

(2.34) d(F,,x, v)<-d(F,px, v)+ E d(f,,_jv, v).
j=0
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Formulae (2.31), (2.33), and (2.34) imply that

lim d(F,,x, v)=0 for all x (.

Thus it suffices to work with gj and G.
Select a fixed number R1,0< R1 < R, and define VR,(V)= {Z: d(z, v)<= R1}. Essen-

tially the same argument used in the proof of Theorem 2.1 actually shows that for all
x, y e Vg,(v),

d(gj(x), g(y)) -< cd(x, y),

where c=[1-(k/2)e-R, exp(-A(A))]. (Note the extra factor e-R in cj; this is
unnecessary if x or y equals v.) Because we assume that A(A) is bounded above, we
have

sup {c" j_-> 1}- c < 1.

Now select any number e, 0 < e < R, and suppose that x V(v), so d (x, v)-<_ e.

Then we obtain

d(g(x), v)<-d(g(x),gj(v))+ d(g(v), v)

<-- ce + d(g(v), v).

It follows that there exists an integer m m(e) such that

g(V(v))c V(v) forj>-m(e).

We now apply Theorem 2.1. For m m(e) as above, define qi(x)= g,,+i(x) and
%q_ q. The sequence %, j >= 1, satisfies the bounded orbit property; in fact,

dp(v)e V(v) for all j>= 1. It is also easy to check that all the hypotheses of Theorem
2.1 are satisfied, so

lim d(%(y), (v))=0 for all ye

Taking y Gin(x) for x e t, we conclude that

lim d(G+,(x), I)(v)) =0 for all x e t.
j-->

Since (v)e V(v) for all j-> 1, we conclude that for any fixed xe there exists n
such that

d(Gj(x), v)<2e for allj->n.

Since e > 0 can be taken as small as desired, the proof is complete.
Remark 2.5. Suppose thatf" t --> ( is a map andf(v) Av for some v t. Assume

that f" ( --> t, j >= 1, is a sequence of maps as in Theorem 2.3 and that for every x
we have

lim d(f(x),f(x))=O.
jx

Then it is certain that lim_. d(f(v), v)=0, which provides a situation where we can
find a vector v as in Theorem 2.3. However, such a vector v may well exist even if the
functions f do not converge to a function f.

Remark 2.6. Essentially the same argument as in Theorem 2.3 can be extended,
as in Theorem 2.2, to the case of order-preserving maps that are subhomogeneous.
Details are left to the reader.
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Under the hypotheses of Theorem 2.1, it is natural to ask if, for every given x ,
there exists a positive number 3’ y(x) such that

lim IIF(x)-f.(u)ll=O.

Iff =f for all j-> 1 and f(u) u, this question is considered at length in 3 of [25].
Before considering the general case it is convenient to prove a simple lemma.

LEMMA 2.4. Let C be a normal cone with nonempty interior in a Banach space X.
If u and R, cl, and c2 are positive reals, define V by

V= {x " d(x, u) <- R and c < Ilxll-<-
where d denotes Hilbert’s projective metric. Then there exists p > 0 so that, for every x V,

(z x. IIz-xll < p} .
Proof. If x V, there exist positive numbers a and/3 such that

(2.35) au<=x<=/3u and a-l <-_ e R.
By the definition of normality there exists a constant M so that if 0 =< x-< y then

(2.36) Ilxll <= MIIyII.
Combining (2.35) and (2.36) gives

(2.37) llull-<- MIIxll <- Mc= and c1<-Ilxll <- Mllull.
Formulae (2.35) and (2.37) imply that

(c,/Mllull) e-R <= a and fl <-- (Mc=/llull) e R.
Thus there exists a number 3’ >- 1, independent of x V, such that

(2.38) y-lu -< x -< yu.

Because y-lu (, there exists p>0 such that y-u+z for all zX with
and (2.38) then implies that x + z for all x V and all z with Ikzll < p.

If C is a cone with nonempty interior in a Banach space X, x C and {y" Ily x
p}c (, then we can easily prove that for Ily-xll < p we have

(2.39) (P -Ily x II)p-’x --< y --< p / Ily xll)p -ix.

