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Abstract. The Kuratowski measure of noncompactness α on an infinite di-
mensional Banach space (X, ‖ · ‖) assigns to each bounded set S in X a non-
negative real number α(S) by the formula

α(S) = inf{δ > 0 | S =
⋃n

i=1Si for some Si

with diam(Si) ≤ δ, for 1 ≤ i ≤ n < ∞}.
In general a map β which assigns to each bounded set S in X a nonnegative real
number and which shares most of the properties of α is called a homogeneous
measure of noncompactness or homogeneous MNC. Two homogeneous MNC’s
β and γ on X are called equivalent if there exist positive constants b and c
with bβ(S) ≤ γ(S) ≤ cβ(S) for all bounded sets S ⊂ X. There are many
results which prove the equivalence of various homogeneous MNC’s. Working
with X = %p(N) where 1 ≤ p ≤ ∞, we give the first examples of homogeneous
MNC’s which are not equivalent.

Further, if X is any complex, infinite dimensional Banach space and L :
X → X is a bounded linear map, one can define ρ(L) = sup{|λ| | λ ∈ ess(L)},
where ess(L) denotes the essential spectrum of L. One can also define

β(L) = inf{λ > 0 | β(LS) ≤ λβ(S) for every S ∈ B(X)}.

The formula ρ(L) = lim
m→∞

β(Lm)1/m is known to be true if β is equivalent to

α, the Kuratowski MNC; however, as we show, it is in general false for MNC’s
which are not equivalent to α. On the other hand, if B denotes the unit ball
in X and β is any homogeneous MNC, we prove that

ρ(L) = lim sup
m→∞

β(LmB)1/m = inf{λ > 0 | lim
m→∞

λ−mβ(LmB) = 0}.

Our motivation for this study comes from questions concerning eigenvectors
of linear and nonlinear cone-preserving maps.

If (X, d) is a complete metric space and S is a bounded subset of X, then
K. Kuratowski [10] has defined α(S), the Kuratowski measure of noncom-
pactness of S, by

α(S) :=inf{δ > 0 | S=
n⋃

i=1

Si for some Si with diam(Si)≤δ, for 1≤ i≤n<∞}.
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Here diam(T ) denotes the diameter of a set T ⊂ X, namely

diam(T ) := sup{d(x, y) | x, y ∈ T}.

We shall denote by B(X) the collection of all bounded subsets ofX. Kuratowski has
shown, and it is straightforward to verify, that α satisfies the following properties:

(K1) α(S) = 0 if and only if S is compact, for every S ∈ B(X);
(K2) α(S) ≤ α(T ) for every S, T ∈ B(X) with S ⊂ T ;
(K3) α(S ∪ {x0}) = α(S) for every S ∈ B(X) and x0 ∈ X; and
(K4) α(S) = α(S) for every S ∈ B(X).

If S and T are subsets of a real or complex Banach space (X, ‖ · ‖) and λ is a
scalar, we shall let co(S) denote the convex hull of S, namely the smallest convex
set containing S, and we shall write S + T := {s + t | s ∈ S and t ∈ T} and
λS := {λs | s ∈ S}. G. Darbo [6] has observed that, assuming the metric on X is
the usual one obtained from the norm ‖ · ‖, the following properties hold:

(K5) α(co(S)) = α(S) for every S ∈ B(X);
(K6) α(S + T ) ≤ α(S) + α(T ) for every S, T ∈ B(X); and
(K7) α(λS) = |λ|α(S) for every S ∈ B(X) and every scalar λ.

Properties (K5), (K6), and (K7) make the Kuratowski MNC a very useful tool
in fixed point theory and functional analysis. Let us also mention the following
so-called set-additivity property, which holds in any metric space:

(K8) α(S ∪ T ) = max{α(S),α(T )} for every S, T ∈ B(X).

If (X, ‖·‖) is a real or complex Banach space, we shall say that a map β : B(X) →
[0,∞) is a homogeneous measure of noncompactness on X or homogeneous
MNC if β satisfies properties (K1)-(K7), with β replacing α in these conditions. We
shall say that β is a homogeneous, set-additive MNC if β satisfies properties
(K1)-(K8), with β replacing α in these conditions. Our terminology differs from
some of the literature [1], [2], [3], [18], where a map satisfying properties (K1)-(K8)
is simply called an MNC. Of course these properties are not independent. For
example, properties (K2), (K6), and (K7) imply property (K4).

If β and γ are homogeneous MNC’s on X, we say that β dominates γ if there
exists a number c > 0 such that γ(S) ≤ cβ(S) for every S ∈ B(X). If β and γ
are homogeneous MNC’s on X such that both β dominates γ and γ dominates β,
we say that β and γ are equivalent. There are many examples of homogeneous
MNC’s (see [1], [2], [3], [4], [14], [15], [16], [17], [18]), but up to now all known
examples of homogeneous MNC’s on a given Banach space X are equivalent. This
fact begs the following question.

Question A. Does there exist a Banach space (X, ‖ · ‖) for which there is a ho-
mogeneous (possibly set-additive) MNC β on X which is not equivalent to the
Kuratowski MNC α on X?

As we shall see below in Theorem 7, where a class of inequivalent MNC’s is
constructed, Question A is answered in the affirmative.

