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A DIFFERENTIAL-DELAY EQUATION ARISING IN OPTICS
AND PHYSIOLOGY*

JOHN MALLET-PARETf AND ROGER D. NUSSBAUM*

Abstract. In recent papers the authors have studied differential-delay equations E of the form e(t)
-x(t) +f(x(t- 1)). For functions like f(x) =/t +/z2 sin (/3x +/4), such equations arise in optics, while for
choices like f(x)=/xx e and f(x)=/zx(1 +x)- and for x_>0, the equation has been suggested in
physiological models. Under varying hypotheses on f (labeled (I), (II), and (III) below), previous work
has given theorems concerning existence and asymptotic properties as e--> 0 of periodic solutions of E,
which oscillate about a value a such that f(a) a. However, verifying (I), (II), or (III) for specific examples
can be difficult. This paper gives general principles that help in verifying (I), (II), or (III), and then applies
these results to specific classes of functions of interest.
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1. Introduction. The singularly perturbed differential-delay equation

(1.1) eYe(t) -x(t)+f(x(t- 1)),

which arises in various models in optics, biology, and physiology, has been studied
by many authors. See, for example, [2], [4], [5], [7]-[14], [17]-[22], [24], [25], and
the references in [20]-[22]. Recently, Mallet-Paret and Nussbaum [20]-[22] have
explored the relation between (1.1) and the discrete system

,(1.2) x,, f(x,,_,)

obtained by formally setting e-0 in (1.1). Some of the main results of [20], [21]
concern the existence and asymptotic behavior of square-wavelike periodic solutions
of (1.1) for small e. However, these results require that f satisfy various hypotheses,
which will be given in 2 below and which may be nontrivial to verify. Typical
nonlinearities of interest are

(1.3) f(x) p,, +/x2 sin (/x3x +/x4),

which arise in optics, and

(1.4) f(x) tzx" e-‘, x >= O,

(1.5) f(x) l.tx’( l + x’ -1, x >= O,

which arise in biological and physiological models. See, for example, 16], where the
function in (1.5) is used in (1.1) (for v 0 or v 1, h > 0 and/z > 0) to model blood
diseases. (Note that various constants appear in the equations in [16], but that by
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change of variables the equations (4a) and (4b) in [16] are subsumed by our equation
(1.1) with f as in (1.5).)

Unfortunately, verifying the hypotheses of 2 even for the above simple-looking
functions is not trivial and was not carried out in [21 (primarily for reasons of space).
For example, one of our hypotheses involves global conditions expressed as qualitative
properties ofthe dynamical system (1.2) and may be hard to check. It seems a significant
body of theory is needed, even for the functions in (1.3)-(1.5), to determine exactly
when our hypotheses are satisfied; routine calculations are insufficient. Our purpose
here is to develop such a theory and then to apply it to determine parameter values
for which the above nonlinearities satisfy various hypotheses. Although we have not
given actual numerical ranges, of parameters where our hypotheses are satisfied, we
can, with a simple computer program easily obtain most of them from our results.
Thus, this paper may be viewed as a companion to [21], for here we show how to
apply the general results of [21] to specific systems of scientific interest.

Our interest naturally extends beyond the nonlinearities in (1.3)-(1.5); however,
because so many of the basic difficulties are already apparent for these nonlinearities,
we will view them as models and work out their theory in as much detail as possible.
Even so, we will leave open questions for these examples.

2. Hypotheses on f and their implications. The following hypotheses were shown
in [20], [21] to imply various results about the differential equation (1.1). Note that
these hypotheses are arranged in increasing order of strength, and that all assume the
condition f(0)=0. This assumption is merely a normalization; more generally the
functions of interest will have a nonzero fixed point f(xo) Xo, and it will be necessary
to translate this point to the origin before analyzing the function.

We say a function f is monotone decreasing in an interval I in case f(x)--f(x2)
whenever X < X2 and X1, X2 E I. We say f is strictly decreasing in I in case f(x) >f(x2)
for all such Xl and x2. We make analogous definitions of monotone increasing and
strictly increasing.

We let fn :_ denote the n-fold composition of the function f with itself.
We now present four hypotheses a function f can satisfy. These were introduced

in [20], [21].
(0) The function f:-E is continuous, satisfies f(0)-0, is differentiable at

x 0 satisfying f’(0)<-1, and is monotone decreasing in some neighbor-
hood of x 0.

(I) The function f satisfies hypothesis (0). In addition there exist numbers A > 0
and B > 0 such that

f([-B,A])[-B,A],

xf(x) < 0 if x E I-B, A]-{0}.
(II) There exist A and B such that (I) holds. In addition there exist positive

numbers a<-_A and b<-_B such that if Xo[-B,A]-{O} and xn is given by
(1.2), then

f"(x) x,, --> {-b, a} as n -->

(III) There exist A and B such that (I) holds. In additionf is monotone decreasing
in I-B, A] and (II) holds with a A and b B.

Note thatf(a)=-b andf(-b)= a must hold in hypothesis (II). Iff only satisfies
(I), then there still must exist a and b satisfyingf(a)=-b andf(-b)= a, respectively.
However, the orbit {-b, a} of (1.2) need not be stable and attract iterates x, and a
and b need not be unique.
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If (I) holds and f is monotone decreasing on [-B, A] and if f2 has a unique
positive fixed point a (0, A], then it is easy to show that (III) is satisfied. To see this,
first observe that f2 has a unique negative fixed point -be I-B, 0),-b=f(a). If-hi
and -b2 were negative fixed points of f2, then f(-bl) and f(-b2) would be positive
fixed points of f2, so

a =f(-bl) =f(-b2),

and we could conclude that

f(a) =f2(-b,) -b =f2(-b2) -b2.
Next, note that f2 is monotone increasing on [-B, A] (because f is monotone

decreasing) and that there exists e > 0 such that If2(x)] > x for 0 < Ix] < e (because f
is monotone decreasing and f’(0) < -1). It follows that rE(x) > X for 0 < x < a; other-
wise, the intermediate value theorem would imply that f2 has a positive fixed point
Xl, with 0 < Xl < a. If 0 < Yo < a and y, =fE"(yo) we conclude that

Yo <f2(Yo) Y <f2(a a,

and generally that

Y,,, < Yn+l < a In >-- 1.

It follows that y converges to a limit y, and since f2(y)= y, it must be true that y a.
A similar argument shows that if-b < Zo < 0, then

lim f:z"
Zo b.

Finally, we can deduce that if-b-< x =< a and x 0, then

lim f"(x)= {-b, a}.

In fact we can conclude slightly more. If A > a, the uniqueness of the positive
fixed point of f implies that fe(A) < A (we know f2(A) <_- A). Thus the intermediate
value theorem implies that if a < x <= A, f2(x)< x. Using this fact and the fact that f
is monotone increasing, we see that if a < yo =< A and y =f:(Yo), then

a < Yn+l < Y, for all n.

As before this implies y,- a. A similar argument shows that if-B-< Zo <-b, then

lim f" (Zo) b.

Finally, we can conclude that if-B =< x _-< A and x # 0, then

lim f"(x)= {-b, a}.

If, however, f is not monotone decreasing on [-B, A], then verifying (II) directly
may be quite difficult, as it involves examining all iterates x, =f"(xo) of an arbitrary
initial condition Xo. Furthermore, even if f’(x) < 0 for x [-B, A], a direct proof that
f- has exactly one fixed point in (0, A] may not be easy. Fortunately, our theorems
will eliminate the need for such an approach, at least in the cases of interest. Instead,
checking (II) will involve only local calculations, with no need to iterate f The main
property offthat allows for such a simplification is that it possess a negative Schwarzian
derivative. This property was first used in the study of interval maps by Allwright 1 ]
and Singer [27]. Iff’(x)< 0 for -B < x < A and f has negative Schwarzian derivative
on (-B, A), the results of 7 will imply f has a unique fixed point in (0, A].
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In [21], we showed that (I), (II), and (III) each imply results about solutions of
(1.1). The solutions of interest are slowly oscillating periodic solutions, or SOP-solutions.
A solution x(t) of (1) is. called an SOP-solution if there exist quantities

such that

q>l and t>q+l

x(O)= x(q)= x((l)=O,

x(t)>0 in(0, q),

x(t)<0 in (q, t),

x(t+(1)=x(t lt.

For the functions of interest it will always be the case that xf(x)< 0 whenever x 0
is in the range of such a solution. In particular this will imply that the zeros of x(t)
are all simple.

An SOP solution x(t) is called an S-solution if it satisfies

x(t+q)=-x(t) Vt,

in addition to the above conditions. Necessarily f is an odd function throughout the
range of an S-solution. Also, c 2q for any S-solution.

The following results, which are proved in [21], describe the existence and
asymptotic properties for small e of SOP-solutions and S-solutions when (I), (II), or
(III) holds.

THEOREM 2.1. Assume f satisfies (I). Then there exists Co>0 such that for each
positive e < eo (1) possesses an SOP-solution satisfying

(2.1) x(t) (-B, A)

In addition, there exist positive numbers e, 2’, K, K2, r, and r2 such that ifx(t) is any
SOP-solution of (1.1) satisfying (2.1), and if 0 < e < el, then

x(t) > / forK2e<-t<-q-K2e,

x(t)<-y for q + KEe <- <-_ (t K2e,

1 + er <-- q <--_ 1 + er2,

1 + er <--_ 1- q <- 1 + er2.

THeOReM 2.2. Assumefsatisfies (II). Then given > 0 there exist e > 0 and K2 > 0
such that if x(t) is any SOP-solution of (1) satisfying (2.1), and if 0< e < e, then

Ix(t)-sqw(t)l<-_ in [eK2, q-eK2]t.J[q+eK2, (t-eK2]

where sqw t) is the two-periodic square-wavefunction defined by

a in[O, 1),
sqw(t)=

-b in[l,2),

sqw(t+2)=sqw(t) Wt.

THEOREM 2.3. Assumefsatisfies (III). Letx( t) be any SOP-solution of (1) satisfying
(2.1) for some e > 0 (with a A and b B), and let p (0, q) and p (q, (t) be such that

x(p) max x(t) and x(p) min x(t).
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Then x( t) is monotone increasing in (0, p), monotone decreasing in (p,/), and monotone
increasing in (if, 1).

THEOREM 2.4. Assumefsatisfies (I) and that in addition A B andf(-x)= -f(x)
for all x[-A,A]. Then there exists Co>0 such that for each positive e<eo, (2.1)
possesses an S-solution satisfying

x(t) (-A, A) lt.

In the case of Theorem 2.2 we easily see that

x(t)->sqw (t) as e->0

uniformly on compact subsets of -7/, for SOP-solutions x(t). Also, when f is odd
the S-solutions obtained in Theorem 2.4 are of course SOP-solutions, and hence satisfy
the conclusions of Theorems 2.1, 2.2, and 2.3 when the appropriate hypotheses hold.

3. Some specific functions f. We consider fk-’-->, for 1 _-< k_-<5, defined as
follows:

f,(x) l.t x,
f2(x) x3- txx,

f3(x) -/z[sin (x + 0)-sin 0],

f4(x) tzx e-, x >= O,

/xx"
x>0.fs(X)-xX+l,

The values of f4 and f5 for x < 0 are immaterial, so for definiteness we set

fk(X) =fk(0) if X < 0 and k =4 or 5,

always assuming v-> 0 and A => 0. The functions fl and f2 give model problems with
the simplest possible nonlinearities; in particular fl is the much-studied quadratic map
of the interval [6], [15]. The function f2 is an odd function, so by Theorem 2.4 there
is the possibility of obtaining S-solutions of (1.1). The function f3 seems at first to be
a special case of the general trigonometric nonlinearity (1.3) arising in optical models;
we will show, however, that f3 can always be obtained from (1.3) by means of a linear
transformation of the differential equation (1.1). The function f4 occurs in biological
and physiological models as noted earlier, as does f5 when v 1 or v 0.

Our object is to determine ranges of the parameters/x, 0, v, and A for which the
hypotheses (0), (I), (II), and (III) hold for a suitable translate of each fk. By "suitable
translate" we mean that a transformation taking a fixed point Xo of fk to the origin
must generally be made before verifying the hypothesis in question. Indeed, for f4 and
f5 it is not the fixed point x 0 that is of interest, but rather some nontrivial fixed
point Xo> 0 about which we do our analysis. If f: R R possesses a fixed point Xo,
then letting y x Xo in (1) yields

(3.1) e(t) -y(t)+ g(y(t- 1))

where

(3.2) g(y) f(y + Xo) f(xo)

satisfies g(0)=0. When we say a hypothesis (such as (0), (I), (II), or (III)) holds for
a function fat a fixed point Xo, we mean that the hypothesis holds for the transformed
function g as stated.
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We complete this section by showing how the function f in (1.3) can be reduced
to the normal form f3. In fact, we will show that the parameters/z and 0 can always
be chosen to satisfy

(3.3) /x=>O and 0<_-0_-<Tr.

First note that the function f in (1.3) is bounded and so must have at least one fixed
point, and possibly more than one. Let Xo denote such a point. Then the function g
in (3.2) has the same form as in (1.3) but possibly with a different value of/z4; we
continue to denote the new value by 4. The fact that g(0)= 0 implies from the form
(1.3) that =-/x2 sin/x4, and so

g(y) [sin (z3y +/x4) sin 4].

Now assuming/z2 0 and 3 0 (otherwise g is identically zero), we set

(3.4) z +/z3y

with the sign + to be determined later. The differential equation (3.1) now becomes

e.(t) -z(t)+ h(z(t- 1))

where

Upon setting

h(z) =/x_/x3[sin (z + [-/,4)-sin (-1"}[/4) ].

I.1,

+/x4(mod 27r) if/x2/z3 < 0,
0

-I-]./,4 "- 7r(mod 27r) if Z2z3 > 0,

we see that the function h has precisely the form of f3. In addition, an appropriate
choice of sign in (3.4) ensures that/x and 0 satisfy (3.3).

In our subsequent analysis we will usually assume that the function f(x) in (1.3)
has been written in the normal form"

(3.5) f3(x) -/x[sin (x + 0)-sin 0]

with z > 0 and 0<= 0-< 7r. However, the reader should remember that writing the
function in normal form conceals certain difficulties. First, as previously noted, the
function f in (1.3) may have several fixed points. For each such fixed point of f,
different parameters /z and 0 in the normal form f3 will, in general, be obtained.
Second, we usually want to know for what ranges of the original parameters/x,/z2,
x3, and /-1’4 in (1.3) does the function f(x) satisfy hypotheses (0), (I), (II), or (III).
The parameters in the normal form are written in terms of a fixed point off in (1.3),
and this fixed point is typically not explicitly known. Thus transferring information
about the normal form back to the original function may present some nontrivial
calculus problems.

