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1. Introduction

In important work some thirty years ago, G. Birkhoff [2, 3] and E. Hopf [16, 17]
showed that large classes of positive linear operators behave like contraction
mappings with respect to certain 'almost' metrics. Hopf worked in a space of
measurable functions and took as his 'almost' metric the oscillation o){y/x) of
functions y and x with x(t) > 0 almost everywhere, denned by

a>(y/x) = ess. sup — ess. inf ^-^.
t x(l) t *(<)

Birkhoff used what has been called ([7]) 'Hilbert's projective metric' or ([9]) the
'Cayley-Hilbert metric'. In each case, it proved possible to obtain sharp estimates
for the contraction constant of a positive linear operator with respect to the ' almost'
metric.

Subsequently, several authors generalized and sharpened the original results and
established a close connection between the Birkhoff and Hopf theorems. A partial list
of contributors includes F. L. Bauer[l], M. A. Ostrowski[25, 26] and P. J. Bushell
[8, 7, 9]. In addition, a number of mathematicians who were apparently unaware of
most of the above-mentioned theorems obtained closely related results and
interesting new propositions. We mention A. M. Krasnosel'skii, Je. E. Lifshits, Yu.
V. Pokornyi, A. V. Sobolev, and refer the reader to [19], [31] and the book [18].

We shall prove here a generalization of the work of Birkhoff, Hopf, Bauer,
Ostrowski, Bushell and others and refer to the cumulative result as the Birkhoff-Hopf
Theorem: see Theorems 3-5 and 3-6 below and the formulae of Section 6.

Typically, when the Birkhoff-Hopf Theorem is applied to a positive (possibly non-
compact) linear operator L, it implies that the L has a unique, normalized, positive
eigenvector v with corresponding eigenvalue A equal to the spectral radius of L and
that there are explicitly computable constants M and c, with c < 1, such that
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for all positive vectors x. In addition, one may obtain explicitly computable formulae
for the so-called spectral clearance q(L) given by

where <r(L) denotes the spectrum of L and r(L) its spectral radius. Indeed, such
estimates were one of the original motivations for the Birkhoff—Hopf theorem. We
shall discuss these results more fully in a sequel to this paper [13].

In fact, the Birkhoff-Hopf theorem and associated ideas are important for a wide
variety of problems. It plays a central role in proving so-called linear and nonlinear
weak ergodic theorems of population biology (see [10, 14, 15, 23]); it is a useful tool
in problems concerned with rescaling matrices or non-negative integral kernels (so-
called DAD theorems; see [6, 24], [22, Section 4] and the references to the literature
in [22]); it has proved crucial in some problems concerning ordinary differ-
ential equations, particularly the question of convergence in direction (see
[5,4,29,30,32]); finally, these ideas play an important role in discussing
convergence of fn(x) and fn(x)/\\fn(x)\\ when / belongs to an appropriate class of
nonlinear operators and x is an element of a cone (see [21, 23]).

Despite its usefulness, the Birkhoff-Hopf theorem is not as widely known as it
should be, perhaps because of what A. M. Ostrowski [25, p. 91] has called a 'certain
inaccessibility of Birkhoff's presentation'. As far as we know, we present here the
first self-contained, elementary proof of the most general form of the theorem,
treating a vector space V with a cone C ^ F, a vector space W with a cone D ^ W and
a linear map L: V-> W with L(C) <~D. Our basic observation is that it suffices to
prove the theorem in the case when V and W are two-dimensional. Next we analyse
two-dimensional cones and show that it suffices to prove the theorem when V =
W= U2, C =D = {xsU2:x1,x2^0}&ndL = ft ^], with a > 1. Proving the theorem in
this case is a simple calculus exercise which is carried out in Section 5. An amusing
benefit of our proof is that, in contrast to all previous work, we need no assumption
that our cones are Archimedean or almost Archimedean.

The approach here basically follows unpublished notes of R. D. Nussbaum which
were written in 1986-87 and were one topic in a series of lectures at Emory
University in the Spring of 1988. Independently, S. P. Eveson[12, 11] found a
closely related proof of the theorem for the almost Archimedean case. The present
paper unites and refines these two approaches.