If L : X → X is a bounded linear map and β is a homogeneous MNC on X, one
can define

(1)
β(L) := inf{λ ≥ 0 | β(LS) ≤ λβ(S) for every bounded S ⊂ X},

β#(L) := lim sup
m→∞

β(Lm)1/m,
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where we set β(L) = ∞ if the set in the first line of (1) is empty. If it is in fact the
case that β(L) < ∞, then one easily shows that

(2) β#(L) = lim
m→∞

β(Lm)1/m = inf
m≥1

β(Lm)1/m,

which follows directly from the fact that β(Lm+n) ≤ β(Lm)β(Ln) < ∞ for every
m ≥ 1 and n ≥ 1. Lemma 4 below implies that if β is equivalent to the Kuratowski
MNC α on X, then there exists a constant c > 0, independent of L, with β(L) ≤
cα(L) ≤ c‖L‖ < ∞. Additionally, if β is equivalent to α, the results of [14] imply
that β#(L) = ρ(L), where ρ(L) denotes the radius of the essential spectrum of L.
This suggests the following question.

Question B. Is it the case that β#(L) = ρ(L) for any homogeneous MNC β on
X, where ρ(L) denotes the radius of the essential spectrum of L? If this is not
the case, is there an analogous formula for ρ(L) which holds for any homogeneous
MNC β?

For a general homogeneous MNC β which is not equivalent to α, we shall es-
tablish in Theorem 8 below that it may happen that β#(L) )= ρ(L), and in fact it
may happen that β(Lm) = ∞ for all m ≥ 1. Elsewhere [13], we shall construct an
example for which

lim inf
m→∞

β(Lm)1/m < lim sup
m→∞

β(Lm)1/m = ∞.

In such cases β#(L) = ∞ while ρ(L) < ∞. As will be shown in Theorem 10 below,
in place of the quantity β#(L) the appropriate quantity to consider is

(3) β∗(L) := lim sup
m→∞

β(LmB1(0))
1/m = inf{λ > 0 | lim

m→∞
λ−mβ(LmB1(0)) = 0},

as it is the case that β∗(L) = ρ(L) for every homogeneous MNC β and every
bounded linear operator L on X. We denote

(4) Br(x) := {y ∈ X | ‖y − x‖ < r}

both here and below.

Remark. In order for ρ(L) to be defined above, one needs to have a linear operator
on a complex Banach space. Suppose instead that X is a real Banach space, β
is a homogeneous MNC on X, and L : X → X is a bounded linear map. The
complexification X̂ of X equals {(u, v)|u, v ∈ X}. If one identifies (u, v) with u+ iv
where i2 = −1, and defines

‖u+ iv‖ := sup
0≤θ≤2π

‖(cos θ)u+ (sin θ)v‖,

then X̂ becomes a complex Banach space. The linear map L then extends to a
complex linear map L̂ on X̂ by L̂(u + iv) = Lu + iLv. It is also the case that β

extends to a homogeneous MNC β̂ on X̂ as follows. For x = u + iv ∈ X̂ define
Re(x) := u, and for Ŝ ∈ B(X̂) define Re(Ŝ) := {Re(x) | x ∈ Ŝ} and set

(5) β̂(Ŝ) := sup
0≤θ≤2π

β(Re(eiθŜ)).

One can prove that β̂ is a homogeneous MNC on the complex Banach space X̂, that
β̂(L̂m) = β(Lm), and that β̂(L̂mB̂1(0)) = β(LmB1(0)), where B̂1(0) (respectively,
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B1(0)) denotes the unit ball in X̂ (respectively, X). It follows that

(6) β̂#(L̂) = β#(L), β̂∗(L̂) = β∗(L)

both hold. We remark also that if α denotes the Kuratowski MNC on a real Banach
space X and α̂ denotes its complexification as above, then α̂ is in fact the Kura-
towski MNC on X̂. We omit the proofs of these results, which are straightforward
for the most part, except for the proof that α̂ is the Kuratowski MNC on X̂; this
is given as Proposition 11.

Our interest in Questions A and B and the related issues above arises from the
question of the “correct” definition of the “cone essential spectral radius,” denoted
ρC(f), for a map f : C → C. Here C is a closed cone in a Banach space and f is a
continuous, homogeneous, order-preserving map. This question is, in turn, related
to the problem of existence of an eigenvector of f in C with eigenvalue equal to
rC(f), the “cone spectral radius of f ,” and to showing that ρC(f) ≤ rC(f); see [11]
and [17]. In future work, related to this paper, we shall discuss deficiencies in the
definition of ρC(f) in [11], [17], and theorems about existence of eigenvectors of f .

Theorems 7, 8, and 10 are the main results of this paper. In Theorem 7 we shall
present the first known example of an infinite dimensional Banach space Y = (p(N)
and a homogeneous, set-additive MNC γY on Y which is not equivalent to the
Kuratowski MNC, thereby answering Question A in the affirmative. In fact, we
provide a large class of such inequivalent MNC’s γY . Much more general results for
other spaces are given in [12], but it seems worthwhile to illustrate our approach
here in this relatively simple case with a self-contained proof. (In fact we use
some ideas from [12] in the example considered in Theorem 8.) In Theorem 8 we
study the quantities γZ(Λ

m) and γ#Z (Λ) for homogeneous, set-additive MNC’s γZ
on Z = (p(N × N) related to the MNC’s γY of Theorem 7, for a particular shift
operator Λ on the space Z. We demonstrate the pathological features of these
quantities noted above, in particular that in general γ#Z (Λ) )= ρ(Λ), which thereby
gives a negative answer to the first part of Question B. In Theorem 10 we prove for
a general homogeneous MNC β on a Banach space X that β∗(L) rather than β#(L)
is the “correct” quantity to consider in studying ρ(L). In particular we show that
β∗(L) = ρ(L) always holds for all bounded linear operators on X, thus providing
an affirmative answer to the second part of Question B.