4. The local condition (0). Here we discuss the existence of a fixed point of fk at
which condition (0) holds; clearly this is the case at a fixed point Xo if and only if
f’(Xo) <-1. For each function fk, with parameters 0, u, and )t in appropriate ranges,
we will show that a critical value/Zo of the parameter/x exists such that (0) holds at
an appropriate fixed point Xo if and only if/x >/Zo.
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We begin with the model functions fl and f2. If Ix >-1/4 then fl has two fixed
points; the larger one,

-1 + x/4ix + 1
X0

interests us here. We see that f(xo) 1 x/4ix + 1, and a short calculation reveals that
(0) holds there if and only if Ix > Ixo =. For the nonlinearity f2, with the fixed point
Xo 0, we have f(0) -ix; thus (0) holds there if and only if Ix > Ixo 1.

At the fixed point Xo=0 of f3, we have f(0)=-ix cos 0, so a necessary and
sufficient condition for (0) to hold here is that Ix cos 0 > 1. In particular this condition
and the restrictions (3.3) imply that/x >0 and 0=< 0 < 7r/2. Thus we obtain Ixo 1/cos 0.

Before discussing the functions f4 andf5 it is convenient to prove a simple theorem.
THEOREM 4.1. Let f" [0, oo)--> [0, oo) be a continuous function that is C on (0, oo).

Assume there exists 0 >= 0 such that f’(x) > 0 for 0 < x < 0 and f’(x) < 0 for x > O, and
there exists So>0 such that (d/dx)(xf(x)) is positive for 0<x <So and negative for
x> So. Then for tx >- O(f(O))-1, the equation Ixf(x)= x has a unique solution x= Xo(ix)
such that Xo(ix)>= 0 and Ixf satisfies (0) at Xo(ix) if and only if Ix> So(f(So)) -1.

Proof. The existence and uniqueness of Xo(ix) is trivial. Since s(f(s))- is strictly
increasing for s> 0, we can define Ix(s)= s(f(s))-1 and parameterize by s_-> 0, so
Ix(s)f(s) has fixed point s _-> 0. Thus the set of Ix such that Ixf’(xo(ix)) < -1 is the same
as {ix(s)" Ix(s)f’(s)<-l}. A calculation shows that Ix(s)f’(s)<-I if and only if
(d/ds)(sf(s))<O, i.e., if and only if s> So.

For the function fa(x) X e we easily compute that the conditions of Theorem
4.1 are satisfied for u _-> 0 and that So u + 1 and Ixf4(x) satisfies (0) at Xo if and only
if Ix > (u+ 1)(fa(u+l))-. For the function fs(x)=x(l+x)-, we easily compute
that the hypotheses of Theorem 4.1 are satisfied if u->0 and A > u+l and that
s =(u+ 1)(A- u-1)-1. Thus Ixfs(x) satisfies condition (0) at Xo if and only if Ix >
So(fs(So)) -1, where s (u+ 1)(A u- 1) -1.

Table 1 summarizes the previous results by giving the range of parameters for
which fk satisfies (0) at a fixed point Xo. Note again that in the case of f3 only the
point Xo- 0 is considered, even though there may be other fixed points at which (0)
holds.

TABLE
Fixed points Xo offk and critical parameter values Ixo. We have (0) holding at Xo if and only if Ix > Ixo,

provided the parameters O, u, and A satisfy the given restrictions.

k Xo Ixo Restrictions

-1 + x/4ix + 3

2 4

2 0

3 0
cos 0

4 unique fixed point Xo> v (v+ 1)1- e+1

5 unique fixed point log Ixo log A-(-) log (u+ 1)

Xo > \-_ /

0=<0<--
2

v_>O

u>=O, A>u+l
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When v= 1 in the function fs(x), we can explicitly compute Xo= (/z- 1)l/X,,and
the conditions on the parameters become A <2 and/z > A(A--2)-1. More generally, it
is of interest to locate the fixed points off4 and f5 more precisely. The following result
gives the asymptotic behavior of Xo(/Z) for large/z; we omit the proof because we will
not actually use the result here and because the proof involves only standard arguments
from asymptotic analysis. Note that we use the standard "big O" and "little o" notation:
If h(/z) and g(/z) are complex-valued functions defined for large positive /z and if
g(/z) is nonzero for large/z, then we write

h(,) O(g(,))
Ih()l

if and only if lim sup < oo,
,,_,+o Ig,)l

Ih()l
h(tz) o(g(Iz)) if and only if lim sups=0.

,,-,+o Ig(z)l
THEOgEM 4.2. For v>=O and A > v+ 1 define numbers 04 v and 0 v(A v) -1.

The functions f4(x) =/.tf4(x) andfs(x) tzfs(x) have (for sufficiently large tz) a unique
fixed point Xo(IZ) such that Xo(IZ) > Oj and Xo(IZ) satisfies

(log (log
Xo(/Z) log (/z) (1 v) log(log/.) + 0

\ igx for f4,

XO(/Z) =/Z(1/(X+l-’)) ( 1 )A + 1- v IJ((1--A)/(A+I--v))

-I- O(IUI<<I-2A>/<A+I-v>>) for fs,
where log denotes natural logarithm.

5. General results on piecewise monotone functions. We wish to determine when
a hypothesis (I), (II), or (III) holds for fk at a point Xo given in Table 1. As noted
earlier these three conditions are global, and verifying them for specific functions may
be difficult. To aid us in this task we will first obtain some general criteria for these
hypotheses to hold; we will then apply these criteria to the functions fk of interest.

To begin, we introduce condition (PM) (piecewise monotone) on a function f;
observe that eachfk satisfies (PM) at the fixed point Xo and parameter ranges ofTable 1:

(PM) Thefunction f: R satisfies hypothesis (0). In addition, there exist (possibly
infinite) quantities 0 < <= a <= oo and 0 < q <= fl <= oo such that
(i) f(-fl 0 if fl < co;
(ii) f is monotone increasing and strictly positive in (-fl, -q if q < oo;
(iii) f is monotone decreasing in (-q, ) but not in any larger open interval;
(iv) f is monotone increasing and strictly negative in (, a) if < oo;
(v) f(a)=0 if a <oo.
Furthermore, if =l oo (so f is monotone decreasing in all of ), then
If=(x)l < Ixl for some x.

Figure 1 depicts a function satisfying (PM). (Note that f(a)= 0 is not required
for this function as a c. That is, limx_.of(x) may either be zero or strictly negative.)
For any function satisfying (PM) we have xf(x) < 0 if Ix 0 is sufficiently small, since
f(0) 0 and f’(0) < -1 by (0). A first question we consider for such a function is when
it also satisfies (I).

Suppose both (PM) and (I) hold for fi Then the quantities A and B in (I) clearly
satisfy

(5.1) A<a and B<fl.
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FIG.

On the other hand, if f satisfies (PM) and A and B are positive numbers satisfying
(5.1), then f also satisfies (I) if and only if

(5.2) f([-B,A])[-B,A].

Finally, if both (5.1) and (5.2) hold for a function satisfying (PM), then there exists
a minimal interval I-B,, A,] (-/3, a), with both A, and B, strictly positive, for
which (5.2) is an equality:

f([-B,, A,]) I-B,, A,].
This is so because f’(0)<-1.

Now assume f satisfies, (PM) and define a continuous monotone decreasing
function f,: R --> R by

(5.3)
ff(- r/) in (-3, r/] if r/<

f,(x) f(x) in (-r/, :),
[f(s) in s, c) if sr <

If A and B are positive numbers satisfying (5.1), then clearly

(5.4) f([-B, A]) [f,(A), f,(-B)],
so that the equality in (5.2) holds at A A, and B B, if and only if

f,(A,) =-B, and f,(-B,) A,.
Thus, (I) holds if and only if there exist two distinct points in the interval (-/3, a)
that are mapped into one another by f,. From this basic fact we conclude the following
result.

PROPOSITION 5.1. Assume f satisfies (PM), define the function f, by (5.3), and

define quantities

A, inf {A > 0 If(A) A},
(5.6)

B, inf {B > 0[f(-B) -B}.

Then A, and B, are well-defined positive numbers satisfying (5.5). Hypothesis (I) holds

forf if and only if
A,<a and B,<fl

And in such a case we can take A A, and B B, in the statement of (I). A sujcient
condition for (I) to hold is that both

(5.7) f(a)<c if a<, f(-)>-fl iffl<.
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Another sufficient condition for (I) to hold is that

(5.8) f,()>-, f()<, <,

while a third sufficient condition for (I) to hold is that

(5.9)

Proof. The existence and positivity of A. and B. follow from the fact that
If(x)l > Ixl for small Il 0 (since (f)’(o) > 1) and from the fact that If(x) < Ixl for
some x. The latter inequality holds because f is a bounded function if either
is finite; if sc r/= c, the inequality is assumed in the definition of (PM). The first part
of the proposition now follows easily from the monotonicity of f, and the discussion
above.

The assumptions onf imply thatf always has a positive fixed point and a negative
fixed point. If -/3 c,f satisfies (I) by what we have already proved. In all other
cases it suffices to prove thatf has a fixed point in (0, a) and a fixed point in (-/3, 0).
The reader can easily verify that (5.7), (5.8), or (5.9) are all sufficient to ensure this.
For example, if a < o and (5.8) is satisfied, f has a fixed point Xo in (0, a) because
f(a)< a and (f)’(0) > 1, and then f,(xo)is a fixed point off in (-/3,0) (because
f, is monotone and f,(a) > -/3).

The following related result tells when the monotonicity condition (III) holds for
a function that satisfies (PM).

PROPOSrrION 5.2. Assume f satisfies (PM), and let f,, A,, and B, be as in
Proposition 5.1. Then (III) holds forf if and only if

(5.10) A,<-_ and B,<=7.

As before, we have A A, and B B, in the statement of (III). A sufficient condition
for (5.10) to hold is that both

(5.11) f()<= if<c, f(-q)>=-rl if rl<

should hold.
Another sufficient condition for (5.10) to be satisfied is that

(5.12) f,()>---n, f()<--, <
while a third sufficient condition for (5.10) to hold is that

(5.13)

Proof. This follows the proof of Proposition 5.1 once we recall f is monotone in
(-r/, :), but in no larger open interval. Iq

Suppose the function f has exactly one fixed point in (0, c). Then an easy
argument implies that f has a unique fixed point in (-, 0). If A, < a and B, < o
(A, and B, as in (5.6)), we must have f(a)<a (if a <) and f(-fl)>-/3 (if
/3 < ): otherwise the intermediate value theorem would imply that f has a fixed
point in [c, ) or (-c, -/3 ], contradicting uniqueness. Thus iff has a unique positive
fixed point, the sufficient condition in (5.7) that f satisfy (I) is also necessary. Further-
more, a little additional thought shows that (5.7) is satisfied if and only if (5.8) is
satisfied, or (5.9) is satisfied, or a =/3 = (assuming f has a unique positive fixed
point).
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Similarly, if f is as in Proposition 5.2 and f has a unique positive fixed point,
then f satisfies (III) if and only iff satisfies (5.11). Also f satisfies (III) if and only
if f satisfies (5.12), or (5.13), or

Inequalities (5.7) and (5.11) are, in general, easier to verify than (5.6) and (5.10),
so it is useful to have theorems that ensure f has a unique positive fixed point.
Furthermore, we have already seen in the discussion in 2 the importance of knowing
that f2:[-B, A]--> I-B, A] (A and B as in 2) has a unique positive fixed point. For
example, if f is monotone decreasing and f([-B, A])c [-B, A], we saw in 2 that f
satisfies (III) on I-B, A] if f2 has a unique positive fixed point in I-B, A].

If the functionf were convex downward in (r,
for some real z, then f.2 would have a unique fixed point in (0, c). This type of
convexity assumption is clumsy to deal with, but a related concept, that of negative
Schwarzian derivative, is readily verifiable for many functions of interest and can be
used to prove a variety of results, including the uniqueness of the positive fixed point
off. Remarkably, each of the five functions fk has a negative Schwarzian derivative
for most of the parameter values of interest, so it will be natural for us to make the
assumption of negative Schwarzian derivative in most of our subsequent theorems.

6. The Schwarzian derivative. The Schwarzian derivative Sf of a function f: I -> R
in an interval I is defined to be the function

at those points x I where f is three times differentiable and f’(x) O. At all other
points of I we consider Sf to be undefined. The Schwarzian derivative originated in
the theory of conformal mappings and was first used in the study of interval maps by
Allwright [1] and Singer [27].

In this section we present several basic properties of Schwarzian derivatives and
of functions whose Schwarzian derivative is negative. An important sufficient condition
for the Schwarzian derivative of a function to be negative is given in Proposition 6.2.

Our first proposition collects some well-known results about the Schwarzian
derivative (see [6], [27]). Statement (v) in Proposition 6.1, although elementary, is
quite useful and does not appear to have been explicitly stated in the literature.

PROPOSITION 6.1. Let f: I -> R and y J --> I be functions defined on intervals I and
J. Then

(i) S(g f)(x)= Sf(x)+[f’(x)]2Sg(f(x)) and
(ii) S(g of)(x) < 0 if Sf(x) < 0 and Sg(f(x)) < 0

hoM whenever Sf is defined at x I and Sg is defined atf(x) .I. Also, if rn is the M6bius
transformation

then

m(x) ClX"" C2
C C4 C2 C O,

C3X -Jr- C4

(iii) Sm x 0 where defined, and hence

S(mof)(x)=Sf(x)

if Sf is defined at x I and c3f(x) + C4 O. Finally,
(iv) (d/dx)(If’(x)l-/-)>O if and only if Sf(x)<O, and
(v) if (d2/dx) log If’(x)l <0 then Sf(x)<O

hold whenever Sf is defined.
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Proof. These are straightforward but tedious calculations, which we omit. We do
note that (ii) and (iii) follow easily from (i). Also,

d2

h"(x) > 0 implies (eh(x)) > 0;

so with h(x)=-1/2 log If’(x)l we obtain (v) from (iv). [3

COROLLARY 6.1 [27, Prop. 2.4]. Letf: ! R be three times differentiable in an open
interval I, and assume

f’(x) O and Sf(x) < O for all x L

Then the function If’(x)l does not attain a minimum in L That is, there does not exist
w I such that If’(w)l <- If’(x)l for all x I.