2. Preliminary definitions and results

Definition 2-1. If V is a real vector space and C is a subset of V, we shall call C
a cone (with vertex at 0) if it satisfies the following three properties:

(1) C is convex;
(2) tC £ C whenever t ^ 0, where tO = {tx: xeC};
(3) CO ( -C) = {0}.

If C satisfies properties (1) and (2), but not necessarily (3), we shall call C a wedge.

Remark 2-2. Note that we do not, in contrast to some of the literature, assume that
V is a topological vector space in which C is closed. If V is a topological vector space
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and C is a cone in V, then the closure C of C need not be a cone (for example, let
V = U2 and C = {(u,v):u > 0} U {(0,0)}). It is, however, easily verified that C is a
wedge.

Definition 23. A cone C in a real vector space V induces a partial ordering on V

by
x^cy if and only if y — xeC.

If there is no danger of confusion, we shall write x ̂  y instead of x ^ cy.
If x 6 C and y e V, we shall say that x dominates y if there exist real numbers a and

yff with
ax^cy ^cfix. (1)

If in addition x 4= 0, we shall follow Bushell [7] and define

m(y/x;C) = sup {aeU: ax ^ cy},

w(y/x;C) =M(y/x;C)-m(y/x;C),

which we shall abbreviate to M(y/x), m(y/x) and (o(y/x) when there is no danger of
confusion. It follows from (1) and the hypothesis x =t= 0 that m(y/x) and M(y/x) are
both finite. The quantity u(y/x;C) is called the oscillation of y over x with respect
to C; for convenience, we define w(0/0;C) = 0.

It is a straightforward exercise to show that if x dominates y then
m(y/x; C) <M{y/x; C), so w(y/x; C) ^ 0 and that if s and < are positive scalars then
M(sy/ty) = sM(y/x)/t, m(sy/ty) = sm(y/x)/t and hence that a){sy/ty) = soj(y/x)/t.

LEMMA 2-4. Z,e£ V be a real vector space and let C be a cone in V. For any xeC\{0},
the set Vx of vectors in V dominated by x, that is

Vx = {yeV: ax < y < fix for some a, fie U}

is a linear subspace of V. If we define

px(y) = ^{y/x;C),

then px is a seminorm on Vx, which is to say that if y, ylt y2sVx and XeU. then

px(yi+2/2) < px(yi)+Px(y*); px(^y) = \Mpx(y)-

It is also true that

= —cj(y/z)

for ysVx, A, /i, veM and v > 0.

We leave the easy proofs of these facts to the reader. The subspace Vx is also the
domain of the classical order norm | | x introduced by Krein and Rutman[20].

Remark 2-5. Of course, (o(y/x;C) = 0 whenever y = Ax. However, we may have
w(y/x;C) = 0 when y is not a multiple of x. To see this, consider V = U2 and C =
{(u,v)eU2:u>0} U {(0,0)}. The reader will easily verify that M(y/x;C) = 0 for
a,Ux,yeC\M.



34 SIMON P. EVESON AND ROGER D. NUSSBAUM

If we consider V = C(S), the Banach space of continuous functions on a compact
Hausdorff space S, let C be the cone of non-negative functions in V and choose an
everj'where positive function x, then we have

As a special case, where 8 is a discrete space of n points, we have C(S) = Rn and

n
V- V

(o(y/x) = max —— min —.
i-l xi i-1 xi

A similar example, first studied by Hopf [16, 17], arises in a space of real measurable
functions, quotiented as usual by the equivalence relation of 'equal almost
everywhere' and partially ordered by the cone of equivalence classes of almost
everywhere non-negative functions. In this case, the supremum and infimum are
replaced by their 'essential' counterparts.

Definition 26. Let C be a cone in a real vector space V. If x, ye C\{0}, we shall say
that x is comparable to y in C if x dominates y and y dominates x. We shall write x
~ c y or x ~ y to denote this, using the second form where there is no danger of
confusion. It is easily verified that comparability is an equivalence relation on C; its
equivalence classes are known as components.

If x ~ c y, we have 0 < m(x/y) < M(x/y) and we define

which we shall as usual write as d(x, y) when there is no danger of confusion. It is clear
from the definition that in any cone the origin is comparable only to itself; we make
the convention that d(0,0) = 0.

The function d( •, • ; C) is called the Hilbert projective metric or Cayley-Hilbert
metric induced by the cone C.