Due to the following result proved in [12], the issue of whether or not a homo-
geneous MNC satisfies the set-additivity property (K8) is often unimportant.

Proposition 1 (see [12]). Let (X, ‖ · ‖) be a Banach space and β a homogeneous
MNC on X. For S ∈ B(X), define γ(S) by

(7) γ(S) := inf{ max
1≤i≤n

β(Si) | S =
n⋃

i=1

Si for some Si with 1 ≤ i ≤ n < ∞}.

Then γ is a homogeneous, set-additive MNC on X with γ(S) ≤ β(S) for all bounded
S ⊂ X. Moreover, γ = β if β itself is a homogeneous, set-additive MNC.

Before presenting our main results we make some fundamental observations.

Proposition 2. Let (X, ‖ · ‖) be a Banach space and β a homogeneous MNC on
X. Then the Kuratowski MNC α dominates β.
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Proof. Let c := β(B1(0)), recalling the notation (4). Then homogeneity implies
that β(Br(0)) = rc. If S ∈ B(X) and d := α(S), then given ε > 0, there exists a
finite collection of sets S1, S2, . . . , Sn with S =

⋃n
i=1 Si, and with diam(Si) ≤ d+ ε

for 1 ≤ i ≤ n. For each i select xi ∈ Si and define T := {xi | 1 ≤ i ≤ n}. Note that
S ⊂ T +Bd+ε(0), so property (K6), along with (K1) and (K2), implies that

β(S) ≤ β(T ) + β(Bd+ε(0)) = β(Bd+ε(0)) = (d+ ε)c.

Since ε > 0 is arbitrary, we conclude that β(S) ≤ cd = cα(S). !

The next result was obtained independently by Furi and Vignoli in [7] and by
Nussbaum in Section A of [16].

Proposition 3 (see [7] and Section A of [16]). Let (X, ‖ · ‖) be an infinite dimen-
sional Banach space. If Q := {x ∈ X | ‖x‖ ≤ 1} and if α denotes the Kuratowski
MNC on X, then α(Q) = 2.

Lemma 4 below is an easy result; see [14] or Section A of [16]. However, as we
shall see later, Lemma 4 may fail for general homogeneous MNC’s.

Lemma 4 (see [14] or Section A of [16]). Let (Xi, ‖ · ‖i), for i = 1, 2, be Banach
spaces, let αi denote the Kuratowski MNC on Xi, and let L : X1 → X2 be a bounded
linear map. Define

α(L) := inf{λ ≥ 0 | α2(LS) ≤ λα1(S) for every bounded S ⊂ X1}.

Then we have α(L) ≤ ‖L‖. Further, if βi is a homogeneous MNC on Xi, with βi
equivalent to αi for i = 1, 2, then there exists a constant c > 0, independent of L,
such that

β2(LS) ≤ cα(L)β1(S) ≤ c‖L‖β1(S)
for every S ∈ B(X1).

Our next lemma is true in greater generality (see [12]), but the following version
will suffice for our purposes.

Lemma 5. Let (Xi, ‖ · ‖i), for i = 1, 2, be Banach spaces, and let L : X1 → X2 be
a one-one, continuous linear map of X1 onto X2. If β2 is a homogeneous MNC on
X2, define, for S ∈ B(X1),

β̃2(S) := β2(LS).

Then β̃2 is a homogeneous MNC on X1, and β̃2 is set-additive if β2 is set-additive.
If αi denotes the Kuratowski MNC on Xi and if β2 is equivalent to α2, then β̃2 is
equivalent to α1.

Proof. The fact that β̃2 is a homogeneous (set-additive) MNC on X1 follows easily
from the fact that L is a linear homeomorphism of X1 onto X2. Details are left to
the reader.

To see that β̃2 is equivalent to α1 if β2 is equivalent to α2, observe that β̃2 is
equivalent to α̃2, where α̃2(S) := α2(LS). Thus it suffices to prove that α̃2 is
equivalent to α1. However, if S is a bounded subset of X1, then Lemma 4 implies
that α2(LS) ≤ ‖L‖α1(S) and α1(S) = α1(L−1LS) ≤ ‖L−1‖α2(LS). This proves
that α̃2 and α1 are equivalent. !

The following lemma will be convenient in establishing Theorem 7.
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Lemma 6. Let (Xi, ‖ · ‖i), for i = 1, 2, be Banach spaces, let αi denote the Kura-
towski MNC on Xi, and let L : X1 → X2 be a one-one, continuous linear map of
X1 onto X2. Suppose there exists a homogeneous MNC β2 on X2 which is inequiv-
alent to α2. Then there exists a homogeneous, set-additive MNC γ2 on X2 which
is inequivalent to α2. Further, there exists a homogeneous, set-additive MNC γ1 on
X1 which is inequivalent to α1.