Proof. This follows immediately from (iv) of Proposition 6.1. [3

LEMMA 6.1. Letf: I I be three times differentiable in an interval I (not necessarily
open), with range in I, and assume that Sf(x) < 0 at each x I for which f’(x) O.
Assume that for some w I (possibly an endpoint) we have

f(w) w and [f’(w)l-<- 1.

In addition, assume

f"(w)=0 iff’(w)= 1

at this fixed point w. Then there exists a relatively open neighborhood U
_

I, with w U,
such that

f(U) U,

fn(x)w asno, for eachxU.

Proof. In the case of a strict inequality If’(w)l < 1 it is an elementary exercise to
show that the set

U=(w-, w+)f)I

satisfies the conclusions of the lemma if > 0 is small enough. The same set also works
if f’(w)= 1: we have f"(w) =0 (by assumption) and f"’(w)<0 (since Sf(w)<O). It
follows that if g(x)=f(x)-x, gJ(w) =0 for 0=<j_-<2 and g(3)(W) <0. Thus Taylor’s
theorem implies that there exists > 0 such that f(x)<x for x (w, w+ 3) I and
f(x)>x for x(w-i,w) fqL Since f’(w)=l we also have f(x)>-w for x
(w, w+)fqI andf(x)<=wforx(w-, w)f’lL It follows that ifx (w- , w+)tqI,
x, =f"(x) is a monotonic sequence bounded above by w (if x_-< w) or below by w (if
w-< x). Thus the sequence (xn) converges to : and necessarilyf(:)= :. By construction
w is the only fixed point of f in (w 3, w + ) (q/, so : w and x, converges to :.

In the remaining case, when f’(w)=-1, we have f2(w)= w and (f2)’(w)= 1, and
a simple calculation (see [27, p. 261]) gives us that (f2)"( w) 0. By (ii) of Proposition
6.1 the Schwarzian derivative off2 satisfies Sf(x) < 0 whenever (f2)’(x) 0. Thus f2
satisfies the conditions on f already considered in the preceding paragraph, so there
exists Uo I satisfying.the conclusions of the lemma for the function f instead of f.
From this we see that the set U Uofqf(Uo) satisfies the conclusions of the lemma
for the function fi [3

The next result gives an easily verified condition for the Schwarzian derivative of
a function to be negative. Recall first that the order o of an entire function f: C C
is the infimum of all numbers > 0 such that If(z)] e-Izl is bounded on C. (If no such



A DIFFERENTIAL-DELAY EQUATION ARISING IN OPTICS AND PHYSIOLOGY 261

K exists then f is said to have infinite order.) Nontrivial entire functions of finite order
possess a product representation

f(z’=ea(Z’zk, (1---,)Et(,)
with at most countably many factors, where 12 is a polynomial of degree at most [to
(the greatest integer less than or equal to the order), k >-0 is the multiplicity of z 0
as a root of f, the numbers z, are the other roots off listed according to multiplicity,
Et is the function

with Eo() 1, and M 0 is an integer satisfying M N NM+ 1. In addition, it is the
case that

1
(6.1)

and the infinite product converges uniformly on compact subsets of C. We also recall
that the order of the derivative f’ equals the order of

PROPOSXO 6.2. Let f be an entire function of order <2 such that f(x)
whenever x , and such that all zeros of the derivative f’ are real en either

Sf(x) < 0 whenever f’(x) 0 and x ,
orf is a linear function f(x) CoX + c.
oo We note that M =0 or 1 in the infinite product representation for the

derivative f’. Denoting the zeros of f’ by x, we have for this function either

(6.2) f’(x) ea(x 1- or

eX/X.,

where we restrict our attention to real values x of the argument. In either case (6.2)
or (6.3) we have "(x)=0 for all x, and

1
(6.4) <.

Now assume that f’ does possess a root; otherwise f’(x)= e"( and the result is
easily checked. In the first case, (6.2), we have

log If’(x)l a(x) + k log Ixl +Z log
X

so term-by-term differentiation (justified by (6.1)) gives

d 2 k 1
(6.5) dx----i log If’(x)l =-5-2. (x_x.)<0
for x # x, and x 0 if k > 0. In the second case, (6.3), the same formula, (6.5), holds.
In either case the result Sf(x)< 0 follows from (v) of Proposition 6.1. l-1
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7. Verifying (I), (II), and (III). The following hypotheses are strengthened versions
of (PM) involving a negative Schwarzian derivative condition. Under these conditions,
verifying (I), (II), and (III) reduces to essentially local calculations.

(NS1)

(NS2)

The function f:R- satisfies hypothesis (PM). In addition f is three times

differentiable in (- rl, ) and satisfies f’(x) < 0 and Sf(x) < 0 in (- q, ).
Thefunction f: R satisfies (PM). In addition, f is three times differentiable
in (-fl, a and satisfies f’(x) 0 and Sf(x) < 0 ifx (-fl, a and x , l.

Under hypothesis (NS1), Theorem 7.1 gives necessary and sufficient condition for
(I) and (III) to hold, thereby extending Propositions 5.1 and 5.2. Under hypothesis
(NS2), Theorem 7.3 gives an easily verified necessary and sufficient condition for (II)
to hold provided (I) also holds. Theorem 7.2 will be useful in verifying (I), (II), and
(III) for specific functions.

THEOREM 7.1. Assume f satisfies (NS1) and define f, by (5.3) as before. Then f
satisfies (I) if and only if
(7.1) f(a)<a ifa<o, f(fl)>-fl iffl>.
Also, f satisfies (I) if and only if at least one of the following three conditions holds:

(1) a=fl=; or (2) a<c and f,(a)>-fl and f(a)<a; or (3) fl< and
f,(-) < a andf(-) > -.

The function f satisfies (III) if and only if
(7.2) f()<__. if <oo, f(-rl)>=-,1 if ?<oo.
Also, fsatisfies (III) ifand only ifat least one ofthefollowing three conditions is satisfied:

(1) =q=c; or (2) sc<c and f,()>=-rl and f(sc)_-<:; or (3) r/<c and
f,(-rl) <- andf(-,1) >- -rl.

Recall that we have

(7.3) f(a)=f() and f(-fl)=f(-rt)
for the quantities in Theorem 7.1.

THEOREM 7.2. Assume f satisfies (NS1), except that

f’(0) -k, O<k_-<l,

holds instead off’(O) < 1. If 0 < k < 1, assume that f"(O) >- O. Then with f,(x) given
by (5.3) we have

]f(x)l < Ix] Vx 0.

Note that (7.1) and (7.2) hold under the hypotheses of Theorem 7.2.
THEOREM 7.3. Assume f satisfies both (NS2) and (I). Then f satisfies (II) if and

only if both
(i) I(f)’(x)l _-< 1, and
(ii) (f2)"(x) 0 if (f2)’(x) 1

hold whenever

(7.4) f)-(x)=x, x e (0, a), f(x) e (-/3, 0).

Equivalently, f satisfies (II) if and only if both (i) and (ii) hold whenever

(7.5) fZ(x) x, x 6 (-fl, 0), f(x) e (0, a).

LEMMA 7.1. Assume f satisfies (NS1), and define f,, A,, and B, by (5.3) and
(5.6). Then A, and -B, are the unique nonzero fixed points off. Moreover, f(x)-x
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changes sign at these points, with tf(x)l> Ixl in (-B,, A,)-{0}, and If(x)l <lxl in
(-oo, -B,) (.J (A,, o).

Proof. First observe that a (possibly infinite) quantity :,> 0 exists such that

(f)’(x) > 0 in [0, :,),

f(x) =f(s,) in [:,, c) if

This follows easily from the definition off,, and we see that :,= s iff,(sc) >--r/ and
so, =f,l(-r/)< sc if f,(s0) <-r/ (these formulas hold even if : or r/ is infinite). Also,

Sf(x) < 0 in [0,

by (ii) of Proposition 6.1. By assumption, we have

(7.6) (f)’(0) > 1.

Now A, is the smallest positive fixed point off in (0, ). If A, => :,, then clearly
A, is the only such fixed point; so suppose that A, < :,. Because A, is the smallest
positive fixed point off, we have f(x)> x for 0< x < A,, which implies

(7.7) (f)’(a,) <= 1.

By Lemma 6.1 the derivative (f)’ does not attain a minimum in any open subinterval
of (0, :,). Using this and the fact that (f)’(0)> 1, we conclude from (7.7) that

(7.8) (f)’(x) < 1 for A, < x <

Integrating (7.8) from A, to u for A, < u =< :,, we obtain

(7.9) f(u) 2 2-f,(a,) =f,(u)-a, < 1 dx= u-a,,
A,

and (7.9) implies f(x)< x for A, <x=< so,, and hence for all x > A,.
The analysis for -B, is similar and is left to the reader, l-1

Proof of Theorem 7.1. As was noted in 5, the sufficient conditions (5.7) and
(5.11) in Propositions 5.1 and 5.2 are also necessary iff has a unique positive fixed
point. Lemma 7.1 shows that f has a unique positive fixed point.

Proof of Theorem 7.2. Obviously f2 andf agree on [0, s,]. A simple calculation
(see [27, p. 261]) shows that

(7.10) (f)"(O) =f"(O)[k2- k].

Since we assume that f"(O) => 0 if O<k < 1, (7.10) implies

(7.11) (f)"(O) =< 0

for 0 < k-< 1. If strict inequality holds in (7.11), the mean value theorem implies that
there exists 6 > 0 such that

(7.12) 0 < (f)’(x) < (f)’(O) k2 for 0 < x < 6.

If (f)"(O)= O, the negative Schwarzian condition implies

(f)’"(0) < 0,

and by using Taylor’s formula we again see that there exists 6 > 0 such that (7.12) is
satisfied. Lemma 6.1 now implies

(7.13) (f)’(x) < k2 for 0 < x < ,,
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for if (7.13) failed for some x, (f)’ would achieve its minimum at an interior point
of (0, x). By integrating inequality (7.13) from zero to x for x=<., we easily obtain

f(x)<x for 0<x-<:.,
and hence

(7.14) f(x)<x for 0<x.

Inequality (7.14) implies thatf has no negative fixed points y (otherwise f,(y) would
be a positive fixed point off), and since f(x) > x for small negative x, we conclude
that f(x) > x for all x < 0.

LEMMA 7.2. Assume f satisfies both (NS1) and (I). If a (-fl, a) is such that
f(a)(-, a) andf2(a)=a, then we have in fact a,f(a)[-B, A] (-fl, a) where A
and B are as in (I).

Proof. Assume without loss of generality that a > 0. The monotonicity of f. and
the fact that If(x)l--< If,(x)l in (-/3, a) imply

a =f2(a) <-f.(f(a)) <=f(a),
and from this we have

(7.15) a<-A.
by Lemma 7.1. On the other hand, the inclusion f2([-B, A])c I-B, A] (which follows
from (I)) and (5.3) imply that f(A)<-A, so

(7.16) A,<-_A
by Lemma 7.1. From (7.15) and (7.16) we have a [-B, A]. The proof that f(a)
[-B, A] is analogous.

LEMMA 7.3. Assumefsatisfies both (PM) and (I), and is differentiable in (-fl,
with f’(x) 0 there, except at x and x q (this is true in particular iff satisfies
(NS_) and (I)). Then with A as in (I), the following hold:

(i) The critical points off in (0, A) are isolated, and (f)’ changes sign at each
such point.

(ii) If a point w in the open interval (0, A) is a local maximum off2, then it is a
global maximum in [0, A

(7.17) f2(w) maxfE(x).
[0,A]

(iii) Iff possesses a critical point in the closed interval [0, A] and ifw in the closed
interval [0, A] is as in (7.17), then w is a critical point:

(f)’(w) =0.

Proof. This lemma follows directly from several elementary observations based
on the shape of the graph of f as in (PM), and the fact that f maps the interval
I-B, A]

___
(-/3, a) into itself.

At a critical point x (0, A) of f2 we have

(f2)’(x) f’(f(x))f’(x) 0

and so either x : or f(x)=-r/. As f(x)=-r/ for at most two points in (0, a), we
conclude that f2 has at most three critical points in (0, A). Of course, these points are
isolated. If either A=< : or f(:) >=-7, then f2 has at most one critical point in (0, A),
and this point, if it exists, is a local maximum. In this case (i), (ii), and (iii) clearly
hold, so the lemma is proved.
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On the other hand, suppose A> : and f(:) < -r/. Then we see that x is a local
minimum of f2, that f(x)=-r/ has either one or two solutions " in (0, A] and that
they are local maxima for f2 with the (common, if there are two solutions ’) value

(7.18) f2() =f(_/)= max f(x)= maxf2(x).
I-B,0] [0,A]

In particular, (i) and (ii) hold. To prove (iii), we note that if w [0, A] satisfies (7.17),
then from (7.18) we have f2(w)=f(-7), and hence f(w)=-r/. Thus (f2)’(w)=
f’(-r/)f’(w) 0 as claimed. 1-1

LEMMA 7.4. Assume f satisfies the hypotheses of Lemma 7.3. Suppose there exists
an interval J r, s with 0 <-_ r < s <-_ A such that

(7.19) f2(J) J, f2(OJ) OJ, where OJ { r, s}, and J- OJ contains a critical point of
f.

Furthermore, assume that it is not true thatf2(r)= s =f2(s). Then there exists v 6 J-OJ
such that fE(v) s. Also, if w6OJ is such that fE(w)= s, then (fE)’(w) 0.

Proof Our assumptions imply that (a) f2(r)= s and fE(s)= r, or (b) fE(r)= r and
f(s) s, or (c) f2(r) r -f2(s). In case (a), let v sup {x < s: (f2)’(x) 0}. By using
(i) of Lemma 7.3, the fact that f2 achieves its minimum on J at s and the assumption
that f2 has a critical point in (r, s), we see that r < v < s, and (fE)’(x) < 0 for v < x < s.
Lemma 7.3 implies that (fE)’(X) changes sign at v, so f2 has a local maximum at v. A
similar argument applies in cases (b) and (c) and shows that f2 always has a critical
point v in (r, s) at which f has a local maximum. Note, however, that this argument
fails iffE(r)= s-f(s).