LEMMA 2-7. Let V be a real vector space and let C be a cone in V. If x, y and z are
comparable elements of G then

d(x, y) = d(y, x); d{x, z) ^ d(x, y) + d(y, z)

and if A, fi > 0 then
d(Ax, fiy) — d(x, y); d(x, Ax) — 0.

The reader may easily supply the simple proofs of these facts, or refer to [8] for
proofs of these and other related results in a slightly less general framework.

The example given in Remark 2-5 shows that if d{x, y) = 0 then it is not necessarily
true that a; is a scalar multiple of y.

Definition 2-8. Let V be a real vector space and C ̂  V be a cone. If T £ V, we denote
by co(T) the convex hull of T and if F S C we define diam(F; C) to be the diameter
of F with respect to the Hilbert's projective metric on C, so

diam(F;C) = sup {d(x,y;C): x,yeT and x ~ cy}.
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The following proposition contains a number of fundamental properties of the

projective metric.

PROPOSITION 2-9. Let C be a cone in a real vector space V.
(a) If Q and S are subsets of C and

{sx: s ̂  O.xeQ} = {sy: s ̂  0,yeS}

then diam(Q;C) = diam(S;C).
(6) / / T £ C and all elements of T\{0} are comparable in C then diam(co(T); C) =

diam(71;C).
(c) Let S be a convex set in C such that M(v/u; C) > 0 for all u,veS\{0} such that u

dominates v in C. Assume that diam(<S;C) <oo. Then any two elements of <S\{0} are,
comparable in C.

(d) If V is a Hausdorff topological vector space and C is closed then for any set
Q <= C such that all elements of Q\{0} are comparable in C, ive have

dmm(Q;C) = diam(#;C).

Proof, (a) This follows immediately from the fact that d(sx,ty;C) = d(x,y;C) if
s, t > 0 and x is comparable to y in C, and the convention that d(0,0) = 0.

(b) It suffices to prove that R = diam(y;C) ^ diam(co(71);C), since the opposite
inequality is obvious. Similarly, we may assume that R <oo. Select R1 > R.

If veT\{0} and ueco(T)\{0}, a little thought shows that

n

U = t 2 ^iculc>
fc-1

where 0 < t < 1, S^.j Afc = 1 and for 1 < k < n, Ak > 0 and ukeT\{0}.
By assumption, all non-zero elements of T are comparable, so there exist ak,

/?fc > 0 such that akv ^ uk ^ fikv and log(ftk/ak) < Rv These inequalities yield

so

k-^

Since Rt was any number greater than R, we conclude that d(u,v)^R for all
usco(T)\{0},veT\{0}.
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Now suppose u,veco(T)\{0}. We may write

fc-1

where 0 < s ̂  1, E™_x yk = 1 and for 1 ̂  k sj m, 0 < yk ̂  1 and !)teT\{0}. Select
i?j > R. Since by the first part d(u,vk) ^R, there exist a.'k,f}'k > 0 such that for
1 ^ k ̂  m, a'ku ^ vk ̂  (!ku and

Just as before, this gives

( m \

fc-1 / fc-1 \fc-l /

which implies that d(u, v) < R1. Since R^ was an arbitrary number greater thani?, we
conclude that diam(co(T); C) ^R.

(c) Assume for a contradiction that there exist non-zero elements u and v of S
which are incomparable in C. We may assume without loss of generality that v does
not dominate u in C, and consider two subcases: (1) that u does not dominate v in
C and (2) that u does dominate v in C.

For 0 < e < 1, define ue = u + ev and ve = v + eu. Suppose first that we are in
subcase (1). We claim that M(vju£) = e"1 and m(vjue) = e. Certainly we have

ve = v + eu

so M(ve/ue) < e"1. On the other hand, if M(vjue) < y < e"1, we find that

(1— ye) v ^ (y — e)u

and, since 1 —ye > 0, this implies that e < y and u dominates v, a contradiction. The
argument that m(vjue) = e is similar and is left to the reader.

Since S is convex, we have that (l + e)~lueeS\{0} and (1+e)~1vee<S\{0}. Finally,

d(ue, ve) = d((l + C 1 ue, (1 +6)-1«,) = log(e-2).