Proof. Proposition 2 implies that α2 dominates β2, so there must exist a sequence
of bounded sets Sn ⊂ X2 with α2(Sn) > 0 and lim

n→∞
β2(Sn)
α2(Sn)

= 0. Let γ2 be the

homogeneous, set-additive MNC derived from β2 as in Proposition 1. Then it is

immediate that γ2(S) ≤ β2(S) for all S ∈ B(X2), and so lim
n→∞

γ2(Sn)
α2(Sn)

= 0. Define γ̃2
and α̃2 as in Lemma 5, so γ̃2(T ) := γ2(LT ) and α̃2(T ) := α2(LT ) for T ∈ B(X1).
Then Lemma 5 implies that γ̃2 and α̃2 are homogeneous, set-additive MNC’s on
X1 and that α̃2 is equivalent to α1, so in particular there exists c > 0 such that
α̃2(T ) ≤ cα1(T ) for every T ∈ B(X1). If we define Tn := L−1Sn, it follows that

lim
n→∞

(
γ̃2(Tn)

α1(Tn)

)
≤ c lim

n→∞

(
γ̃2(Tn)

α̃2(Tn)

)
= c lim

n→∞

(
γ2(Sn)

α2(Sn)

)
= 0,

so γ̃2 and α1 are inequivalent. If we define γ1 := γ̃2, the proof is complete. !
Let 1 ≤ p ≤ ∞ and let N denote the natural numbers. We define the Banach

space Y := (p(N) in the usual way: Elements y ∈ Y are maps y : N → C such
that ‖y‖Y := (

∑∞
i=1 |y(i)|p)1/p < ∞. As usual, we interpret ‖y‖Y := sup

i∈N
|y(i)|

if p = ∞. (We remark that if we instead take the corresponding real Banach
space of maps y : N → R, then the construction below is still valid with the
obvious changes.) Similarly, the Banach space Z := (p(N × N) is the set of maps
z : N × N → C such that ‖z‖Z := (

∑∞
i=1

∑∞
j=1 |z(i, j)|p)1/p < ∞, and again with

the corresponding supremum norm if p = ∞. It is well-known that there is a one-
one map σ : N × N → N of N × N onto N, and that σ induces a linear isometry
Lσ : Y → Z by composition, namely Lσy := y ◦σ. We want to prove that there is a
homogeneous, set-additive MNC γY on Y which is inequivalent to the Kuratowski
MNC αY on Y . By Lemma 6 it suffices to prove that there exists a homogeneous
MNC βZ on Z which is inequivalent to the Kuratowski MNC αZ on Z.

Theorem 7. Let 1 ≤ p ≤ ∞ and let Y denote the Banach space (p(N) with
the usual norm. Let αY denote the Kuratowski MNC on Y . Then there exists a
homogeneous, set-additive MNC γY on Y which is inequivalent to αY .

Proof. With Z = (p(N× N) and with the norm ‖ · ‖Z as above, let αZ denote the
Kuratowski MNC on Z. By the remarks above, it suffices to prove that there exists
a homogeneous MNC βZ on Z which is inequivalent to αZ .

For simplicity, we shall denote αZ and βZ simply by α and β, respectively, and
we denote B := B(Z), the set of bounded subsets of Z. Also for simplicity, in what
follows we shall assume that p < ∞, as the arguments for p = ∞ are similar.

Let an, for n ≥ 1, be a nonincreasing sequence of positive reals with a1 ≤ 1 and
lim
n→∞

an = 0. Define a Banach space (Z̃, ‖ · ‖Z̃) to be the set of maps z : N×N → C
such that

‖z‖Z̃ :=

( ∞∑

i=1

api

∞∑

j=1

|z(i, j)|p
)1/p

< ∞,
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and let α̃ denote the Kuratowski MNC on Z̃. Note that Z ⊂ Z̃ and that

(8) ‖z‖Z̃ ≤ ‖z‖Z
for all z ∈ Z. For each integer n ≥ 1 define the linear projection Pn : Z → Z by
setting Pnz = x, where

x(i, j) =

{
z(i, j), for 1 ≤ i ≤ n,

0, for i > n.

Note also that Pn : Z̃ → Z̃ is a projection and that PnZ̃ = PnZ. It is easy to see
that, for all z ∈ Z,

(9) ‖Pnz‖Z ≤ ‖z‖Z , ‖Pnz‖Z̃ ≤ ‖z‖Z̃ , ‖Pnz‖Z ≤ a−1
n ‖Pnz‖Z̃ ,

and in fact the second and third inequalities in (9) are valid for every z ∈ Z̃. Thus
by Lemma 4, using (8) and (9), we have that

(10)
α̃(S) ≤ α(S), α(PnS) ≤ α(S), α̃(PnS) ≤ α̃(S),
α(PnS) ≤ a−1

n α̃(PnS),

for every S ∈ B. We now define A ⊂ B by

(11) A := {S ∈ B | lim
n→∞

α((I − Pn)S) = 0}.

The reader can easily verify that if S, T ∈ A and λ ∈ C, then the sets co(S), λS,
S, and S+T are all elements of A. Furthermore, if S ∈ B, then PnS ∈ A for every
integer n ≥ 1.

With these preliminaries we define β : B → [0,∞) by

(12) β(S) := inf{α̃(A) + α(B) | S ⊂ A+B, for some A ∈ A and B ∈ B}.

We claim that β is a homogeneous MNC on Z, that β is inequivalent to α, and
that β(S) = α̃(S) for all S ∈ A.

Observe first that for any S ∈ B, if we take A := {0} and B := S in equation (12),
we see that β(S) ≤ α(S).

If S ∈ A and we take A := S and B := {0} in (12), we see that β(S) ≤ α̃(S).
On the other hand, if S ∈ A and S ⊂ A + B, where A ∈ A and B ∈ B, we have,
using the first inequality in (10), that

α̃(S) ≤ α̃(A) + α̃(B) ≤ α̃(A) + α(B),

so we obtain from (12) that α̃(S) ≤ β(S). We conclude that α̃(S) = β(S) for
S ∈ A, as claimed.