Because fE(j)c J, we have fE(t)=< S; but part (ii) of Lemma 7.3 implies

(7.20) f2(v)=maxf2(x)>--_s,
[0,A]

so we conclude that

(7.21) f2(v) s maxf2(x).
[0,A]

If there exists wOJ such that f2(w) s, (7.21) and part (iii) of Lemma 7.3 imply that
(f2)’(w) =0. [3

Proof of Theorem 7.3. We establish the last statement of the theorem first, by
showing (i) and (ii) both hold for all fixed points of f2 satisfying (7.4) if and only if
they hold for all fixed points off2 satisfying (7.5). Indeed, this is an easy consequence
of the following two observations. First, if f2(x)= x then f(y)=y, where y =f(x),
and we have (f2)’(x)= (f2),(y). Second, if (f2)’(x)= 1 for this point, then (f:)"(x)=
(f2),,(y). Thus, we need only consider fixed points of f2 satisfying (7.5).

By Lemma 7.2 we may further restrict our attention to fixed points x (0, A] (with
f(x) [-B, 0) holding automatically), where A and B are as in (I). We will therefore
prove that for f to satisfy (II) it is necessary and sufficient that each fixed point off2
in (0, A] should satisfy both (i) and (ii).

Necessity. Assume that f satisfies (II) for some a and b, but that either (i) or (ii)
fails for x a. From (II) we see that x a is the only fixed point of both f2 and of
f4 in (0, A], and so we have

(7.22)
f"(x) > x in (0, a),

f"(x)<x in(a,A] if a<A
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for n 2 and 4, because (fn)’(0)> 1 and fn(A)<-A. Observing that f2(a)= a implies
(fa)’(a) [(f2)’(a)]2-> 0, we conclude from (7.22) that (f4)’(a) =< 1; hence [(f-)’(a)[ _-<

1. Thus (i) holds for x a.
We therefore assume that (ii) fails for x a, and so

(7.23) (f)’(a) 1 and (f-)"(a) O.

We now see that in order for (7.22) to hold with n 2 it is necessary that

(7.24) (f2),(a) > 0.

Furthermore, the fixed point a must be located at the endpoint A of the interval, that
is,

f2(A)=A asa=A.

Now observe that the interval (0, A) contains a critical point off. Indeed if this were
not so, then (f2), would attain a positive minimum in (0, A) because of (7.23) and the
fact that (f2)’(0)> 1; however, this would contradict Corollary 6.1.

Thus we see that the interval J =[0, A] satisfies the hypotheses of Lemma 7.4.
But then we conclude from this result, with w A, that (f)’(A)=0. This contradicts
(7.23), completing the proof of necessity.

Sufficiency. Assume that f satisfies (NS2) and (I) for some A and B, and that (i)
and (ii) in the statement of the theorem hold at each fixed point off2 in (0, A]. First
note that f has at least one fixed point in (0, A]; this follows from the inclusion
f2([ 3, A])

___
3, A], which istrue for sufficiently small > 0 because (f)’(0) > 1. Choose

any such fixed point a, that is,

f2(a)=a(O,a],
and consider its domain of attraction W in [0, A] defined by

W={x[O,A][f2(x)a as n-c}.

Clearly a W and 0 W. By using Lemma 6.1 with f2 in place of f we see that the
set W is relatively open in [0, A]. Let I

___
W denote the maximal connected component

of W containing x a; thus I is an interval of the form

!=(r,s), or else I=(r,A]

where in either case the quantities r and s satisfy

O<=r<a, a<s<-_A ifa<A.

Because f(W) W, f(I) is a connected subset of W containing a, the maximality of
the connected component implies

(7.25) f(I) L

Continuity implies that f2([)c [. However, if I (r, s), we must have that

(7.26) f2(r), f2(s) {r, s};

otherwise r or s would be in L If I (r, A], the same reasoning implies

(7.27) f2(r) r.

Now observe that neither the point r nor s (if I (r, s)) can be a nonzero fixed
point off. By Lemma 6.1 we know that each fixed point off2 in (0, A] attracts iterates
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f2n(X) of all nearby points x. However, we know that those points x I near r or s
satisfy f2n(X) a instead. Therefore, if I (r, s), we must have

f2(s)=r,
and we must have f2(r)= s unless r =0. If I (r, A], we must have f2(r)=r, and we
have just seen that this implies r 0. Thus, if I (r, Al, the domain of attraction of
the fixed point a off2 is the entire interval (0, A], so condition (II) holds. Therefore
for the remainder of the proof we assume I (r, s).

Because f2(s)= r and s > 0 we have r > 0, so the previous remarks imply that
f2(r) s. Define g __f4, SO g maps It, s] into itself, g has negative Schwarzian derivative
on [r, s], and r, a, and s are fixed points of g. Note that

(7.28) f’(x) (f)’(f2(x))(f2)’(x),
SO

(7.29) 0 < g’(a) ((f2)’(a))2 <= 1.

Lemma 2.6 of [27] proves that if g is any continuous function on an interval Jr, s] and
if g(r)=r, g(s)= s, g is C on (r, s) and g’(x)# 0 and (Sg)(x)<0 for x e (r, s), then
g’(a) < 1 if a e (r, s) and g(a) a. (Note that the proof of Lemma 2.6 in [27] requires
only that g’ not vanish on (r, s), although the result is stated slightly less generally.)
Thus by Lemma 2.6 of [27] and (7.29) we obtain a contradiction unless g’(xo)= 0 for
some Xo (r, s). Because f2(I)c I, (7.28) implies f2 has a critical point in L Lemma
7.4 now implies there exists v I such that f2(1))= S. Since lim,,_oof2"(x)=a for any
x I and f2n(1))--r or s, we have a contradiction, and the proof is complete, l-1

If g(x, O) is defined for (x, 0) near (0, 0.), and if g(0, 0) =0 and Og(O, O.)/Ox -1,
it is natural to ask whether the map x g(x, O) satisfies (III) at zero for some interval
(0.- 6, 0.) or (0., 0. + 6), 6 > 0. This question was answered by Allwright in 1]. He
’assumed that x g(x, O) has negative Schwarzian derivative for all x, but his proof
only requires that x g(x, O) have negative Schwarzian derivative for x near zero and
0 near 0.. Thus we obtain the following result, which may also be obtained as a simple
consequence of Theorem 7.2.

COROLLARY 7.1 (see Allwright [1]). Assume g(x, O) is defined and continuous for
Ix] < 61 and 0-0.1 < 62. In addition suppose g is C in the x-variable and g has a
negative Schwarzian derivative (with respect to the x-variable) at x =0 and 0 0..
Assume g(O, O) 0 for [0 o,I < 62 and g’(O, 0,) Og(O, O,)/Ox -1. Finally, assume
02g/OOOx is defined and continuous on the domain of g and 02g(O, O,)/O00x O. Then
there exists 6 > 0 such that the map x g(x, O) satisfies (III) for O, < 0 < O, + 6 if
02g(O, O,)/O00x < O, while the map x- g(x, O) satisfies (III) for O,- 6 < 0 < O, if
O2g(O, O,)/O00x > O.

Of course what Allwright really shows is that fixed points of period 2 of the map
x g(x, O) are bifurcating at 0= 0. from the trivial fixed point x=0. The negative
Schwarzian condition at x 0 ensures that the bifurcation is such that (III) is satisfied.
In fact, the negative Schwarzian condition is also essentially necessary for (III) to be
satisfied locally. The following proposition indicates the sense in which necessity is
meant. Since the proposition follows by standard arguments in local bifurcation theory,
the proof is omitted.

PROPOSITION 7.1. Assume g(x, O) is a C4function defined on an open neighborhood
of (0, 0,). Assume g(O, 0)-0 for (0, 0) in the domain of g, Og(O, O,)/Ox=-l, and
02g(0, O,)/O00X 7q 0. Suppose the Schwarzian derivative of g (with respect to the
x-variable) at x- 0 and 0 O, is nonzero and denote this Schwarzian derivative by q2.
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Then there exist positive numbers e and and continuousfunctions :+(0) and _( 0) that
are defined for O. <-_ 0 <-_ O. + i if .11.12 > 0 and for O, <-- 0 <-- O, if ’11.12 0 and that
have the following properties:

(1) g(+(O), 0)= _(0) and g(_(O), 0)-+(0),
(2) +(0,)=0=_(0,) and the range of C+ is in [0, e] and the range of C_ is in

[-e, 0], and
(3) ifg(g(x, 0), O)=xforsome (x, 0) with 0<[xl<e and 10-0,1-_< then 0 must

be in the domain of+ and x +(0) or x _(0).
Note that if the Schwarzian derivative is positive, the map x-g(x, O) takes

[:_(0), :+(0)] into itself, but Og(O, O)/Ox>-1 for 0 in the domain of :+.
We need one more theorem for our applications in 9. Roughly speaking, our

next result asserts that for functions with negative Schwarzian derivative, (II) fails
before (I).

THEOREM 7.4. Assume f satisfies (PM) and a or fl is finite (a, fl, , and .1 are as
in the definition of (PM)). Suppose f is C on [-fl, ce], f’(x) 0 for x -.1 and x ,
and the Schwarzian derivative Sf(x) is negative on (-/3, a) for x -’1, . Iff([-fl, a ]) c
[-fl, a] andf(a) a orf(-fl) -fl (f. as in (5.3)), then there exists 3" (-fl, a), 3"
O, such that (f2)(3’) 3" and (f2)’(3")<-1.

Proof. Assume for definiteness that f(a)= a. We assume that the theorem is
false, so (f2),(3’)_>-1 for every nonzero 3’ [-/3, a] such that f2(3’)=3, and we try
to obtain a contradiction. Recall that Lemma 6.1 implies that if f2(3’)- 3’ and -1 _-<

(f2),(3") 1, then 3’ is a "locally stable fixed point off2,, in the sense that there exists
B > 0 such that limn_ofEn(x) 3’ for all x such that Ix- 3’1 < 8.

There are two cases to consider, each corresponding to a different qualitative
appearance of rE.

Case 1. Assume that -.1 <f()=f.(a). In this case we have f(a)=f2() a,
and we can easily verify that (fE)’(x) > 0 for 0 _-< x -< : and (fE)’(x) < 0 for : < x < a.

For notational convenience, define :-2 in Case 1.
Case 2. Assume that f()=f.(a)<-_-*1. In this case we have f(a)=f(-*1)= a.

Furthermore, there exist a unique number :1,0 < :1--< sc and a unique number so2, -<
2 < a such that f(scl)=f(:)=-.1. Using this information, we can easily check that
(fa)’(x) > 0 for 0 _-< x < 1, (fE)’(x) < 0 for :1 < x < :, (fE)’(x) > 0 for : < x < SeE. and
(fE)’(x) < 0 for so2 < x < a.

It follows that (in Case 1 or Case 2), f2(:2)= a and (f2)’(x) <0 for :2 <x < a.

Becausef2(a a, the intermediate value theorem implies that there is a unique number
3’, 2 < 3’ < a, such that f(3’) 3’. Our assumptions imply

-1 -< (f2),(3’) _<--0,

so our previous remarks imply that 3’ is a locally stable fixed point off2.
Just as in the proof of Theorem 7.3, let U={x[O,a]:fEn(x)3"}, so U is an

open set, and let U1 be the maximal connected component of U containing 3’, so U1
is also an open set andf2(U1) C U1. (Note that 0 U and a U.) Since U is connected,
we can write U1 (r, s). If r < :2, we have 2 U1, so f4(:) 0 U, a contradiction.
Thus we must have so2 -< r. If s- a, we obtain 0=f2(c) U1 (because f2(
and this is impossible because r-> :2. Thus we must have s < a. Just as in the proof
of Theorem 7.3, we must have f2(r) {r, s} and fE(s) {r, s}.

There are several possibilities to consider. If fE(r)= r or f2(s)=s, we contradict
the fact that 3’ is the unique fixed point of f2 in the interval [2, a]. The only other
possibility is that rE(r)-s and fE(s)--r. If we write g=f4, we know that g has a
negative Schwarzian derivative on [r, s] and that r, s and 3’ are fixed points of g. If



A DIFFERENTIAL-DELAY EQUATION ARISING IN OPTICS AND PHYSIOLOGY 269

g’(x) 0 for r < x < s, Lemma 2.6 of [27] implies that g’(3,) > 1, which is a contradiction.
Thus there must exist Xo (r, s) such that g’(xo)=0. By using the chain rule we see that

Xo or f2(xo)= or f(xo)=-r/ or f3(xo)=

Because f2(xo) (r, s), Xo (r, s), and r- :2, the only possibility is that f(xo) -r/or
f3(Xo) r/. In particular, we must be in Case 2 and have f()-<-r/ and f(-r/)= a.
But then we again obtain a contradiction: either c =f2(xo) (r, s) or a =f4(Xo) (r, s).
Since we have obtained a contradiction in all cases, the theorem is proved.

Remark 7.1. Note that we have actually proved somewhat more than is claimed.

Iff is as in Theorem 7.4 andf(a) a and :2 is as defined in the proof, an examination
of the previous argument shows that there exists y with 2< 3’ < a such that f2(y) y
and (f2)’(y)<-1. An analogous statement is true iff(-fl)=-fl.

In fact, the same kinds of arguments used in Theorem 7.4 allow a much more
detailed picture of the fixed points of g =f2. Iff is as in Theorem 7.4 and f(a)= a,
and 1 and :2 are as in the proof of Theorem 7.4 (so that :1 so2 iff() => -r/), then
we can prove g has no nonzero fixed points on [0, sol]. If g(sc) -< :, then g has unique
fixed points yl in [:, :] and 3’2 in (, :2], and g’(y2)> 1. If g(:)> :, then g has no
fixed points in [:1, :] and g either has zero, 1, or 2 fixed points in [, 2]. If g has
exactly one fixed point yl in [:, :2], then g’(yl)= 1 and g"(yl)>0. If g has exactly
two fixed points yl < y2 in [, :2], then 0< g’(yl)< 1 and g’(y2) > 1. Because it is very
long, we omit the proof.