THEOREM 2.4. Let notation and assumptions be as in Theorem 2.1. Assume also
that (f) satisfies the bounded orbit property, that C is normal, and that

(2.40) sup{llFm(u)ll" m->0}< and inf{llF,.(u)ll" m=>0}>0.

Then for every x there exists a positive number y y(x) such that

(2.41) lim IIf(x)-rF(u)ll=O.

The map x y(x) is homogeneous of degree 1, order-preserving, and continuous.

Proof It is known (see [32]) that there exists an equivalent norm on X whose
restriction to C is order-preserving. Thus we can assume that if0 <- x =< y, then Ilxll--<

For a fixed x , define numbers a, and/3, by

a, m(F,(x)/F,(u)) and /3, M(F,(x)/Fn(u)),

so

(2.42)
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Applying fn+l to (2.42) we find that

a,F,+,(u) F,+I(X) 8,Fn+,(u),

and we conclude from this inequality that

(2.43) a,<-_a,,+, ,8,+<-_, a,, for all n,

so lim.. a, a and lim,. , .
If we can prove that a , we can define y(x) and (by normality of the cone)

it is evident from (2.42) that (2.41) is satisfied. Fuhermore, the homogeneity and
order-preserving propeies of y(x) follow immediately from the formula

y(x) lira M(F,(x)/F.(u)).

Because y is homogeneous of degree 1 and order-preserving, we can easily derive from
(2.39) that y is continuous.

Theorem 2.1 implies that

(2.44) lim IIf.(x)llf.(x)ll-l-f.(u)llf(u)ll-lll=O,

and (2.42) gives

(2.45) a. r IIF(x)lI/llF(u)ll .
Formulae (2.40) and (2.45) imply that IIf(x)ll is bounded above and below by positive
reals. Using the fact that IIf(x)ll is bounded above, we obtain from (2.44)

(2.46) lim IIF.(x)-vF.(u)ll= lim e,=0.

We now use Lemma 2.4. The bounded orbit propey implies that there exists
R > 0 such that

d(%F,(u), u) d(F,(u), u) R for all n 1.

Fuffhermore, as already noted, there exist positive reals Cl and c such that

c, llF(u)ll IIF(x)ll

Thus Lemma 2.3 implies that there exists p > 0 such that if z- r.f (u)II < P for some
n 0, then z . If e, is defined as in (2.46), then (2.39) implies that if e, < p for
n N, then for n N,

[(p e.)p-]y.F.(u) F.(x) [(p +(2.47)

It follows that

0=. a. <-- (p + e,,)p-’%, -(p e,,)p-"),,,

and we conclude (using (2.46) and the fact % is bounded) that

lim (/. a.) O.

As an easy corollary of Theorem 2.4 we mention the following result, a slightly
weaker version of which has been proved by Cohen in [12]. Of course, in this simple
situation it is also possible to give an elementary, direct proof, so the following corollary
is meant only as an illustration of Theorem 2.4.
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COROLLARY 2.2. (Compare [12].) Let K {(Xl, X2) E [2: Xi

_
0 fOl" 1, 2}. Let Aj,

j >-1, be a sequence of real numbers such that 0 <= Aj <-_ 1, and for each j >-1 define

f’-- by fj(xl,x2)--((1-Aj)Xl+Ajx2,x
and define F, f,f,-l "fl. Then for each x (Xl, x2) E/, there exists y y(x) > 0
such that

lim F,(x) y, y).

Proof Let u (1, 1) so f(u) u for all j-> 1. Thus f, j->_ 1, satisfies the bounded
orbit property in Theorem 2.1 and (2.40) in Theorem 2.4. The functions f are clearly
all order-preserving, homogeneous of degree 1, and C on/. For a fixed R > 0, define

Aj= e-R( 1-Aj
It is easy to check that f](x)>= Aj for all x with d (x, u)_-< R and

_->

Also, A has one-dimensional range, so A(Aj)=0. If we take p= 1 (in the notation of
Theorem 2.1), we thus see that all hypotheses of Theorems 2.1 and 2.4 are satisfied,
so the conclusion of the corollary follows from Theorem 2.4.