Letting e |0 , we contradict the assumption that diam(»S;C) <oo.
We may therefore assume we are in subcase (2). Let ft = M(v/u) > 0. Similar

arguments to those above show that M{vju) = fi + e and m(vju) = e, so

d(ve,u) = ^

Since /? > 0, we again contradict the assumption that diam(<S; C) < oo.
(d) It suffices to show that diam(Q; C) ̂  diam(Q; C), the opposite inequality being

obvious. We may assume diam (Q; C) < oo. If M, t;eQ\{0} and u and t> are comparable
in C, let /? = M(v/u), a = m(v/u) and select a.' > a and /?' < /?. By definition of a and
/?, we have

P'u-v$C, v-a'uiC.

Since C is closed, there exist open neighbourhoods °U of u and f of « with
U T̂  and

JS'U.-VJC, Vl-a'uJC, (2)
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for all ux£°U and vxe~V. By definition, there exists uteQ (] °U and v1eQ ft 'V; by
hypothesis ux is comparable to vx and by (2), we have

MivJuJ ^ /?, m(V«i) < a',

which by letting /?'->•/? and a'-*-a implies that dia,m(Q;C) ^ d(u,v). Since u and v
were arbitrary comparable elements of <2\{0}, the result follows. I

Remark 2-10. Part (c) of Proposition 2-9 is false if one only assumes that S is convex
and diam(/S;C) <oo. To see this, take

C = {xe (R2: xx > 0 or xx = 0 and z2 sj 0}.

If we define S = C, the reader will easily verify that diam(#; C) = 0 but that (0, — 1)
and (1,0) are incomparable elements of S.

Remark 2-11. In Definition 3-9 below, we define V(x, y) to be the subspace spanned
by x and y (so V(x, y) has a natural topology) and define C(x, y) = C D V(x, y). With
this notation, one may easily verify that the condition in part (c) of Proposition 2-9
is satisfied if C(u, v) is a cone whenever u, veS\{0} and u dominates v in C.

3. Positive linear operators

If C and D are cones in real vector spaces V and W respectively and L is a linear
map from Fto WwithL(C) £ £>; we wish to compare w(y/x; C) with w(Ly/Lx;D) and
d(x, y; C) with d(Lx, Ly; Z)). Our first lemma is trivial but will play an important role.

LEMMA 3-1. Suppose that C is a cone in a real vector space V, that D is a cone in a real
vector space W and that L: F-> W is a linear map with L(C) £ Z>. / / ze C, yeV and x
dominates y then Lx dominates Ly in W and

w(Ly/Lx;D) ^ o)(y/x;C). (3)

If x, yeC and x ~ cy then Lx ~ DLy and

d(Lx,Ly)^d(x,y). (4)

If L is a bisection and L(C) = D then equality holds in both (3) and (4).

Proof. If x dominates y in V and ax < cy ^ cflx' then fix — y€C and y — axeC, so
L(/lx — y)eD and L(y — ax)eD. In terms of the order relation, we have

ctLx^DLy ^DfiLx, (5)

showing that Lx dominates Ly in D. Now, \£Lx = 0 then Ly = 0 so w(Ly/Lx) = 0 by
definition and o)(Ly/Lx) < w(y/x) since the oscillation is always non-negative.

If, on the other hand, Lx 4= 0 then it follows from (5) that M(Ly/Lx) ^ M{y/x) and
m(Ly/Lx) ^ m(y/x), and hence that (3) is true.

A similar approach establishes the corresponding results for d.
If L is a bijection between V and W with L(C) = D then we can apply the results
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above to the map L~x: W^- V, since L~y(D) ^ C, and conclude that, for xeC and
yeV with x dominating y,

o,{L-l(Ly)IL-l{Lx)) ^ w(Ly/Lx)

and for x,yeC with x comparable to y,

d{L-\Lx),L-\Ly)) < d(Lx,Ly)

so equality holds in (3) and (4). I

Remark 32. If V = W = IR", G = D = {xe Un: xt ^ 0 for all i}, and L: Un -+ Un is
given by a positive diagonal matrix or a permutation matrix, then Lemma 3-1
implies that for any x,yeC with x ~ y,

d{Lx,Ly) = d(x,y)

and for any xeC,yeV with x dominating y,

a>(Ly/Lx) = to(y/x).