COROLLARY 7.2. Supposef is as in Theorem 7.4 andf, R -> , n >-_ 1, is a sequence
of C functions such that fn (x) ->f(x) andf’(x) ->f’(x) uniformly on compact intervals.
Assume fn satisfies condition (0) and positive numbers An and Bn exist such that

fn ([-Bn, An]) c [-Bn, An], xfn(x) < O for all x [-Bn, An] -{0}, and An -> a and
as n-> c (a and fl are as in the definition of (aM) for f). Iff(a)= a or f(fl)=
then there exists y (-fl, a) such that f2(y)=Y and (f2),(y)<-1, and there exists a
sequence (yn) --> Y, defined for n sufficiently large, such that Yn (-Bn, An), f2
and (fE)’(yn) < -1.

Proof This follows immediately from Theorem 7.4 and elementary calculus
arguments.

$. The Sehwarzian derivative of./. To apply the theory of 7 to the functions fk,
we must first show Sfk(X)<O for the appropriate ranges of x. As the Schwarzian
derivative is invariant under translation, it is sufficient to work directly with the functions
fk rather than with the corresponding normalized functions

(8.1) gk(X) =fk(X + X0) --fk (Xo)-
PROPOSITION 8.1. For the functions fk we have

(8.2) Sfk (x) < 0 wheneverf(x) 0

for the ranges ofparameters and values ofx in Table 2. Also, hypothesis (NS1) or (NS2)
holds at the fixed point Xo for all I > tZo as indicated in Table 2, where Xo and tZo are as
in Table 1.

The data of Table 2 are sufficient but not necessary for the Schwarzian derivative
of fk to be negative, or for (NS1) or (NS2) to hold. For example, we have not ruled
out the possibility that in at least part of the range 0 < , < 1 the condition (NS2) might
hold for f4 or fs, rather than the weaker condition (NS1).

Proof. Rather than prove this result by direct (but lengthy) calculation of the
Schwarzian derivatives, we use the results of 6 to simplify our work.



270 J. MALLET-PARET AND R. D. NUSSBAUM

TABLE 2
Ranges where the Schwarzian derivative off is negative (providedf[,(x) 0), and where

(NSI) or (NS2) hoMs at the fixed point Xo for all tz > tZo. The values OfXo and pro are as in

Table 1.

Range where the Schwarzian derivative
is negative (where (8.2) holds)

Hypothesis (NS1) or (NS2)
holding at x0 for all/x >/Zo

allxeR, /eR
2 all x e N when/ => 0
3 allxeN, /x, 0eN
4 x>0 when v_-

x> u when 0=< v<
5 x>0when u>_- and A > v+l

(..___v] /ax>\_v] when0-<v<l andA>v+l

(NS2)
(NS2)
(NS2) when 0 0 < r/2
(NS2) when , or v 0
(NS1) when 0 < v <
(NS2) when v and A > v + 1,

or when v-0andA>l

(NS) when 0< u < and
A>v+l

The cases k 1, 2, and 3 follow immediately from Proposition 6.2. (An easy
alternate proof in the case of f3 is to note that Sf3(x)<=f"(x)/f(x)=-I wherever
f(x) 0.) Essentially the same argument as in the proof of Proposition 6.2 also works
for f4, even though this is not an entire function when t, is not an integer. Assuming
/z 0, for x > 0 and x t, we have

d2 t,-1 1
(8.3)

dx
2log Ifg(x)l

x (x- v)2’

which is negative if t,>_-1. If 0< t, < 1 and x> t, then (8.3) is bounded above by
-(t,-1)/x2-1/x2= -v/x2, and hence is again negative. When t, =0, a direct calcula-
tion of the Schwarzian derivative shows that Sf4(x)=-1/2 for x > 0. The claims of the
proposition now follow directly. In particular, we see that (NS1) holds for f4 when
0< t, < and /z >/Zo, when we note that f4 achieves its maximum at x t, and this
critical point lies to the left of the fixed point Xo.

The calculations for f5 are somewhat more involved, but some simplification can
be achieved by considering the reciprocal of this function. Setting rn(x) tz/x where
/z 0, from (iii) of Proposition 6.1 we have that for x > 0 and f(x) 0

where

Further calculation yields

where

Sfs(x)=Sh(x)

h(x) m(fs(x)) x- + x-.

Sh(x)
Py+ Oy+ R

x2[(A t,)y

P 1/2(A t,))[(A t,)2-1],
Q= t,(A t,)[(A t,)2+ 3 t,(A t,)+ t,2+ 1],

R 1/2t,2(t,2-1),

y= xx, y.
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If v_->0 and A > v+l as in Table 1 then P>0 and Q>0. If in addition either v-> 1
or v =0, then R->0, and so Sfs(x)< 0 for x > 0. In this case f5 satisfies (NS2) when

>/-*0, as claimed. On the other hand, if A > v+ 1 but 0< v < 1, then a calculation
reveals py2+Qy+R>O at y= v/(A-v). Thus,

Py:Z+Qy+R>O fory_->

because P>0 and Q>0; hence Sfs(x)<O for x> (v/(A u)) 1/’. Again, as f5 achieves
its maximum at x (v/(A v)) 1/x and this point lies to the left of Xo when/z >/Zo, it
follows that f5 satisfies (NS), as claimed.

9. Applications of the general theory to the function f. We will now use the results
of 7 to determine ranges of parameters for which hypothesis (I), (II), or (III) holds
for fk at a fixed point Xo of Table 1. In this connection it will first be useful to make
a few general remarks.

Suppose that f(x) is a continuous function with fixed point Xo and assume that
the function g(x) defined by

f(x+xo)-Xo=g(x)

satisfies (PM). Recall that f satisfies (I), (II), or (III) at Xo if and only if g satisfies
the corresponding hypothesis at zero. If a,/3, , and r/ are the quantities in (PM) for
g, then define Xl Xo-/3, x2 Xo- r/, x3 Xo + :, and x4 Xo / a. We are considering
the function f(x) on the interval [x, x4], and f(x)> Xo for Xl <x <Xo, f(xl)= Xo if

Xl > -o0, f(x) < Xo for Xo < x < x4, and f(x4) Xo if x4 < o0. Furthermore, [x2, x3] is the
maximum interval containing Xo on whichf is monotone decreasing andf is monotone
increasing on [xa, x] and [x3, x4]. Upon defining the function f.:- by

If(x2) in (-oo, x2] if x_>-oo,
f.(x) f(x) in [x2, x3],

f(x3) in [x3, o0) if x3 < o0,

we see that (7.1) and (7.2) of Theorem 7.2 for g become

(9.1)
(f)(X4) < X4 if X4 < (30,

(f)(Xl) > Xl if xl > -,
and

f2(x3) < X if x3 <
(9.2)

f(x2) => x2 if x2 > -c.

Thus if g satisfies (PM) and f is C with negative Schwarzian derivative on (x2, x3),
then f satisfies hypothesis (I) at Xo if and only if the inequalities (9.1) hold, and f
satisfies (III) if and only if (9.2) holds.

Now suppose that f is a continuous function with fixed point Xo, that g satisfies
(PM), and x, x2, x3, and x4 are as defined above. Suppose that q is a C function
defined on an interval (y, Y4), that q’(y) > 0 for y < y < Y4, and that q(yl) x and
q(Y4)--X4. If x =-o, then assume for convenience that yl =-, and similarly if

x4 c, then assume Y4--. It is easy to check that f satisfies hypothesis (I), (II), or
(IiI) at Xo if and only if q-fq satisfies the corresponding hypothesis at Yo q-l(xo).
Furthermore, writing h q-lfq, we easily verify that

(9.3) h, qg-lf, go.
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Iffis C on [x2, x3] and Sf(x)<O for x2<x<x3, it follows from (9.1)-(9.3) and the
above remarks that h o-lfo satisfies (I) at yo if and only if

(9.4) (h)(y4) <y4 and (h2.)(yl) > y,
where yj b-(xj) for 0-j_-<4. Similarly, h satisfies (III) at Yo if and only if

(9.5) (h)(Y3) Y3 and (hE,)(y) >-y.
Note that h need not have negative Schwarzian derivative on (Y2, Y3).

The above observation sometimes simplifies calculations, since it may be easier
to work with h and h. than with f and f..

We now begin the analyses of the functions fk. Consider first the function fl. We
easily see that with Xo as in Table 1 and /z >/Xo= we have c +Xo :+Xo=O,
-/3 + Xo -Xo, and -r// Xo 0, so

/z in (-, 0],
fl.(X)

/x x2 in (0, ).

We have fiE.(--*/+ X0) ----> --r/+ X0 if and only if/z -/x
2 >_-- 0, and f.(-fl + Xo) >- -fl + Xo

if and only if/z-/d,2--XO, that is,

(9.6) 2/x2- 2/z + 1 < x/4/x / 1.

Inequality (9.6) is equivalent to

/ -2/xE+2/x -2 < 0,

as a short calculation shows; and this in turn is equivalent to

/x </z, 1.5437

where/,, is the unique real root of/z3-2/x2+ 2/z-2 =0. By Theorem 7.1 we conclude
from these calculations, and the data of Table 1, that (I) holds at Xo if and only if
3
a </x </x,, and that (III) holds if and only if </, =< 1.

To determine those values of/z between/x = and/x =/x, at which (II) holds,
we must consider points of period 2 for the map fl in the interval (-/3 + Xo, c + Xo)
(-Xo, oo). Assuming that </, </z,, we consider points xl and x2 satisfying

(9.7) f(x,) x2 and f(x2)= x
and lying on either side of Xo in the above interval"

(9.8) -Xo < X1 < X0 < X2

As noted earlier such points do exist; in fact, in the closed interval [-B + Xo, A+ Xo] c__

(-/3 + Xo, a + Xo). Writing out the equations in (9.7) gives, after some manipulation,
that xl + x2 1 and

/2, 1--X1X2.
Further, the derivative of f2 at either of these points is

(flE)’(Xl) (f2)’(x2) =f(xl)f(x2) 4XlX2 4(1 -/x).

In the range </z _-<-54 we therefore have -1 _-< (flE)’(Xl) < 1, so (II) holds by Theorem
7.3. Theorem 7.3 also implies the uniqueness of solutions of (9.7) and (9.8) for </z _-< .
Of course, since Xl / x2 1, we can also solve for Xl and x2 and directly obtain
uniqueness. If, on the other hand,-54</z </z., the same calculations show I(f)’(x)l > 1,
and (II) does not hold. Table 3 summarizes our results forf by indicating the parameter
ranges where (I), (II), or (III) holds.
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The situation for f2 is very similar to that for fl. In particular the same sort of
analysis as above yields intervals of the parameter/x in which various hypotheses hold.
Thus we easily find that f2 satisfies (I) for 1 </z <3v//2 and (III) for 1 </., <. If
f2(xl) x2 and f2(x2) Xl, where -x/-< x2 < 0 < Xl < v-, then xlf2(xl) x2f2(x2) O,
from which we derive/x x2 + x2, if x -x2, or x -x2. The equation

implies

f:(x,) x-f(x) + x, o

Xl + x,x+x 1,

so if Xl -x we have Xl
2 +x2 =/z and

(9.9) xlx2 -1.

Now if x =-x]-, a simple calculation shows that the defining equations for x2 and
xl are equivalent to the single equation

(9.10) x- Izx= -1.

The quadratic equation (9.10) has a real, positive solution ifand only if/x >= 2. Therefore,
if 1 < tz < 2, we must have x_ =-x. Since f is odd, the defining equations for x and
x2 reduce to the single equation

so we obtain

f2(Xl) X31 ltl,Xl --Xl

(9.11) x =//z-1 and XE=--x//Z--1.
Substituting (9.11) into the following equation, we obtain

(9.12)
(f)’(x) -f(x2)f.(x) (3x22-/x)(3Xlz -/x)

(2/z-3)2

Equation (9.12) implies that I(f)’(x)l < 1 if 1 </z < 2, so (II) holds for 1 </z < 2. On
the other hand, if/z > 2 and we take x2 =-xl, Theorem 7.3 and (9.12) imply that (II)
is not satisfied.

Finally, if/z 2, a direct calculation using the above information shows that xl 1
and x2 =-1 are the only nonzero fixed points of f22 and

(f 3)"(x,) =0,
so Theorem 7.3 again implies that (II) is satisfied. All of this information is summarized
in Table 3.

TABLE 3
fk(X) satisfies (I) at x ifand only ifixo < tx < Ix1 ,fk(X) satisfies (II) ifand only ifixo < Ix <_- Ix2,

and fk(X) satisfies (III) at x if and only if Ixo < Ix <- Ix3.

k Xo Ixo Ix1 Ix2 Ix3

a Ix_2Ix2 +2IX,_2 0(-1 +/4IX + 1)/2 4

Ix1 1.5437
2 0 3x//2
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For the map f3 with fixed point Xo=0 and parameter 0 chosen in the range
0=< 0< 7r/2 established earlier, we again find intervals of/x in which (I) and (III)
hold. The range where (II) holds, however, is still not clear. Recall the critical value
/Xo =/Zo(0) 1/cos 0 from Table 1.

THEOREM 9.1. There exist continuous functions

t93, ’3" [0, ) (0, )

satisfying

1
#o(O)=<p(o) <

cos 0

such that if 0-< 0=< 7r/2, then (I) holds for f3 at Xo=0 if and only if txo(O)< tx < ’3(0),
and (III) holds if and only if/Xo(0) </x <_- p3(0).

Motivated by the results for fl and f2, we might expect the existence of a third
function 0-3 satisfying t93(0)< 0-3(0)< ’3(0) and such that (II) holds if and only if
/Xo(0) </x -< 0-3(0). We believe this to be the case, but we have not pursued this question
here. However, we can easily prove by an implicit function theorem argument that
condition (II) holds for/Zo(0) </z </93(0) + 83(0) for some sufficiently small 83(19) > 0:
the period 2 points {xlx2} of f3 for/z t93(0) are "super-stable" (that is, (f)’(xl)=
(f)’(x) =0) and so must persist for/z slightly larger than p3(0). On the other hand,
Corollary 7.2 implies that there exists 84(19) > 0 such that for ’3(19) 84(19) </z < ’3(19)
the function f3 has a fixed point 3’ (in the relevant interval) such that (f32)’(3’) <-1,
and this implies (II) fails for r3(0)-84(0)</x < ’3(0). By using Remark 7.1 we can
also show that, for 19 near zero and/z near ’3(0), f has a second fixed point for
which (f32)’(/) > 1.

Proof of Theorem 9.1. Assuming /x >0 and 0=< 0< r/2, we note the following
values:

a=Tr-O<--fl=Tr+O’ :=2 0<r/= +0

for f3 in condition (PM). We also note the following formulas:

f3.(a) f3.(:) -/z (1 sin

f3*(-) =f3*(-r/)=/z(1 +sin 19).