The preceding theorems typically make some assumption of differentiability. These
assumptions are motivated by the applications we have in mind and can certainly be
weakened. The hypotheses of Theorem 2.1 represent only a convenient way to obtain
the estimates in (2.10) and (2.11). To illustrate this point we mention the following
theorem, whose proof is essentially the first part of the proof of Theorem 2.1. Details
are left to the reader.

THEOREM 2.5. Let C be a cone with nonempty interior in a Banach space X. Let
be a subset of and S {y (" [[y 1} and assume thatfor each y S there is a unique
positive number 3, h (y such that hy X. Suppose that the hi" X - E, j >- 1, is a sequence
of maps and that there exists u X, such that if H, hoh,_ h (the composition of
the first m functions hi) and Ho denotes the identity, then

d(h,,(x),Hm(u))<-__d(x,H,_(u)) forallxEX and m>-_l.

(Here d denotes Hilbert’s projective metric.) In addition, assume that there exist R > 0
and a sequence of reals hi, j >_- 1, such that 0 <- hj <- 1 for all j,

d(ho,(x),Hm(u))<-hd(x, Ho_l(U)) for allxX with d(x, Ho_l(U))<-_R, and

N

lim I] hi=0 for allm>=l.
N->ooj=

It then follows that for every x E,

lim d(H,(x), H(u))-0.

3. Applications: verifying the bounded orbit property. In this section we show how
the results of 2 can be applied in the case where f M for all j-> 1, M being the
class defined in 1. We shall show that the main difficulty lies in verifying the bounded
orbit property with respect to d. Iff M/ for all j _-> 1, we will give reasonably general
conditions ensuring that the bounded orbit property is satisfied. As we have already
noted in 2, if f E M_ for all j_-> 1, verifying the bounded orbit property can be a
difficult problem even when f-f for all j _-> 1.
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We begin with some needed notation and definitions. We will always denote by
K the standard cone in

(3.1) K ={xR": x->0 for l<=i<-n}.

If f e M is a sequence of functions for j ->_ 1, we will denote by f, 1 <_- <= n, the ith
component of the function f"/ /. By definition of M, there is a finite collection F
of ordered pairs (r, or), r a real number and r a probability vector, and positive real
numbers cj for (r, tr) Fji, such that

(3.2) f,(x) E cj,r=Mr(x).
(r,o’) I"ji

Because (xr)l/r=x, the set Fj described above may not be uniquely determined
by the function f. However, we will need some control of the size of the numbers r,
which appear in (3.2). Thus we make the following definitions. Suppose that b M
so 4i, the ith component of b, can be written

(3.3) 6,(x) E c,M,(x),
(r,o’)Gi

where G is a finite collection of ordered pairs (r, o’), r a real number and tra probability
vector, and c> 0. If b M/, the sets Gi can be chosen so that r >= 0 for all (r, tr) G.

DEFiNITiON 3.1. If b M, we define/x(b) by

/x(b) =inf{/x >0: b(x) can be expressed as in (3.3),
(3.4)

and Irl <-- z for all (r, or) Gi and for 1 -< =< n}.

If th M/, we define v(b) by

v(b) =inf{v>0: chi(x) can be expressed as in (3.3),
(3.5)

and 0 <- r -< v for all (r, tr) G and for 1 =< -< n }.

If C is a cone in a Banach space X and A and B are bounded linear maps of X
to X, we will say that A -< B if (B A)(C) c C; the ordering depends on C. If A(C) c C
and B(C)c C, we will say that A and B are comparable if there exist positive numbers
cl and c such that

cA <- B <- c2A.

If C K and X , then bounded linear maps are n x n matrices, A (ao) <- B (b)
if and only if ao <-_ bo for all i, j. If ao >- 0 and b0 >_- 0 for all i, j, A and B are comparable
if and only if there exist positive reals Cl and c2 such that

ca <-_ b <- cEa0 for all i, j.

Our next lemma is easy, but we give a proof for completeness.
LEMMA 3.1. Assume that C is a cone in a Banach space X and that A, B X X

are bounded linear operators such that A(C) C and B(C) C. Assume that A and B
are comparable; then there exist positive reals Cl and c2 such that

(3.6) cA<-_B<=c2A.