The fact that β satisfies property (K2) (with β replacing α) is obvious. It follows
that if S ∈ B, then β(S) ≤ β(co(S)). On the other hand, given ε > 0, select A ∈ A
and B ∈ B so that S ⊂ A + B and β(S) ≤ α̃(A) + α(B) < β(S) + ε. Note
that co(A) + co(B) is a convex set containing S, so co(S) ⊂ co(A) + co(B). Since
co(A) ∈ A, we conclude that

β(co(S)) ≤ α̃(co(A)) + α(co(B)) = α̃(A) + α(B) < β(S) + ε,

and since ε > 0 is arbitrary, β(co(S)) = β(S). Thus β satisfies property (K5).
If S, T ∈ B and ε > 0, select A1, A2 ∈ A and B1, B2 ∈ B such that S ⊂ A1 +B1

and T ⊂ A2 +B2, with α̃(A1) + α(B1) ≤ β(S) + ε and α̃(A2) + α(B2) ≤ β(T ) + ε.
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Note that A := A1 +A2 ∈ A and B := B1 +B2 ∈ B, and also that S+T ⊂ A+B.
It follows that

β(S + T ) ≤ α̃(A) + α(B) = α̃(A1 +A2) + α(B1 +B2)

≤ α̃(A1) + α(B1) + α̃(A2) + α(B2) ≤ β(S) + β(T ) + 2ε.

Since ε > 0 is arbitrary, we see that β(S + T ) ≤ β(S) + β(T ), so β satisfies
property (K6).

The fact that β satisfies property (K7), namely β(λS) = |λ|β(S) for all S ∈ B
and λ ∈ C, follows easily from the definition (12) of β and the fact that α̃ and α
satisfy property (K7). Details are left to the reader.

If S ∈ B, property (K2) implies that β(S) ≤ β(S). On the other hand, we have
for any ε > 0 that S ⊂ S + Bε(0). Thus from the homogeneity of β and from
properties (K2) and (K6), we have that

β(S) ≤ β(S) + β(Bε(0)) = β(S) + εβ(B1(0)).

This shows that β(S) ≤ β(S) and proves property (K4).
If T ∈ B and T is compact, then β(T ) = 0 because β(T ) ≤ α(T ) = 0. If T is

compact and S ∈ B, we claim that β(S ∪ T ) = β(S), which certainly implies that
property (K3) is satisfied. Property (K2) implies that β(S) ≤ β(S ∪T ). To see the
opposite inequality, select x0 ∈ S, define Γ := (T ∪ {x0})+ {−x0}, and note that Γ
is compact and that S ∪ T ⊂ S + Γ. Therefore

β(S ∪ T ) ≤ β(S + Γ) ≤ β(S) + β(Γ) ≤ β(S) + α(Γ) = β(S),

and so property (K3) holds.
Note that we do not claim that β necessarily satisfies property (K8).
We now establish property (K1), which, along with the inequivalence of β and

α, is the main point of our construction. First, as noted above, if S ∈ B and S
is compact, then β(S) = 0. Now suppose, conversely, that S ∈ B and β(S) = 0.
We have to show that α(S) = 0, which implies that S is compact. Given ε > 0,
equation (12) implies that there exist A ∈ A and B ∈ B with S ⊂ A + B and
α̃(A) + α(B) < ε. Equation (11) implies that there exists an integer N with
α((I − PN )A) < ε. It follows that (I − PN )S ⊂ (I − PN )A+ (I − PN )B and so

α((I − PN )S) ≤ α((I − PN )A) + α((I − PN )B)

≤ α((I − PN )A) + α(B) + α(PNB)

≤ α((I − PN )A) + 2α(B) < 3ε,

where the second inequality in (10) has been used. Next, for N as above, define κ :=
aNε ≤ ε and select A′ ∈ A andB′ ∈ B with S ⊂ A′+B′ such that α̃(A′)+α(B′) < κ.
The inequalities in (10) imply that α̃(PNA′) < κ and α(PNB′) < κ, and also
α(PNA′) ≤ a−1

N α̃(PNA′). It follows that

α(PNS) ≤ α(PNA′) + α(PNB′)

≤ α̃(PNA′)

aN
+ α(PNB′) <

(
1

aN
+ 1

)
κ ≤ 2ε.

Thus

α(S) ≤ α((I − PN )S) + α(PNS) < 3ε+ 2ε = 5ε,

and since ε > 0 is arbitrary, α(S) = 0.
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Finally, we show that β is inequivalent to α. For any n ≥ 1 define

(13) Zn := {z ∈ Z | z(i, j) = 0 for i )= n}, Sn := {z ∈ Zn | ‖z‖Z ≤ 1}.
Note that (Zn, ‖ ·‖Z) and (Zn, ‖ ·‖Z̃) are infinite dimensional Banach spaces, and in

fact ‖z‖Z = a−1
n ‖z‖Z̃ for every z ∈ Zn. Thus Proposition 3 implies that α(Sn) = 2,

and also, since Sn is also the closed ball of radius an in the space (Zn, ‖ · ‖Z̃),
Proposition 3 implies that α̃(Sn) = 2an. Further, Sn ∈ A and so we have that
α̃(Sn) = β(Sn), as noted earlier in this proof. Thus

lim
n→∞

(
β(Sn)

α(Sn)

)
= lim

n→∞
an = 0,

and it follows that β and α are inequivalent. !
The above theorem suggests the following general question.

Open Question. Is it the case that for any infinite dimensional Banach space
(X, ‖ · ‖) there exists a homogeneous (possibly set-additive) MNC β which is not
equivalent to the Kuratowski MNC α on X?