In order to use Theorem 7.1 for determining when (I) or (III) holds, we must calculate
both (f23.)(a)=(f.)() and (f.)(-fl)=(f.)(-q), and examine (7.1) or (7.2). In
fact, we claim

(9.13)
f23.(a)<a implies f.(-fl)>-fl,
f32.(:) <- : implies f.(-r/) =>

Thus, we need only verify the inequality f32.(a)< a to conclude (I), and f.(:)<_-: to
conclude (III).

We prove only the first implication (9.13), as the proof of the other is similar.
Suppose

(9.14) f.(-fl <-_ -fl.
Then as f3* achieves its minimum at x :, we have

(9.15) f3.(:) <_- -fl



A DIFFERENTIAL-DELAY EQUATION ARISING IN OPTICS AND PHYSIOLOGY 275

from (9.14), and so

(9.16) f32-() f3-(-/3)

as f3* is constant to the left of -/3. Thus, from (9.14)-(9.16) we obtain

f.(a) f32.(s)=f3.(-/3)=/z(1 +sin 0)

=>/z(1 -sin 0) -f3.(sc) ->/3 >= a.

The required inequality f.(a)>= a, from which the implication (9.13) follows, is now
proved.

We now calculate the quantity

(9.17) (fa2.)(s) (f.)(a) =f3.(-g(1 -sin 0))

and compare it with either a or sc, as described above. Let ha(/X, O) denote (fa.)(a);
then we easily see

7r/2+ 0
/x [sin 0 sin (0 -/x (1 sin 0)) if/x -<

1 -sin O’
h3(/z 0)

7r/2 + 0
/x(l+sin0) if/x >

1 sin 0"

A simple calculation shows that 0h3(/x, 0)/0/z > 0 for all/z > 0 in the two ranges of/z
for which h is defined. Thus h3(/z, 0) is strictly increasing in /z, for each fixed
0 [0, 7r/2), and assumes every positive value exactly once for/x > 0. Thus there exist
continuous functions p3, r3" [0, 7r/2)- (0, ) satisfying

h3(p3(O), 0) cr 7r- 0, h3(7.3(0), 0) s= 7r/2- 0.

By Theorem 7.2 we also have

h3(1/cos, 0) < s,
since f(0)=-1 when/x I/cos 0. Thus,

1/cos 0 < 03(0) < 7"3(0

and the result follows immediately. IS]

As has already been noted in 3, if the function f3 is not in our normal form,
there may be some difficulties in determining the ranges of the original parameters for
which (I) or (III) is satisfied. To illustrate this point, we consider

(9.18) e(t) -x(t)+ /x(1 -sin (x(t- 1))),

which has been studied numerically by Chow and Green [4]. For each/z > 0, we can
easily see that

(9.19) /x(1 -sin x) x, 0<x< r/2,

has a unique fixed point 0= 0(/x) (0, 7r/2), and using the implicit function theorem
we can see that 0’(/z) > 0 for/z >0. The question is does/x(1-sin x) satisfy condition
(I) or (III) at x 0(/x).

PROPOSITION 9.1. For each Ix >0, the function tzf(x)=/x(1-sin x) has a unique
fixed point 0= 0(/x)(0, r/2). There exist numbers tZo (tZo is approximately equal to
1.1773) and tXl (txl is approximately equal to 2.3879) such that tzf(x) satisfies. (I) at
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0(1) ifand only ifoK l <1 and If(x) satisfies (III) at O(l) ifand only
r/2. The equation

0 cos 0 7r

1-sin0
1, 0<0<2

has a unique solution 0o (0, 7r/2) and/Xo 0o/(1-sin 0o). The equation

(o)0+ =r, 0<0<--
1 sin 0 2

has a unique solution 01 (0, r/2) and/Zl 01/(1-sin 01).
Proof. The idea of the proof is to parameterize by the fixed point 0 (0, r/2)

instead of by/z. If 0 (0, 7r/2) is the fixed point of Ixf(x), then

1 sin 0

Thus, for 0 < 0 < 7r/2, define g(x, O) go(x) by

g(x, O)=go(X)=
1-sinO

(1-sin(x+O))-O.

We can easily check that the map 0 (0/1 -sin 0)) is strictly increasing for 0 < 0 < 7r/2
and

{/x’/xf(x) satisfies (III) at 0(/z)}

{0/(1-sin 0)" 0< 0 < r/2 and go(x) satisfies (III) at zero},

with an analogous equation concerning (I). Ifthe numbers a a(0),/3 =/3(0), : so(0),
and r/= rt(0) are as in the definition of condition (PM) for go, then a 7r-20,
/3 7r + 20, s 7r/2- 0, and r/= 7r/2 + 0. The same argument as in Theorem 9.1 shows
that go satisfies (III) if and only if

(9.20) (g2o.) 0 <=- O,

0 COS 0 ) <-1(9.21) g(0)
1-sin 0

Since go.(r/2-0)=-0 >-r/, we easily compute that (9.20) holds if and only if

( 0 )7rlsin #
(9.22) _. -<_--.

2

Thus go, 0< 0 < 7r/2, satisfies (III) if and only if (9.21) and (9.22) hold. Similarly, we
see that go satisfies (I) if and only if (9.21) is valid and

(9.23)

0 )-0< 7r- 20,(g2*)(Tr-20)=
1-sin 0

1-sin 0
+ 0 < ’, 0< 0<.

that is,

It remains to study where (9.21)-(9.23) hold. Obviously the function (0/(1-
sin 0))+ 0= h(O) satisfies h(0)= 0, lim0_,/2 h(0) c and h’(0) > 0 for0< 0< r/2, so
there is a unique number 01 such that

h(01) r and h(0)< 7r if and only if 0< 01 < r.
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In order to study where k(O)=(O cos 0/(1-sin 0))> 1 for 0(0, r/2), first
observe that the mean value theorem gives

1 sin 0 0 cos (q), 0 < q <
2

If 7r/4 -< 0 /2, this implies

>1.k(O)=
/2-0 cos

On the other hand, if 0 < 0 < /4 we have

k’(O) [(cos 0-0 sin 0)(1-sin 0)+ 0 cos 0](1-sin 0)-.
Because we also have

cos0-0sin0> cos0-sin00 for0<0/4,

we conclude that k’(0) > 0 for 0 < 0 /4. From the above facts it follows that k(0) 1
has a unique solution 0o (0, /2), that 0< 0o< /4, and that k(0)> 1 for 0 (0, /2)
if and only if 0o < 0 < /2. This completes the proof of the proposition. (Approximate
values of 0o and 0, and hence of o and , can easily be computed using Newton’s
method.)

Proposition 9.1 and the results summarized in 2 provide some explanation of
the numerical results in [4]. For example, ifo< /2 we see for small e the regular
SOP-solutions predicted by Theorem 2.3. Theorem 2.1 asses that SOP-solutions persist
for o< < and e > 0 sufficiently small. However, these solutions apparently lose
stability for near and e > 0 small" for near Chow and Green appear to have
found, numerically, periodic solutions that are not SOP-solutions.

We now want to examine when (I), (II), or (III) is satisfied by the functions f4
or fs. With k =4 or k 5 and fixed parameters u 0 and A > u+ 1 (when k 5), we
will write

(9.24) A(x) f(x),

where the function f(x) does not depend on . In our next several theorems we will
discuss the range of for which the functions f4 and f5 satisfy (I) or (III), and we
will return later to (II). The next theorem provides a reasonably sharp and general
answer concerning when (III) holds for functions f(x); the question of (I) seems
more difficult.

THEOREM 9.2. Assumef" (0, ) (0, ) is a C function and there exists a number
0 0 such that f’(s) > 0 for 0 < s < 0 and f’(s) < 0 for s > O. Assume there exists a
unique number So> 0 such that

and assume also

d o,

d
< o > So.

Finally, assume (Sf )(x) < 0 for x> O. Define functions I(s), Xl(S), x2(s), and x3(s) by
t(s) s(f(s))-, x(s)= t(s)f(o), and

xj(s) Iz(s)f(xj_l(s)) for j>--2.
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If xo(ix) denotes the unique fixed x of ixf(x) such that x >- 0 (for Ix >-O(f(O))-l), then

{ix" Ixf(x) satisfies (I) at Xo(ix)} {ix(s)" s > So and x3(s)> s}

and

{IX" Ixf(x) satisfies (III) at Xo(ix)} {ix(s)" s> So and x2(s)_-> 0}.

There exists a number p > IX(So) =- IXo such that

{IX" IXf(x) satisfies (III) at Xo(IX)} (IXo, p],

and p < c if limx_ xf(x) O. The number p is z(f(o))-1 where z is the unique solution

of zf(z)= 0f(0) such that z> So (if such a solution exists).
If D is an open subset of R and f’(0, c)xD (0, ) is a C map such that

x-f(x, 3’) satisfies the conditions of our theorem for each 3"D (so 0=0(3’) and
So So(3") exist and are easily proven to be continuous), then the number p p (3") is also
a continuousfunction of 3". (Ifp(3") o for some 3’, continuity is interpreted in the obvious
way.)

Proof. First assume f is independent of 3’ D. For a given IX > 0 let Xo Xo(IX) ->- 0
and define 6 6(IX)_-< 0 by

f(6) f(xo).

Theorem 4.1 implies that IXf(x) satisfies condition (0) at Xo if and only if IX > IXo
So(f(So))-1= IX(So), and the results of 7 imply that IXf(x) satisfies (III) at Xo if and
only if IX > IXo and

(9.25) (IXf)2(0) -> 0

where (IXf)J is the composition of IXf with itselfj times. Similarly, IXf(x) satisfies (I)
at Xo if and only if IX > IXo and

or equivalently IX > IXo and

(9.26)

()(o) > (),

(f)(o) > Xo().

(Note that IXf(0) > IXf(xo) Xo, so (IXf)(0) < Xo.)
As in Theorem 4.1 the key idea is to parameterize by s Xo(IX) instead of IX. Since

IXf(xo) Xo, this gives

=s(f(s))-’=(s),
which is an increasing function of s for s _-> O. In terms of this parameterization we
find that IX(s)f(x) satisfies (III) at s > 0 if and only if s > So and

(9.27) x(s) >= O.

Similarly, we see that IX(s)f(x) satisfies (I) at s if and only if s > So and

(9.28) x3(s) > s.

Since Theorem 7.2 and Corollary 7.1 imply that there exists 6 > 0 such that IX(s)f(x)
satisfies (Ill) for So < s-<_ So+ 6, we have proved the first part of the theorem.

It remains to prove that (III) is satisfied on an interval (IXo, p]. Equivalently, it
suffices to prove that

{s: s > So, x(s) >- O}
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is an interval. We know that x2(s)> 0 for s near So, so it suffices to prove x(s)< 0
for s > So. A calculation gives

x() (o)(())-’[y(s) $’(s)1,
and since f’(s)< 0 for s > So, xa(s)> 0 for all s > So. Note that we have

Ix(s)f(O) Xl(S ) Ix(s)f(s)= s > So,

so we find that

lim xa(s) .
We can write

jr/, (S) XI(S)((0))-1,
so if we define g(x)= (f(O))-lxf(x),

x(s) g(x,(s)), x;.(s) g’(x,(s))x(s).

However, xa(s) > so and we have assumed that g’(x) < 0 for x > So, so x_(s) < O.
If r > So is such that x2(r)= 0, and if z xa(er) the above calculation shows that

zf(z) Of(O) and p Ix(er)= z(f(0))-’.
If we assume lim,,_,ooxf(x)=O, we obtain (because xa(s)-+oo as s-+oo) the

following

lira x2(s)= lim g(xa(s))= O.

This implies that for all large s, X2(S < 0, SO p is finite in this case.
If f depends on a parameter 3’ e D, the continuity of p(3,) follows easily from the

implicit function theorem at points where p(y)< oo, and continuity at points 3’ where
p(3’) is also easy. Details are left to the reader. [3

Remark (9.1). Iff (O, m)- (O, m) is as Theorem 9.2 and o’(a,/3)(0, m) is a
C map onto (0, m) with positive derivative, the remarks at the beginning of this section
show that o-a(ixf)o satisfies (I) or (III) if and only if Ixf satisfies (I) or (III).

As an immediate consequence of Theorem 9.2 we obtain Theorem 9.3.
THEOREM 9.3. Let fk(X), k =4 or 5, be as usual and assume v>0 and A > v+ 1 if

k 5. Define Ixk(s) S(fk(S)) -a and define O vfor k 4 and 0, v(a v)-’ for k 5.
Define o-k= v+l for k=4 and cr,=(v+l)(A-v-1)-a for k=5. Define zk to be the
unique solution z > O’k of

zA(z) OA(o).

If Xo denotes generically the unique fixed point greater than Ok of Ixfk (X), then

{IX" Ixfk(x) satisfies (III) at Xo} (ixk(crk), Ok],

where pk Zk(fk(Ok))-1 is a continuous function of v and a. If xl(s)= Ixk(S)fk(Ok) and
xj(s) Ixk(s)f(xj_l(s)) for j>=2, then

{IX" Ixfk(X) satisfies (I) at Xo} {IXk(S): S > irk and x3(s) > s}.

If v=0, then Ixfk(X) satisfies (III) at Xo for all tx > Ixo.
Proof The number Ok plays the role of 0 in Theorem 9.2, and O’k the role of So.

We have already verified the negative Schwarzian condition on fk and the other
hypotheses of Theorem 9.2 are easily verified, so Theorem 9.3 follows directly from
Theorem 9.2. [3
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We now want to study more precisely when /.t,f4(x) satisfies (I). It is convenient
to give a calculus lemma first.

LEMMA 9.1. If V > 0, then

(9.29) (v+2)
+1

e2,

and if v>-I

(9.30)

If 0 _-< c <-2, then there exists v(c) >-_ 1 such that the following inequality is valid for
v>-_v(c):

(9.31) e+C_<-
v v+l+c

Proof. By taking natural logarithms we see that (9.29) is equivalent to proving

(v+l)log 1+- >2,

and the above inequality is equivalent to

io:, io(+ 1) dt> v dt.

The above inequality is equivalent to

f2
Change variables in I by setting 1! v-p to obtain

I1
vp

do+(i/v)-p

and change variables in 12 by setting 1/v + p to obtain

12=
l +(1/v)+p do.