Definition 3-3. Let C be a cone in a real vector space V and D be a cone in a real
vector space W. Define non-negative real numbers N(L;C,D), k(L;C,D), A(L;C,D)
and X(L;C,D) by

N(L;C,D) = inf{/* 5= 0: (o(Ly/Lx;Z>) < /uo(y/x;C) for all a;eC,ye V such that x
dominates y},

k(L;C,D) = inf{A ^ 0: d(Lx,Ly;D)^ \d(x,y; C) for all x,yeC such that a; ~ cy},

A(L;C,D) = sup{d(Lx,Ly;D): x,yeC and Lx ~ DLy},

where in the definition of x we adopt the convention that M(Ly/Lx)/m(Ly/Lx) = 1
if both M(Ly/Lx) and m(Ly/Lx) are zero.

N(L;C,D) is called the Hopf oscillation ratio, k(L;C,D) is called the Birkhoff
contraction ratio and A(L;C,D) is called the protective diameter.

We shall as usual abbreviate these to N(L), k(L), A(L) and x(L) if there is no danger
of confusion. Lemma 3-4 implies that k(L) ^ 1 and N(L) ̂  1 and it is clear that
A(L) ^ Oand^(L) ^ 1. We may have A(L) =oo and^(L) =oo, and if we let log oo = oo,
then we have

A(L) = 2 log X(L).

In much of the literature, N(L ;C,D) is defined only in terms of comparable elements
of the cone. Our definition is equivalent, as the following lemma shows.

LEMMA 3-4. In the notation of Definition 3-3,

N(L ;C,D) = ini{/i ^ 0: a>(Ly/Lx; D) ^ /Mo(y/x; C) for all x,yeC such that x ~ c y).

Proof. This formula is identical to the definition of N(L;C,D) except that y is
restricted to being comparable to x instead of being allowed to be dominated by x.
To prove it, we shall show that if x e C and y e V with x dominating y then there exists
zsC comparable to x with w(y/x) = (o(z/x) and w(Ly/Lx) = w(Lz/Lx).
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To find such a z, let ax ^ y ^ fix and let z = y + (l—a)x. We have zeC and z ~ ca;

since
x^z^ (j3-cc+l)x

and by Lemma 24, OJ(Z/X) = w(y/x) and OJ(LZ/LX) = w(Ly/Lx). I

We shall generally use this formulation of N(L; C,Z)) in preference to our original
definition, but it is useful in applications not to restrict ourselves to non-negative
vectors.

These definitions leave us in a position to state our main theorem.

THEOREM 3-5. Let C be a cone in a real vector space V,D be a cone in a real vector space
W and L be a linear map from V to W with L(C) £ D. Suppose that A(L) < oo. Then

k(L;C,D)=N(L;C,D) = tanh \

THEOREM 3-6. Let C be a cone in a real vector space V,D be a cone in a real vector space
W and L be a linear map from V to W with L(C) £= D. Suppose that A(L) = oo. Then

k(L;C,D) =N(L;C,D) = 1.

We shall see later that it is easy to deduce Theorem 3-6 from Theorem 3-5.
These theorems have a long history. In the literature it has usually been assumed

that C = D, but for various applications to nonlinear problems it is useful to have
C 4= D (see [22, section 4], [24] and [6]). Furthermore, as we shall see, allowing different
cones permits a flexibility in our arguments which will actually simplify the proof.

It has also usually been assumed in the literature that V and W are topological
vector spaces and that C and D are closed, or at least satisfy some sort of
'Archimedean' property. Our arguments will show that these assumptions are
unnecessary.

If V = W is a Banach space and C = D is a closed cone in V, G. Birkhoff [2, 3]
showed that

k(L;C,C) = tanhiA(Z,; C,C).

E. Hopf proved (basically for the case where V = W is a space of measurable
functions like I/00, C = D is the cone of almost everywhere non-negative functions and
L is an integral operator) that

N(L; C, C) ^ tanh£A(Z,; C, C),

though he never explicitly defined A.(L;C,C). A different proof of a generalized
version of Hopf's result was given by F. L. Bauer[l]. A. M. Ostrowski[25] and P. J.
Bushell [8] showed that

C,C) = k(L;C,C).

Apparently unaware of some of the literature (notably Birkhoff's papers [2] and [3]),
Zabreiko, Krasnosel'skii and Pokornyi[31] and Krasnosel'skii and Sobolev[19] have
obtained closely related results.