In [12], we provide a partial answer to the above Open Question, by showing
that for a large class of Banach spaces of interest in analysis, there does exist a
homogeneous, set-additive MNC which is not equivalent to the Kuratowski MNC.
In particular, this is verified for general Hilbert spaces; for the Banach spaces
Lp(Ω,Σ, µ), where (Ω,Σ, µ) is a general measure space and 1 ≤ p ≤ ∞; for C(K),
where K is a compact Hausdorff space; and for the Sobolev space Wm,p(Ω), where
Ω ⊂ Rn is an open set. We believe, however, that an answer (positive or negative)
to the Open Question is probably difficult and probably will involve techniques
beyond those used in [12].

Our next main result studies β(Λm) and β#(Λ) and the corresponding quantities
for γ, for the MNC β = βZ in the proof of Theorem 7 and the homogeneous, set-
additive MNC γ = γZ derived from β by Proposition 1. Recall the definitions and
properties (1), (2), of β(Λm) and β#(Λ). We shall take Λ to be a particular shift
operator.

Theorem 8. With Z = (p(N×N), where 1 ≤ p ≤ ∞, define Λ : Z → Z by Λz = x,
where x(i, j) = z(i+1, j) for every (i, j) ∈ N×N. Also fix a nonincreasing sequence
{an}∞n=1 as in the proof of Theorem 7, with β the homogeneous MNC on Z given
by equation (12), and γ the homogeneous, set-additive MNC derived from β as in
Proposition 1. Then for every m ≥ 1,

β(Λm) = γ(Λm) = µm := sup
n≥1

(
an

an+m

)
,

with the above formula serving as the definition of µm ∈ (1,∞].

Remark. It is easily seen that ‖Λm‖L(Z) = 1 for every m ≥ 1, so α(Λm) ≤ 1 by
Lemma 4, where α is the Kuratowski MNC on Z. (Here and below we let ‖ · ‖L(X)

denote the operator norm associated to a space X.) In fact one easily sees that
α(Λm) = 1 for every m, and so by earlier remarks we have that α#(Λ) = ρ(Λ) = 1.

Proof of Theorem 8. Let m ≥ 1 be an integer which will be fixed for the remainder
of the proof. Generally, we shall use the notation and constructions from the proof
of Theorem 7, assuming as well that p < ∞.
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Let S ∈ B with S =
⋃n

i=1 Si for some Si where n < ∞. Then ΛmS =
⋃n

i=1 Λ
mSi

and so

γ(ΛmS) ≤ max
1≤i≤n

β(ΛmSi) ≤ β(Λm) max
1≤i≤n

β(Si)

from the definition (7) of γ and from Lemma 4. As the above inequalities are valid
for every Si, it follows that γ(ΛmS) ≤ β(Λm)γ(S) and thus γ(Λm) ≤ β(Λm).

Next suppose that S ∈ A, again with S =
⋃n

i=1 Si for some Si. Then Si ∈ A for
each i, and β(S) = α̃(S) and β(Si) = α̃(Si), as noted in the proof of Theorem 7.
Thus

β(S) = α̃(S) = max
1≤i≤n

α̃(Si) = max
1≤i≤n

β(Si)

from the set-additivity of α̃, and this implies that γ(S) = β(S).
Now recall the set Sn ⊂ Z as in (13) and the fact, noted in the proof of Theorem 7,

that β(Sn) = 2an. Certainly Sn ∈ A, and so also γ(Sn) = 2an. Observing that
ΛmSn+m = Sn for every n ≥ 1, we have that γ(ΛmSn+m) = ( an

an+m
)γ(Sn+m) and

therefore γ(Λm) ≥ an
an+m

. Taking the supremum over n ≥ 1, we conclude that

γ(Λm) ≥ µm. It remains to prove that β(Λm) ≤ µm. If µm = ∞ we are done, so
assume for the remainder of the proof that µm < ∞.

Recall the Banach space (Z̃, ‖ · ‖Z̃) in the proof of Theorem 7. For any z ∈ Z̃
we have that

‖Λmz‖Z̃ =

( ∞∑

i=m+1

api−m

∞∑

j=1

|z(i, j)|p
)1/p

≤
( ∞∑

i=m+1

µp
mapi

∞∑

j=1

|z(i, j)|p
)1/p

≤ µm‖z‖Z̃ ,

and it follows that ΛmZ̃ ⊂ Z̃ and ‖Λm‖L(Z̃) ≤ µm. On the other hand, let n > m

and take any z ∈ Zn, with Zn as in (13). Then Λmz ∈ Zn−m and so z, Λmz ∈ Z̃
with

‖Λmz‖Z̃ = an−m

( ∞∑

j=1

|z(n, j)|p
)1/p

=

(
an−m

an

)
‖z‖Z̃ .

It follows that ‖Λm‖L(Z̃) ≥ µm and thus

(14) ‖Λm‖L(Z̃) = µm.

Now take any S ∈ B and ε > 0. Then there exist A ∈ A and B ∈ B so that
S ⊂ A+B and

β(S) ≤ α̃(A) + α(B) < β(S) + ε,

by the definition (12) of β. The reader can verify that α((I − Pn)ΛmA) = α((I −
Pn+m)A), which implies that ΛmA ∈ A. We have ΛmS ⊂ ΛmA + ΛmB and also
µm ≥ 1, so it follows from Lemma 4, from (14), and because ‖Λm‖L(Z) = 1 that

β(ΛmS) ≤ α̃(ΛmA) + α(ΛmB)

≤ ‖Λm‖L(Z̃)α̃(A) + ‖Λm‖L(Z)α(B)

= µmα̃(A) + α(B) ≤ µm(β(S) + ε).