Since v > 0, we have

vp(1 + v-1 p)-I > vp(1 + v-1 + p)-I for 0 < p < v-1,
so I > I2.

The proofs of (9.30) and (9.31) are like the proof of (9.29). If v>_-1, (9.30) is
equivalent to

l<log 1+ +vlog 1+
v+l

Expressing both sides as integrals, the above inequality is equivalent to proving

v dt < dt- dr.
1 + J 1/+1)

Simplification shows that the above inequality is equivalent to

(9.32) 0<
o l + ]

dt dt= J-J.
al/(v+)
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Making the change of variables 1/v-p in J2, we have

fOl/’--l/(v+l)( 1-Vt)dt.(9.33) J2
1 + v-1-

Since v_-> 1 we can easily verify that

(v+l)-l>_v-l-(v+l)-,
and using (9.32) and (9.33) we see that J1 > J2 if

(9.34) (1 vt)(1 + t)-> (1 vt)(1 + -- t)-1 for 0 < < -1_(+ 1)-1.
However, again using that 1, we can check that inequality (9.34) holds, so J1 > J2.

By taking logarithms we see that inequality (9.31) is equivalent to

l+clog(l+1+c)- +log(l 1-c )v v+l+c

or, by expressing both sides as integrals,

fio:l+c)/v Jl+c)/v() fio:l--c)/(v+l+c)()v dt dt + dr.

By simplifying we see that inequality (9.31) is equivalent to

K1 Io:l+c)/ (v) dt I21-c)/<+l+*) () d, K2.

Since (1 + t)- < 1 for > 0 we see that

(9.35) K < (vt) dt

On the other hand, (1 + t)-> 1- t, so

Io:l-c)/(++) (1-c)1( 1--C ) 2.(9.36) K2 > (1 t) dt
v+l+c v+l+c

For a given c, 0 < c < 1, it follows from (9.35) and (9.36) that K < K2 if

< - +I+C+l+c
Multiplying by 2(+ 1 + c), we see that the above inequality is equivalent to

If 1-4c- c> 0, i.e., c <-2, then inequality (9.37) will be satisfied for all (c),
where

(9.38) (c)=(1-4c-c)-[(1+c)+(1-c)]=(1-4c-c)-[c+4c+c+2].
THEOREM 9.4. ere exists a continuous function

.(o, (o,

satisfying o()= (+ 1)- e+ <04() < (), where 04= O4() is as in eorem 9.3,
such that (I) holds for f(x) (at its unique fixed poin in (,)) and only if
o() < < r(). Furthermore, e have that

(9.39) limo* r() m and lim r() o()] 0, and for 2

( .( (-.(+l(e/(l,
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where we have defined/x(s)=s1- es. For 0<c<v/--2 and for u>=u(c) (u(c) as in
(9.38)) we have

(9.40) [/.1,0(9), 04(9)] ={S1-v e s" 9+ 1 < s<= 9+ 1 + c}.

Proof For notational convenience we write f4(x) f(x), 0 v, and So v + 1, and
define xj(s) as in Theorem 9.2. Theorems 9.2 and 9.3 imply

[/*o(9), p4(9)] {/Z(S)" Xz(S) >- 0},

{/x" f(x) satisfies (I)} {/x(s)" s > So and x3(s) > s}.

Furthermore, we have already shown that

x(s)>O, x(s)<O VS>So.

We fix 9 > 0 and first show X3(S < S for all large s or, equivalently, that

log (s-lx3(s)) < 0 V large s.

Using the definition of xj(s), we find

log (s-lx3(s))<-9 logs+s+ 9 logx2
(9.41)

93 log s + (1 + 9 + 92)s + 93 log 9 93 9
+1 e-s1- e.

Because the e term is dominant for large s, the right-hand side of (9.41) is negative
for all large s, so (for fixed 9 > 0) for every sufficiently large/x, tzf(x) does not satisfy
(i).

If 9-> 1, it is a calculus exercise (which we leave to the reader) to prove that the
derivative of the right-hand side of (9.41) with respect to s is negative for s >_-29.

Another calculus exercise left to the reader is to verify that

d
dv

(log (S--Ix3(s))[s=2v) < 0 for u => 2.

A direct calculation shows that the right-hand side of (9.41) is negative for 9 2 and
s 4 29, and combining the above information we conclude that

(9.42) log(s-1X3(S))<O for s>=2v and v=>2.

It follows from inequality (9.42) that, for’9-> 2,

{/x" f(x) satisfies (I)}c {/,(s)" v+ 1 < s <29}= (/x(v+ 1),/x(2v)).

Because/z(s) is increasing for s > 9-1 we have

tx(2v) tx( v + l < tx(2v) Ix( 9) v 2 -1

which immediately gives (9.39) (although we have not yet proved that r4(9) exists).
To prove that r4(9)-o as 9-0+ (assuming the existence of r4(9)), it suffices
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to prove that given any M>O, there exists 8=/(M) such that for O<v<8(M)
and u+l <s<=M,

(9.43) log($-lx3(s))----u31ogsd"(lnt-,d-v2)sd-l,,31og l--u3--u’+lsl-" eS-’--x2>O.
Because u e converges to one as uo0+, we see that Xl(S) s- eu e conver-

ges uniformly on [1, M] to s e as u 0+, and using this we see that

i x2(s) li s- ex[ e- s exp (s s e),

and that the convergence is uniform in s 1, M]. Using this information, we see that

(9.44) (log (s-lx3(s))) s- s exp (s s e),

and that the convergence is uniform in s 1, M]. Since the right-hand side of (9.44)
is positive on (0, ), there exists 6 6(M)> 0 such that

log(s-lx3(s))>O for lsM, 0<u<6.

We need only prove the existence of ra(U), or equivalently that

{s > u + 1" log (s-x3(s)) < 0} is an interval.

It is convenient to make the following observation first.
We claim that if x(s)N u+2 and s> u+ 1, then x2(s) > u. Because x(s)> 0 and

x(s) < 0 for s > u + 1, it suffices to prove that if x(s) u + 2, then x2(s) > u. However,
if x(s)= u + 2, we find as in the proof of Theorem 9.2, that

x= xf(x)(f(o))-’= -e(+2)( +2) e-+,
so x2(s) > u if

u+2)
+1

> e2

which is (9.25). We conclude that if x(s)<=u+2, then tx(t)f(x) satisfies (III) for
u+ 1 <t_-< u+2. A calculation shows that Xl(U+ 1 +c) -< u+2 if and only if

(9.45) e+C<=(u+l+c)( u+2 )u u+l+c

and Lemma 9.1 implies that if 0 < c < x/-- 2 and u => u(c), inequality (9.45) holds. This
proves the inclusion (9.40).

Logarithmic differentiation easily yields the following formulas"

dXl s+ l-u
ds -xl s

(9.46)
ds x2 s [u+ 1 -xl],

--dsd (lg (X3S))) =(s+ l- ’)[l +(’ x2)(’+

Define s, to be the first s> u+ 1 such that log (s-x3(s))=O, so we know

,d
(9.47) -ss log (s-lx3(s))ls__s, sTyli(s,+ 1- u)(1-(u-x2)(xl- - 1))- 1]<=0.
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Theorem 9.3 implies x2(s,) < v, and the remarks above show xl(s,) > 9 + 2. To complete
the proof we need only show

(s + 1 9)[ 1 -( v x2(s))(Xl(S) 9 1)1 1 --- b(s) < 0

for s> s,, and because b(s,)-<0, it suffices to prove

6’(s) (9-x2)(Xl- 9-1)-(s + 1- 9)2,.-1(x -/2-1)2x2
(9.48)

(s + 1 ’):x-x(’ x2) < 0

for s > s,.
Case 1. Assume 9_-> 1. Using the estimates Xl 9-1 > 1 and 9- x2 > 0 in the

formula for b’(s) for s > s,, we obtain

6’(s) < 1 -( x_) x(s + 1 )s-- (s + 1 )s-(+2)( x)

1-(v-x2)[l+(v+ 1)(s+ 1- 9)2s-1]-(s+ 1- v)2s-lv.
The previous inequality shows

(9.49) 6’(s) < 1 -(s + 1 9)25 -19.
The function on the right-hand side of (9.49) is decreasing for s > 9+ 1, so inequality
(9.49) implies that, for s -> s,,

49
b’(s) < 1-<0.

9+1

Case 2. Assume 0 < 9 < 1. Because x2 is decreasing and less than 9 for s >= s, and
x is increasing and greater than 9 + 1 for s > 9+ 1, 9 x2)(x 9 1) is an increasing
function of s for s-> s,. At s s,, inequality (9.47) implies

1/2<-(s,+-)-<-_(-x).(s,))(x(s,)--), so
(9.50)

1/2<(9-x)_(s))(x(s)-9-1) for s>=s,.
Using the equation for b’(s) in (9.48), we see

(9.51) b’(s) < 1 -( 9 x2)(Xl- 1 9) (s + 1 9)2s-( 9 x2)xl.

Because O< 9<1, we have (s+ 1- 9)s- > s> 1, so from (9.50) and (9.51) we derive

b’(s) < 1 -( 9 x2)(x- 1 9) 9 x2)(Xl 1 9) < 0

for s > s,. The proof is now complete.
Next we want to analyze when tzfs(x) satisfies (I). Unfortunately, our results are

incomplete. We conjecture that there exists a continuous function rs(9, it) (allowing
z5(9, it)= oo) defined for 9 > 0 and it > 9+ 1 such that lzf5(x) satisfies (I) if and only
if/Zo(9, it </z < ’5(9, it (where/Zo(9, it is as in Table 1). By using Theorem 9.3 and
Theorem 9.5, we have given a computer-assisted proof of this conjecture for various
specific 9 and it, but we have not proved it in general.

THEOREM 9.5. Assume 9 > 0 and it > 9 + 1, and let Xo Xo(tZ, 9, it and IXo tXo( 9, it
be as in Table 1 for the function fs(x)= Ixfs(x). The function txfs(x) satisfies (I) at Xo
for all large tx if

(9.52) 9 + 1 < A =< 9 + + /49 + 1 b(9),

while ifA > qb( 9), there exists a number ), /( 9, it < 00 such that txfs(x) does not satisfy
(I) at xofor any/x > /(9, it). If9+ 1 <it _<- 9+ 1 + (1/29), tzf5(x) satisfies condition (I)
at Xo for all tx > IXo(9, it ).
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Proof. While not essential, a change of variables will simplify our calculations.
For x > 0, define @(x) Xl/A, SO

(l--l(/f5) I]/)(X)=/zXx(1 + x)- _=

The remarks at the beginning of this section show that fs(x) satisfies (I) at Xo if and
only if xgs(x) satisfies (I) at x. As in Theorem 9.2 we see that xgs(x) satisfies (I)
at x if and only if g > o and

(9.53) ()3(0) > x,
where 0 (A )-, the point where g5 achieves its maximum.

As before, it is convenient to parameterize by s x, the fixed point of 5.
Define a function (s) by

(s) ’-(1 + s) s(g())-’,

so s is a fixed point of (s)Xgs(x). Define Xl(S)= (s)s(0) and x(s) (s)gs(X_l(S))
for j> 1. Just as in Theorem 9.2 we obtain from (9.53) that

(9.54) {" fs(x) satisfies (I) at Xo} {(s)" s > So and x3(s)> So},

where So=(+l)(A- -1)- as in (9.51). The proof that x(s)>0 and x(s)<0 for
all s > So is as in Theorem 9.2 and is left to the reader.

A calculation shows

Xl(S X sX+l-(1 + S-1)AO1, where
(9.55)

O1 <1.

A fuher calculation yields
v--A 1)A+vA--A(9.56) x2(s) x2 s--O1 (1 +s- (1 +x?l)-.

Equation (9.55) shows limsxl(s)=, and (9.56) gives

lira x(s)= lim s--O =0,

because A > + 1. Substituting (9.56) in the formula for x3(s), we obtain

s-x3(s) s--O-(1+ s-)(1 + x?)-(1 + x)- where
(9.57)

Equation (9.56) implies

lira s-x3(s)= lira s*-(a-)20(-a).

Because a- v(a- v)=0 for a (v), a- v(a- v)>0 for v+l<a < (v), and a-
v(a v)2< 0 for a > (v), we obtain

m for v+l<a <(v),
(9.58) is-lx3(s)= o[- for a=(v),

0 for a > O(v).

Using (9.58) and (9.54) and recalling that 0< 01< 1, we obtain the first pa of the
theorem.
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It remains to prove the final part of the theorem. We know (from Theorem 7.2
and the remarks at the beginning of this section) that s-lx3(s) > 1 for s So. Therefore,
to prove that /,fs(x) satisfies (I) for all /x>/*o (when v+ 1 <A <-v+ 1 +(1/2v)) we
need only prove that s-lx3(s) is an increasing function for s >-So. Because x(s)>0
and x(s) <0 for s>-_So, it is clear that (1 +x-’)-a(1 +x2)- is an increasing function
of s. Thus, by using (9.57) we see that s-lx3(s) is increasing if

d sX_(_)(1 +s_l)+x+_x_>O- for S>So---(9.59)
ds

By differentiating logarithmically, we see that inequality (9.59) will hold if

(9.60) s-l(s+l)-l[(A- u(A- u)2)(s+l)-A(l+ v+ u-- uA)]=>0 for s>=so.
Since s + 1 _>-A (A-u- 1)-1 for s-> So we see that (9.60) will be satisfied if

(9.61) [A- u(A- u)2]( A
-All+ u(l+ u-A)]>0.

A-u-l/

Recalling that A > v + 1 and simplifying, we see that (9.61) will be satisfied if

h<-l+v+(1/2v),

and this completes the proof.
If v= 1, Theorem 9.5 ensures that /zfs(x) satisfies (I) at Xo for all /x >/*o if

2 < A <=2.5, while the number b(1) equals (1/2)(3 +x/) or approximately 2.618. We can,
however, give an ad hoc argument (which we omit) and prove that, for u 1 and
2 < a =< (1/2)(3 +x/), tzfs(x) satisfies (I) for all

We now want to study when a function txf(x) satisfies (II) at a fixed point Xo;
our particular interest, of course, is f- f4 or f--fs. We first make some preliminary
calculations concerning local stability of period 2 points of tzf(x)-f(x).

Suppose, for some z, there exist numbers 0 < Xl < x2 satisfying

(9.62) M(x1) x2 and f(x2)-- X1.