IfA has finite projective diameter A(A) (see (1.6)), then B has finite projective diameter
and

(3.7) zX(B) =< A(A) + 2 log (c:/c).
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Proof. If x and y are any two elements of C such that Bx and By are nonzero,
then by using (3.6) we see that Ax and Ay are nonzero. By definition of finite projective
diameter, it follows that there exist positive reals a and/3 such that

(3.8) aA(x)<-A(y)<-_SA(x) and log(8/a)<--_A(A).

By using (3.6) repeatedly we obtain from (3.8) that

(3.9) a (ell c2) B(x) <-_ B(y) <= fl (c2/cl)B(x),
which implies that

(3.10) d(Bx, By)<-2 log (c2/cl)+log (fl/a).

Formulae (3.8) and (3.10) yield (3.7).
In [26] it is proved that iff eg (see 1 for definitions), then f is C on/ and

f’(x) and f’(y) are comparable for all x, y/ (this is not hard). We need a more
precise version of this fact, relating the sizes of f’(x) and f’(y), whenf M.

LEMMA 3.2. Let K denote the standard cone in R" (see (3.1)), let v (1, 1,. ., 1)
be the vector all of whose components are 1, and define tp K* by

g,(x)= x,.
i=1

Suppose thatf: I I is homogeneous ofdegree 1 and order-preserving. Ifx I, d/(x) n,
and d x, v) <= R d denotes Hilbert"s projective metric), then

(3.11) e-f(v) <=f(x) <= ef( v).

Iff M and I(f) < 3" (see Definition 3.1), then for all x I such that d (x, v) <- R,

(3.12) exp (-R(3’+ 1))f’(v)<-f’(x)<-exp (R(3"+ 1))f’(v),

where f’(x) denotes the Jacobian matrix at x.
Proof. If O(x) n tp(v) and a m(x/v) and M(x/v), we must have a <- 1 =<

/3; and if d(x, v)<= R, then

(3.13) /a<=eR.
Formula (3.13) implies that/3-<eR and a>-e- (since ce-< 1_-<), and (3.11) follows
from the homogeneity and order-preserving properties of f.

If fe M,/z(f) < 7, and f denotes the ith component off(x), then we can write

(3.14) f(x) Y c,rMr(x), [rl < 3’ for (r, or)e G,.
(r,)e Gi

Here Gi is a finite collection of ordered pairs (r, or) with r eR and cra probability
vector and cir, > 0 for (r, or) Gi, 1 <= <- n. If d(x, v) <-_ R we have

(3.15) e- <= xj/xk <= e for all k.

A calculation implies that for d (x, v)<-R,

(3.16) OMr_____ (x) erj[x(M(x))-]-.x
Recall that M is an order-preserving map on/ for any real number r and that (3.15)
implies that

e-xv <= x <- exv.
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Using this we conclude that for d (x, v)<_-R we have

e-R <=xj(Mro.(x))-l <_ e

(3.16) then implies that

Ro

OMr"
eRIr-ll(3.17) o) e-RIr-ll <--_ (X)<%

aX
Because Ir] < y for all r such that (r, tr) Gi, we conclude from (3.17) that

(3.18) exp (-g(y+ 1)) ci,.,oj<--Of(x)<--exp(R(T+l)) _, C,r%.

Of course (3.18) is equivalent to

exp (-R(y+ l)) Of (v)<= Of (x)<=exp (R(y+
Ox Ox

which implies (3.2).
We can now state a weak ergodic theorem, for functions f M. In the statement

of the following theorem recall that a nonnegative n x n matrix B is called "primitive"
if there exists p => 1 such that BP has all positive entries.

THEOREM 3.1. Let K be the standard cone in n (see (3.1)) and suppose that for
j >-1, f M, where M is the class of maps of I into itself defined in 1. Assume that

(f) < ), < o for all j >- 1 (see Definition 3.1). If v (1, 1,. , 1), suppose also that
there exist an n n primitive matrix B and an n x n matrix A such that B <=fj( v)<-A
for all j >= 1. Finally, assume that (f) satisfies the bounded orbit property with respect to
Hilbert’ s projective metric d (see Definition 2.1). Then if Fk fkfk- "fl,

lim d(Fk(X), Fk(V)) =0 for all x I,

lim IlF(x)llF(x)ll-l- F(v)llF(v)ll-ll -0 for all x I.