We conclude that β(Λm) ≤ µm, as desired; hence β(Λm) = γ(Λm) = µm, as
claimed. !
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Remark. Any value s ∈ (1,∞] for the quantity β#(Λ) can be obtained by a suitable
choice of the sequence {an}∞n=1 in the above construction. If s ∈ (1,∞), then taking
an = s−n gives β(Λm) = µm = sm, and hence β#(Λ) = s. If s = ∞, then taking,
for example, an = n−n gives β(Λm) = µm = ∞ for every m, and hence β#(Λ) = ∞.

While the above construction has been carried out for the space (p(N×N), where
1 ≤ p ≤ ∞, with the aid of results in [12] analogs of Theorem 8 can be proved for
a variety of infinite dimensional Banach spaces which arise naturally in analysis.

We return again to the general case. Let (X, ‖ · ‖) be any complex, infinite
dimensional Banach space, β an arbitrary homogeneous MNC on X, and L : X →
X any bounded linear map. There are several inequivalent definitions of ess(L), the
essential spectrum of L, and all definitions actually apply when L : D(L) ⊂ X → X
is closed and densely defined. For example, F.E. Browder [5] defines ess(L) to be the
set of λ ∈ C such that (a) λ is an accumulation point of σ(L), the spectrum of L, or
that (b) R(λI−L), the range of λI−L, is not closed, or that (c)

⋃∞
i=1 N ((λI−L)i)

is infinite dimensional, where N (B) denotes the null space of a linear map B.
Another possible definition is ess(L) = {λ ∈ C | λI−L is not Fredholm of index 0}.
F. Wolf [19] defines ess(L) = {λ ∈ C | λI − L is not Fredholm}, and T. Kato [9]
defines ess(L) = {λ ∈ C | λI−L is not semi-Fredholm}. Simple examples involving
shift operators on (2(N) show that these definitions are not equivalent. However, by
using classical results of Gohberg and Krein [8] and index theory for semi-Fredholm
operators (see [9]), one can prove that for all definitions, ess(L) is nonempty and
that

(15) ρ(L) := sup{|λ| | λ ∈ ess(L)}

is the same for all definitions of ess(L). If |λ| > ρ(L) and λ ∈ σ(L), then λ is an
eigenvalue of L of finite algebraic multiplicity, λ is an isolated point of σ(L), and
λI − L is Fredholm of index 0.

Now let α denote the Kuratowski MNC on X and define η, the ball measure
of noncompactness on X, by

η(S) := inf{r > 0 | S ⊂
n⋃

i=1

Br(xi) for some xi ∈ X, for 1 ≤ n < ∞},

with Br(x) as in (4). It is well-known that η is a homogeneous, set-additive MNC
and that

(16)
α(S)

2
≤ η(S) ≤ α(S)

for every S ∈ B(X). If L : X → X is a bounded linear map, it is also known (see
Lemma 1 in [14]) that

(17) η(Lm) = η(LmB1(0)).

It follows from equations (16) and (17) and earlier remarks that

(18) ρ(L) = η#(L) = lim
m→∞

η(LmB1(0))
1/m = lim

m→∞
α(LmB1(0))

1/m = α∗(L),

where ρ(L) is as in (15) and where we recall that β∗(L), for any homogeneous MNC
β, is given by (3). As any such β is dominated by α by Proposition 2, it follows
from (18) that

(19) β∗(L) ≤ α∗(L) = ρ(L).
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We claim that β∗(L) = ρ(L). To prove this we shall use an old result of Yood [20]
and some facts about semi-Fredholm operators (see [9]). In the following lemma,
recall that a map f from a topological space U to a topological space V is called
proper if f−1(K) is compact (possibly empty) for every compact K ⊂ V .

Lemma 9 (Yood [20]). Let X and Y be Banach spaces (real or complex) and
L : X → Y a bounded linear map. Then the map L|S : S → Y is proper for
every closed, bounded S ⊂ X if and only if N (L), the null space of L, is finite
dimensional, and R(L), the range of L, is closed.

Theorem 10. Let X be a complex Banach space, L : X → X a bounded linear
map, and β any homogeneous MNC on X. Then

β∗(L) = ρ(L),

where β∗(L) is given by equation (3) and ρ(L) by equation (15). If instead X is a
real Banach space, then

(20) β∗(L) = ρ(L̂),

where L̂ : X̂ → X̂ is the complexification of L and X̂ is the complexification of X.

Proof. First suppose that X is a complex Banach space. Let r > 0 and |λ| > β∗(L),
and denote Lλ := λ−1L. Then by equation (3),

(21) lim
m→∞

β(Lm
λ Br(0)) = lim

m→∞
rβ(Lm

|λ|B1(0)) = 0.

LetQr := Br(0). We claim that (I−Lλ)|Qr is proper, equivalently, that (λI−L)|Qr

is proper. As r > 0 is arbitrary, this implies that (λI − L)|S is proper for every
closed, bounded S ⊂ X. To prove our claim, let K ⊂ X be compact and let
T := {x ∈ Qr | (I − Lλ)x ∈ K}. The set T is closed, by continuity. If x ∈ T , then
x = Lλx+y for some y ∈ K, and it follows for all m ≥ 1 that x = Lm

λ x+
∑m−1

i=0 Li
λy.