Then we have

(9.63) Xlf(Xl) x2f(x2) c,

XlX2(9.64) /x
C

Conversely, if 0 < xl < x2, with xl and x2 satisfying (9.60), and/, is defined by (9.64),
then xl and x2 also satisfy (9.62).

Define K to be the derivative

K (f2)’(X1) --’f’(xl)f’(x2) tZ2y’(X1)f’(X2)

occurring in Theorem 7.3. A short calculation gives

(9.65)

where u (x) is the function

t U (Xl) U(X2)

(9.66) u(x) _xf’(x)_
f(x)
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Our basic idea is to use c as a parameter and to express x1, x2, Ix, and K as
functions of c. To make this rigorous, assume that f" [0, )- [0, c) is continuous and
C2 on (0, c) and that, if g(x)- xf(x), then there exists a number So> 0 such that

(9.67) g’(x) > 0 for 0 < x < So, g’(x) < 0 for x > So.

For simplicity in the statement of our theorems, further assume that

(9.68) lim g(x) O.

Define c, by

(9.69) c. g(so) max g(x),
x>0

and gl g 110, c.] and ga-- g][c., ). Then for 0 < c_<- c. (9.63) and the condition
0 < xl < xa determine Xl and x2 as functions of c"

(9.70) Xl Xl(C) g-l(c) (0, So] and xa x2(c) gl(c) [So,

where g-i and gfl are the inverse functions of gl and g2, respectively. Because g(x) > 0
for 0 < x < So and gl is continuous on [0, So], we obtain that Xl is continuous on [0, c.]
and C on (0, c.),x(O)=O, Xl(C.)=So and x(c) > 0 for 0<c<c.. Similarly, we find
that x2 is continuous on (0, c,] and C on (0, c.), xa(c.) soand x’2(c) < 0 for0< c < c..
Note that (9.68) ensures that the domain of x_ is (0, c.] and limc_o+ x2(c)=. Having
defined Xl(C) and xa(c), we then have that Ix Ix(c) and K (c), given by (9.64) and
(9.65), respectively, are functions of c. To make further progress we must establish
some of the properties of IX (c) and (c).

LEMMA 9.2. Assume f" [0, ) - [0, ) is continuous and Ca on (0, c). If g(x)
xf(x) assume there exists So > 0 such that g’(x) > 0 for 0 < x < So and g’(x) < 0 for x > So
and lim,_. g(x) =0. Let Xl(C) and x2(c) be as defined beforefor 0< c -< c. g(so), and
let (c) and Ix(c) be defined by (9.64) and (9.65). Then Ix(c) and n(c) have thefollowing
properties"

(i) Ix(c)- s/c.>O and K(c)l as c-c..
(ii) Ix(c)o as c-O+. If u(x) is defined by equation (9.66), assume that

limx_.o+ u(x) L1, where LI isfinite, and that lim,_. u(x) La, where we allow L2 -o.
Then we have limco+ (c) L1L2.

(iii) Suppose that there exists 0 >- 0 such that f’(x) > 0 for 0 < x < 0 and f’(x) < 0

for x > 0 (so 0 < So), and that u’(x) < 0 for x > O. Define v(x) -u(x) for x >= 0 and let
v-l(y) denote the inverse map. Note that lim, v(x)=-L2 > 1 under our assumptions,
define 8 max (-L1, L1), and assume that

(9.71) g(v-l(y)) > g(v-l(1/)) for 6 < < 1.

Then we have (c)< 1 for 0<c<c.. If we define (t)=log(g(v-l(t))) for 6<t<l,
inequality (9.71) will be satisfied if

(9.72) ’(t)<-()’() for6< t< 1.

(iv) If (c) < 1 for 0 < c < c., then tx’(c) < 0 for 0 < c < c..
(v) If u’(x)<O forallx>O and if c(O, c.) is such that (c)<=O, then K’(c)>0.
Proof (i) By definition of So, g’(so) =f(so)+ sof’(so) 0, so we obtain U(So) -1.

Since we have already noted that x(c) and x2(c) approach So as c c., we conclude
that

lim r(c)= lim u(x|)u(xa)= (-1)2= 1.
Cg
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Using the same sort of reasoning, we obtain

X1X2 S0
2

lim/z(c)=lim
c, c, C C,

(ii) Because f is continuous at zero, there exists a constant M such that

Mx >-g(x) for x small and positive.

For c > 0 and small it follows that

MXl(C >: g(x(c)) c or X >= c/M.

Using this estimate, we see that for c > 0 small,

(c) >_- (1/M)x2(c),

and because xz(c)-->oo as c->0+, /(c)-->oo as c-->0+. Because lim_.o+ xl(c)=0 and
lim_o+ xz(c) oo, lim_o+ (c) lim_o u(x) lim,_oo u(x)= LiLz.

(iii) Assume that u, f, and g satisfy the given assumptions but that there exists c,
0< c< c., such that u(c)_-> 1. Our assumptions imply L_->0 and L2<=O, SO

lim_o+ (c)<_--0. Thus, by choosing a different number c, 0<c< c., we can assume
that (c)= 1. Because u(xz)</(r) =-1 (since x2(c)> or) and because u(x)>0 for
x < 0, we must have x(c) >- 0. If 0>0, so u(O)=0, then we must in fact have x(c) > 0
and of course x(c) > 0 if 0 =0. If we write v(x(c)), then we must have 0= v(O) <
y< 1 V(so)ifO>Oand-L < y< 1 if 0 0. Furthermore, we must have -= v(x2(c)),
SO T

-1 (1, -L2) and we obtain the estimates 6 < < 1. Now (9.63) gives

g(v-l(y)) g(v-’(1/ y)),

which contradicts (9.71).
Note that (9.71) is equivalent to

(9.73) (1)-(y)<(1)-(y-1) for6<y<l.

Using the fundamental theorem of calculus and changing variables in the integral for
the right-hand side, we see that (9.73) is equivalent to

y

dp’(t) dt< - dp’ dt,

so (9.72) implies (9.73) and (9.71).
(iv) A calculation shows

(9.74) (/x(c))2 x,x2

f(x,)f(x2)
where x x(c),

so it suffices to show that if (c)< 1, then

d (_ ylX_2 ,
(9.75) dlg f(xl)f(x2)]

<0.

Using the formula x(c)=(f(xj)-l(1 +u(xj))) -1 (which we obtain by differentiating
xf(x) c), we find that (9.75) is equivalent to

2 2

(xf(x)(1 "{" U(Xj)))-1- E f’(xj)(f(xj)2( "[" U(Xj))) -1 <0.
j=l j=l



A DIFFERENTIAL-DELAY EQUATION ARISING IN OPTICS AND PHYSIOLOGY 289

Multiplying the above inequality by xx2f(x)f(x)= c2 and simplifying, we find that
the above inequality is equivalent to

(9.76) 2c(1 + u(xl))-l(1 + u(x2))-l(1 K(c)) < 0.

Recall that g’(x)>0 for 0<X<So and g’(x)<0 for X>So, which implies u(x)>-I
for 0 < x < So and u(x) < 1 for x > So. From this we conclude that (1 + u(x))( + u(x2))
is negative and that/x’(c) < 0 if and only if K(c)< 1.

(v) If (c)-<0, we must have u(x(c)) >= O, since u(x2(c))<-I for 0<c<c.. It
follows that

’(c) u’(x,)xu(x_) + u(x)u’(x)x; > o,

because we are assuming that u’(x) <0 for all x>0, and that x(c)>0 and x(c) <0
for 0 < c < c..

With j 4 or 5 and parameters v > 0 and A > v + 1, let f be defined as in (9.24)
and let functions_/xj(c) and j(c) be defined by substituting f for f in (9.63)-(9.65).
Define gj(x)= xf(x), so that g(x)> 0 for 0<x < (where is given in Theorem
9.3), and g(x) <0 for x>. Also recall thatfj(x)>O for 0<x< Oj and fj(x)<O for
x > 0, where 0 is an in Theorem 9.3. From Lemma 9.2 we obtain Lemma 9.3.

LEMMA 9.3. Withj=4 or 5 and parameters u>0 and A >
and (c) (defined for 0< c <- c, g(%)) have the following properties"

(i) uj(c) - try/c, > 0 and (c) 1 as e c,j.
(ii) /x(c), K4(c)-az and 5(c)-u(A-v)<0 as cO+.
(iii) (c) < 1, if 0 < c < c,j.
(iv) /x(c)<0, if 0<c<c,j.
(v) j(c) > 0, if 0 < c < c..
Proof Define u(x)= xf](x)(f(x))- and v(x)=-uj(x). A calculation gives

U4(X):P--X us(x)=[v-(A v)xaJ(l+xa)-1,

so u(x)< 0 for all x > 0. A further calculation gives

v-(t)=v+t, (v-(t))a=(v+t)(A-v-t)-l.

Lemma 9.2 will imply Lemma 9.3 if we can prove that (9.71) is satisfied with g and
vj replacing g and v, and Lemma 9.2 implies that this will be the case if

(9.77) (t) < -() (-lt) for 6 </< 1,

where j(t)=log g(v-(t)) and 34=0 and 65=(A- u) -1. We can easily check that

dP4(t)=(1--t)(v+t)-, dP’5(t)=(1--t)(v+t)-l(A--v--t)-,
so for j 4 inequality (9.77) is equivalent to

(9.78) (1-t)(v+t)-<(1-t)(vt3+t2)-1 for 0<t<l

and for j 5 inequality (9.77) is equivalent to

(9.79)
(1- t)(v+ t)-l(A -/2-t)-’ < (1- t)t-l(let + 1)-l(At vt-- 1)-’

for (A v) -1 < < 1.

Since 0< < 1, (9.78) is obviously true. Because 0< < 1 we have v+ t> vt2+ t>0;
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and by using the fact that A > v we can see

A-v-t>At-vt-lO for (A-v)-l<t<l,
so inequality (9.79) is valid, l-]

With the aid of Lemma 9.2 we can give conditions under which a function Ixf(x)
satisfies (II) precisely for Ix (ixo, r], where tr >/.to.

TI-IZOREM 9.6. Assume f" [0, c), [0, ) is a continuous map that is C on (0, ).
Assume there exists 0 >= 0 such that f’(x) > 0 for 0 < x < 0 and f’(x) < 0 for x > O. If
g(x) xf(x), assume there exists So > 0 such that g’(x) > 0 for 0 < x < So and g’(x) < 0
for x > So. Define u(x) xf’(x)(f(x))-1 and v(x) -u(x) and assume u’(x) < 0 for all
x > 0 and

(9.80) g(v-l(y))>g(v-l(1/y)) for6<y<l,

where 6 is defined as in Lemma 9.2 and v-1 is the inverse map of v. (Recall that inequality
(9.80) is satisfied if inequality (9.72) holds.) Finally, suppose there exists a C map of
an interval (a, b) onto (0, ) such that ff’(x)> Oforx (a, b) and -l(ixf)p has negative
Schwarzian derivative for all x (a, b). Then there exists tr> Ixo= f(So)S such that
Ixf(x) satisfies (II) at Xo(ix)= Xo, the unique fixed point ofixf(x) in the interval (0, c),
ifand only if Ixo < Ix <= r. Iftx (c) and K (c) are defined as in Lemma 9.2 and (c2) 1,
then Ix(c2)

Proof If f= Ixf is as in Theorem 7.3 or 7.4, but we assume that -lf ( as in
Theorem 9.6) has negative Schwarzian derivative everywhere instead of supposing that
f has, we can still easily see (using the remarks at the beginning of this section) that
the conclusions of Theorem 7.3 and 7.4 are satisfied.

Now let Ix(c) and (c) be as in Lemma 9.2. Theorem 9.3 implies that
satisfies condition (0) at Xo(ix) if and only if Ix > Ixo=f(So)S 1, and Lemma 9.2 implies
that Ixo=ix(c,) and that Ix(c)>ixo for 0<c<c,. Since (Lemma 9.2) Ix’(c)<0 for
0 < c < c. and limc_o IX (c) , we will work with the parameter c instead of Ix >
Define a number cl by

cl =inf{c>0: Ix(y)f(x) satisfies (I) at Xo for c<=y< c.}.
Corollary 7.1 implies that cl < c,. Define c2 as in the statement of the theorem if
(c) =-1 has a solution c > 0; otherwise define c_ =0. Lemma 9.2 implies that (c)< 1
for 0 < c < c. and (c)=>-1 if and only if c => c2. Thus Theorem 7.3 will imply that
Ix(c)f(x) satisfies (II) if and only if c _-< c < c. if we can prove that c: > Cl when Cl > 0.
However, if cl > 0, Theorem 7.4 and Corollary 7.2 imply that there exists 6 < 0 such
that IX cl) _-< IX <ix(c1)+6, (ixf)2 has a fixed point x such that (d/dx)(ixf)(x)<-l.
If c2 el, this contradicts Lemma 9.2, so we must have c2 > C [’]

As an immediate consequence of Theorem 9.6 and Lemma 9.3 we obtain Corollary
9.1.

COROLLARY 9.1. For parameters u >= 1 and > u + 1 let f4(x) and fs(x) be as
defined before and let Ixo(U) and Ixo(V, A) be as defined in Table 1 for the functions f4
andfs, respectively. Iff has its maximum on (0, o) at 0, there exist continuousfunctions
cr4(v) and o’5(v, A) such that Ixf satisfies condition (II) at the unique fixed point of
in 0, c) if and only if Ixo(u) < Ix <= r4(v) for j 4 or Ixo( v, A < IX -< o’5( u, for j 5.

Proof We need prove the continuity and finiteness of o-, and this follows easily
from the results of Lemma 9.3. I-1

If O’(a, b) (0, c) is as in Theorem 9.6, the results of this section also apply to
the functions -l(ixf) for v=>l and A> v+l. Taking (x)=ax, a>0, we obtain,
for example, the conclusion of Corollary 9.1 for Ixlx e and Ixlx(1 + bx)-1, where
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/-/’1 > 0 and b a x is an arbitrary positive number. Taking p(x) xp for p > 0, we obtain
the same results for tx2x" e-bx" and/x2x(1 + bxXP) -1/p, where/z2> 0, b >0, and p >0.

Although we will not pursue this here, we can establish the conclusions of Corollary
9.1 for other classesof functions, e.g., /zf6(x), where

f6(x) x exp (-x(1 + ax)),
where u => 1 and a > 0. The major problem is verifying (9.71) or (9.72).
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