Proof. Select an integer p _>- 1 such that B p has all positive entries, and for this p
let Gk and gk be as defined in Theorem 2.1. The bounded orbit property implies that
{Fk(X)" k->O} has finite projective diameter for any x /. In particular, there exists
R > 0 such that

(3.19) {Fk(V): k_->0}c BR(V)={z: d(z, v) < R}.

For notational convenience, define

Ok Fk(1) and Uk G(u)/llG(u)ll.
Because each f is nonexpansive with respect to d we see that if x BR(Vk), then for
j_--> 1 we have

(3.20) fk+jfk+j-l" f+,(X) G BR(Vk+j)= B2R(V ).

If x B(u)= B(Gk(U)), then by using (3.20) and the chain rule we see that

(3.21) g’+(x) f[,p+p(yl)f[,p+p-,(y2) f:p+,(yp),
where yl, y,..., y, are points in B(v) that depend on x and the maps f.

We now use Lemma 3.2 and (3.21) to conclude that

exp (-p(T + 1)(2R))fjp(V)fjv_a(v)...fjp_p+a(v) <= g(x),
g(x) <= exp (p(y+ a)(2R))fjp(v)fjp_(v)...fjp_p+(v)
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for all x BR(Uj_I),j 1. It follows that for some Cl>0 we have

(3.22) exp(-2p(y+l)R)BP<=g(x)<-ci exp(2p(y+l)R)B p for all XBR(Uj_I).

By using (3.22) we see that there exists a positive real number c, independent of j,
such that

g(x) >= cg(uj_l) for allj=>l, X BR(Uj_I),

which is (2.25).
If we define Bj g(uj_), then (3.22) and Lemma 3.1 imply that

A(Bj) =< 4p(T + 1)R + A(B’),

SO

E exp (-A(Bj))=.
j--1

The conclusions of Theorem 3.1 now follow directly from Corollary 2.1. [3

As an immediate consequence of Theorems 3.1 and 2.4 we obtain the following
result.

COROLLARY 3.1. Let the notation and assumptions be as in Theorem 3.1. In addition,
assume that there exists u I such that (2.40) is satisfied. Then for each x I there
exists ), y(x) > 0 such that

lim IIF(x)-,F,(u)ll--O,

and x y(x) is continuous, order-preserving,, and homogeneous of degree 1.
Similarly, by using Lemmas 3.1 and 3.2, we can derive the following corollary of

Theorem 2.3. Details are left to the reader.
COROLLARY 3.2. Let notation and assumptions be as in Theorem 3.1. Assume that

there exists w K such that

lim d (f(w), w) 0.
j-oo

Then it follows that for all x I,
lim d(Fk(X), w)=0 and lim [[Fk(x)llFk(X)[[-1-w]l =0.
k- k

If tr is a probability vector and x /, we will use the notation

(3.23) x
j=l

where xj and j are the jth components of x and r, respectively. If x, y e/ we will
also use the notation

log (x) (log (x), log (x2), ", log (x,)) and y. log (x) yj log (xj).
j=l

If (fk) is a sequence of maps, order-preserving and homogeneous of degree 1, of
/ into itself, verifying the bounded orbit property may be difficult. However, we now
show that if fki(X) can be bounded below in a suitable way by cx, where c > 0, tr is
a probability vector, and both c and o- may depend on k and i, then we can prove
that (fk) satisfies the bounded orbit property with respect to d. This idea has already
been used in 4 of [23] for the case where fk =f for all k -> 1.
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Our next lemma is a slight variant of Lemma 4.1 in [23]. Since the argument is
the same, the proof is left to the reader.