This implies that

(22) T ⊂ Lm
λ T +

(m−1∑

i=0

Li
λ

)
K ⊂ Lm

λ Qr +Km,

where Km := (
∑m−1

i=0 Li
λ)K is compact. It follows from (22) that

β(T ) ≤ β(Lm
λ Qr) + β(Km) = β(Lm

λ Qr) ≤ β(Lm
λ Br(0)) = β(L

m
λ Br(0)),

and with (21) it follows that β(T ) = 0. Thus T is compact. Yood’s lemma now
implies that N (λI − L) is finite dimensional and R(λI − L) is closed, that is,
λI − L is a semi-Fredholm operator with index i(λI − L) := dim(N (λI − L)) −
codim(R(λI − L)) < ∞. Moreover, the value of i(λI − L) is independent of such
a λ due to the continuity of the index of semi-Fredholm operators. As λI − L is
invertible for |λ| > ‖L‖, this value is i(λI − L) = 0. Thus λI − L is Fredholm of
index 0 for all λ with |λ| > β∗(L). Using Wolf’s definition of ess(L) we have that
ρ(L) ≤ β∗(L); thus ρ(L) = β∗(L) from (19).

If X is a real Banach space, then (20) follows from (6) and the surrounding
remark. !

Lastly, we prove the following result, which was discussed in a remark above.
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Proposition 11. Let X be a real Banach space, let α denote the Kuratowski MNC
on X, and let α̂ denote its complexification, as in (5). Then α̂ is also the Kuratowski
MNC on X̂.

Proof. With α̂ denoting the complexification of α as in the statement of the propo-
sition, let α denote the Kuratowski MNC on X̂. We must show that α̂ = α.
First observe that if Ŝ ⊂ X̂ is any bounded set, then diam(eiθŜ) = diam(Ŝ) and
diam(Re(Ŝ)) ≤ diam(Ŝ); hence

diam(Re(eiθŜ)) ≤ diam(Ŝ),

for any θ ∈ R. Now with such an Ŝ fixed, denote a = α(Ŝ) and let ε > 0. Then
Ŝ =

⋃n
j=1 Ŝj for some sets Ŝ1, Ŝ2, . . . , Ŝn ⊂ X̂, each with diam(Ŝj) ≤ a+ε. For any

θ ∈ R we have that Re(eiθŜ) =
⋃n

j=1 Re(e
iθŜj), and as diam(Re(eiθŜj)) ≤ a+ ε, it

follows that α(Re(eiθŜ)) ≤ a + ε. Taking the supremum over θ and letting ε → 0
now gives α̂(Ŝ) ≤ a = α(Ŝ).

Now denote â = α̂(Ŝ). Then α(Re(eiθŜ)) ≤ â for every θ. Fix m > 0 and let
θk = 2πk

m for 1 ≤ k ≤ m. Also fix ε > 0. Then for each k in the above range there

exist sets Sk,j ⊂ X for 1 ≤ j ≤ nk < ∞ such that Re(eiθk Ŝ) =
⋃nk

j=1 Sk,j with

diam(Sk,j) ≤ α(Re(eiθk Ŝ)) + ε ≤ â+ ε.

Now define Ŝk,j = {x ∈ Ŝ | Re(eiθkx) ∈ Sk,j}, so clearly Ŝ =
⋃nk

j=1 Ŝk,j for every
k. Now consider all sequences σ = (j1, j2, . . . , jm) where 1 ≤ jk ≤ nk, and for
each such σ let T̂σ =

⋂m
k=1 Ŝk,jk . Then Ŝ =

⋃
T̂σ, where the union is taken over

all possible such sequences σ, of which there are finitely many. We wish to obtain
an upper bound for the diameter of T̂σ for each σ. Fixing σ = (j1, j2, . . . , jm), let
x, y ∈ T̂σ. For any k with 1 ≤ k ≤ m we have that x, y ∈ Ŝk,jk , and therefore
Re(eiθkx),Re(eiθky) ∈ Sk,jk . Thus

‖Re(eiθk(x− y))‖ = ‖Re(eiθkx)− Re(eiθky)‖ ≤ diam(Sk,jk) ≤ â+ ε.

Denoting x− y = u+ iv, where u, v ∈ X, this can be written as

‖(cos θk)u− (sin θk)v‖ ≤ â+ ε.

Now for any θ ∈ [0, 2π], there exists k such that |θ − θk| ≤ 2π
m . Then

‖(cos θ)u− (sin θ)v‖
≤ ‖(cos θk)u− (sin θk)v‖+ ‖(cos θ − cos θk)u− (sin θ − sin θk)v‖

≤ ‖(cos θk)u− (sin θk)v‖+
2π

m
‖u‖+ 2π

m
‖v‖ ≤ â+ ε+

4π

m
‖x− y‖.

Taking the supremum over θ in the first term above gives ‖u−iv‖, and upon noting
that ‖u− iv‖ = ‖u+ iv‖ = ‖x− y‖ we obtain

‖x− y‖ ≤ â+ ε+
4π

m
‖x− y‖ ≤ â+ ε+

4π

m
diam(Ŝ).

As x, y ∈ Tσ are arbitrary, this gives an upper bound for diam(Tσ) and thus an
upper bound

α(Ŝ) ≤ â+ ε+
4π

m
diam(Ŝ)
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for the Kuratowski MNC of Ŝ. As ε and m are arbitrary, it follows that α(Ŝ) ≤
â = α̂(Ŝ). With this, the proposition is proved. !
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