LEMMA 3.3. Suppose that K is the standard cone in " andfand g are maps ofI
into itself. Suppose that A is a nonnegative n x n matrix with no zero rows; suppose also
that if aij > O, then there exist a positive constant c and a probability vector cr (or depends
on and j) such that crj >- rl > 0 (where cr denotes the jth component of or) and

fi (x) the ith component off(x) >- cx for all x I.
The constants c and rl are assumed independent of and j. Similarly, suppose that B is
a nonnegative n x n matrix with no zero rows and that if bi > O, then there exist a positive
constant d and a probability vector - such that - >- 0 > 0 and

g, (y) >- dy for all y I.
Here d and 0 are assumed independent of and j, but may depend on and j. Then BA
is an n x n nonnegative matrix with no zero rows, and if the entry in row i, column j of
BA is nonzero, there exists a probability vector tx such that

gi(f(x)) >= Ax for all x I,
where A >-cd and tz >- Orl.

In the statement of the following theorem, recall that fk(X) denotes the ith
component of a map fk" I - I.

THEOREM 3.2. Let K denote the standard cone in n and suppose that fk" I,
k >-_ 1, is a sequence of maps that are order-preserving and homogeneous of degree 1. Let
A (a!j) be an n x n nonnegative, primitive matrix. If aj > O, assume that there exist
c > 0 and 5 > 0 (independent of i, j, and k >= 1) and a probability vector cr with cr >- (or
may depend on i, and k) such that

fi(x) >= cx for all x .
If v (1, 1,..., 1), assume that there exists a constant c: such that f(v)<-_ c:v for all
k >= 1. Then (f,} satisfies the bounded orbit property with respect to Hilbert’s projective
metric d, and for every u I, there exists R > 0 such that

d(F(u), u)<=R for all k >- 1.

Proof. Let F be as defined in Theorem 2.1 and select p _-> 1 such that all entries
of Ap are positive. For any fixed k -> 0, define g"// by

(3.24) g=fk+pfk+p-l fk+l.
By applying Lemma 3.3 (p- 1) times and recalling that Ap has all positive entries, we
see that for any i, j with 1 <= i, j-< n there exists a probability vector cr (depending on
i, j, k, and p) with cr => P r/ (cr =the jth component of or) and

(3.25) g(x) the ith component of g(x) >= cPx for all x /.

Suppose that x/ and d (x, v)-< R, and select j so that

(3.26) x= M(x/v)= M.

If m m(x/v), we obtain from (3.25) and (3.26) that

(3.27) gi(x) >- cPx >- cPM%m1- >= cP(M/m)’m cPM’m1-’.

In deriving (3.27) we use Mm >-1.
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On the other hand, we assume that f(v)=< C2/.) for all j, so

(3.28) g(v)<=cv.

Because x <= My we conclude from (3.28) that

(3.29) g(x) <= cM for 1 =< s =< n.

Combining (3.27) and (3.29) we conclude that

+(1 r/)R.

It follows from (3.30) that there exist a real number A, 0< A < 1, and a number R1,
both independent of k in the definition of g, such that

(3.31) d(g(x), v)<-AR if d(x, v)<-_R and R>=RI.
We can also assume that R1 is SO large that

(3.32) d(Fj(v), v)<gl for l<-j<p.

In general we can write F,, for m >_-p in the form

(3.33) F,, gg2"" gtFj,

where 0_<-j < p and each gi in (3.33) is assumed to be of the form given by (3.24) for
some k->0. Since every g as in (3.24) maps BR,(V) into itself and since Fj(v) BR,(1))
for 0 _-< j < p, we conclude that F, (v) BR,(v) for all m >_- 1.

With the aid of Theorems 3.1 and 3.2 we can give a more concrete weak ergodic
theorem.

THEOREM 3.3. Let K denote the standard cone in R (see (3.1)) and let (fk), k >- 1,
be a sequence of maps such that fk M+ for all k >= 1. Assume that tx (fk) < P < oO for all
k >- 1 (see Definition 3.1). Let v (1, 1,. , 1) denote the vector all ofwhose components
equal 1 and assume that there exists an n x n nonnegative, primitive matrix B such that

(3.34) f:(v) >= B for all k >- 1.

Assume that there exists f12 > 0 such that

(3.35) fk( V) <-- fl2V for all k >= 1.

Then we have that for all x I
lim d(Fk(X), Fk(V))--0,

lim IIF(x)llFt:(x)ll-’ F( v)llF,( v)ll-’ll O.
koo

If there exists u I such that

supllF(u)ll" k-->l}< o and inf(llF(u)ll" g->l}>0,

then for every x I there exists T T(x) > 0 such that

lim IIF (x)-  F (u)ll =o.
k-c

If there exists w I such that

then for every x I,

lim d(fj(w), w)=0,
jo

lim d(Fk(X), w)=0.
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Proof. The existence of a matrix A as in Theorem 3.1 follows from (3.35) and the
equation f[(v)(v)=fk(V). Thus, by virtue of Theorem 3.1 and Corollaries 3.1 and 3.2,
it suffices to prove that the sequence (fk) satisfies the bounded orbit property. We
establish the bounded orbit property by using Theorem 3.2.

First note that, because fk is homogeneous of degree 1,

fk(V) =f(v)(V) >-- By;

therefore there exist positive constants/31 and f12 so that

(3.36)

If we write

fllv <-f(v) <- 3.v for all k->_ 1.

A,(x) ., Ck,ro-Mro-(X), 1 <= i<= n, k >= 1,
(r,cr)eFki

we can assume r _-> 0 for (r, r) e Fki (because fk e M+). Formula (3.36) implies that

(3.37) fll <-- fk,(v) Cki Z Ck,’, <= 2.
(r,o’)Fki

It is a classical result (see [18]) that Mr(X)>=Mo(X) for r>=O, so

(3.38) fk( V) >= Ck , Ck,C-i1Mo,(x).
(r,o’)Fki

If we apply log to both sides of (3.38) and use the concavity of log we obtain

(3.39) lOgfki(X)>=(lOgCki)+( CkirC-ilo’)’(logx).
(r,o’)Fki

If we define a probability vector rki by

(3.40) rk, CkirC-ltr,
(r,o’)Fki

we obtain from (3.37), (3.39), and (3.40) that

(3.41) fki (X) ----> CkX"ki >= fll X

Denote by bi the ith row of the matrix B. A simple calculation shows that the ith
row of the Jacobian matrix fib(v) is Ckirk, SO by the hypotheses of our theorem we
have that

(3.42) ’k, -> C b, => fll b.
If B (bj), define a positive number t by

t inf { bijfl 1. bi2 > 0}.

Then it follows from (3.41) and (3.42) that if bo>0 the jth component of rki in (3.41)
is greater than or equal to 3. Since fll and are independent of i, j and k => 1, Theorem
3.2 implies that (fk) satisfies the bounded orbit property.

Remark 3.1. Note that, for functions fk that satisfy the hypotheses of Theorem
3.3, it can easily happen that fk does not map certain nonzero points in the boundary
of K into the interior of K and that the diameter (with respect to Hilbert’s projective
metric d) of {fk(X)’X e/} is not finite. Both of these phenomena are illustrated by
the simple arithmetic-geometric mean map

2
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In addition, both phenomena are typical of many examples of interest. For example,
suppose that Xk Fk(X), where Fk is as in Theorem 3.3. More generally, for fk M/,
we can define fk by

fk(X)= tZk(X)fk(X),

where IXk(X) is a positive scalar function of x. If we define k =fkfk-’’" f and
Xk Fk(X) and x0 x, it is easy to see that

k

Fk(X) Ak(X)Fk(X), Ak(X) H l’j(Xj--1)"
j=l

Here Ak(X) is a positive scalar, and the presence of Ak(X) does not affect the validity
of the first part of Theorem 3.3, because Hilbert’s projective metric does not distinguish
points on rays. In this terminology, x may represent an initial "population vector" (so
that the j-compo.nent of x represents the number of members of the population in
class j) and Xk Fk(X) may represent the population vector at time k. Under reasonable
assumptions on the biological model, we expect fk to vanish at certain nonzero points
on the boundary of K. Note, however, that if fk is linear and irreducible, fk does not
vanish on nonzero points of the boundary of K. This point indicates a drawback of
linear weak ergodic theorems in population biology.
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