The first step in proving Theorem 35, and the heart of our approach to the
problem, is to show that it suffices to prove it when V and W have dimension less than
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or equal to 2. First, we need to give some definitions and recall some elementary
results.

Definition 3.7. If 0 is a cone in a real vector space V, we shall call C finite-
dimensional if there exists a finite-dimensional subspace E of V with C ̂  E. In this
case, we define dira(C), the dimension of C, to be the smallest dimension of a finite-
dimensional linear subspace E of V with C £ E.

Recall (see [27, chapter 1]) that if E is a finite-dimensional, real vector space, then
there is a unique topology on E which makes E a Hausdorff topological vector space.
It follows that if C is a finite-dimensional cone in a real vector space V, we may define
C, the closure of C, even though V is not assumed to be a topological vector space:
we let E be any finite-dimensional subspace of V with C ̂  E, take the unique
topology on E which makes it into a Hausdorff topological vector space, and define
C to be the closure of C in this topology. It is not hard to see that C is independent
of the particular subspace chosen.

By virtue of this remark, topology will play some role in the proof of Theorem 3-5.
We shall need another well-known result of point set topology.

LEMMA 3-8. Let C be a convex set in a topological vector space E.IfxeC and yeC then
(l-t)x + tyeCfor 0 < t < 1.

Proof. See [28, chapter II, section 1-1]. I

By using Lemma 3-8, one may easily see that if C is a cone with non-empty interior
in a topological vector space E and if x e C and y 6 C then ax + ftyeC for all a > 0 and
{S ^ 0. We shall use this fact later.

Definition 3-9. Let V be a real vector space and C a cone in E. If x,yeV, then let

C(x,y)=C n V(z,y).

Remark 310. In this definition, we clearly have dim(C) < 2. Moreover, if u,ve
C(x, y) = :K, we have

u ^ K v ^ and only if u ^ c v.

It follows that if ueK and vsV then u dominates v with respect to K if and only if
u dominates v with respect to C and that in this case

M(v/u; K) = M(v/u; C); m(v/u ;K) = m(v/u;C)

and hence that w(v/u;K) = w(v/u;C). Similarly, one sees that for u,veK, u is
comparable to v in K if and only if u is comparable to v in C and that

d(u,v;C) = d{u,v;K).

By using these elementary remarks, we can reduce the proof of Theorem 35 to the
proof of a much simpler result.

LEMMA 3-ll. In order to prove Theorem 3-5, it suffices to prove it when dim(C) =
dim(D) = 2, dim(F) = dim(PF) = 2 and L is injective.

Proof. Let V, W, C, D and L be as in Theorem 35.
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Ifdim(C) ^ 1 ordim(D) ^ 1, one may easily verify that k(L;C,D) =N(L;C,D) =

A(L\C,D) = 0, so Theorem 35 is trivially true.
If dim(C) = dim(D) = 2 and dim(F) = dim(PT) = 2 butL is not injective, then the

range of L is of dimension zero or one; in either case, one may easily verify that
k(L;G,D) = N(L;C,D) = A(L;C,D) = 0, so Theorem 3-5 is again trivially true.

We now assume that Theorem 3-5 is true whenever the spaces and cones involved
are two-dimensional and the map is injective. By virtue of the remarks above, this
implies that it is true whenever the two spaces are two-dimensional.

We now abbreviate k(L; C,D),N(L; C,D) and A(L; C,D) to k(L),N(L) and A(L). For
x,yeC we have (using the notation in Definition 3-9)

L: V{x,y)^W{Lx,Ly); L(C(x,y)) ^

We may thus define functions k, N and A on C x C by

k(x,y) = k(L;C(x,y),D(Lx,Ly)),

N(x,y) = N(L;C(x,y),D(Lx,Ly)),

A(x,y) = A(L;C(x,y),D(Lx,Ly)).

Since we have assumed Theorem 3-5 to be true for spaces of dimension 2 or less, we
have

k(x,y)=N(x,y) = t*nh$A(x,y). (6)

On the other hand, using the identities in Remark 3-10, we have

k(x,y) = inf{A ^ 0: d(Lu,Lv;D) ^ Ad(u,v;C) for all u,veC(x,y) with u ~ cy),

N(x, y) = inf{/t ^ 0: a)(Lv/Lu;D) ̂  /iw(v/u; C) for all u, v e C(x, y) such that u
dominates v in C},

A(x,y) = smp{d(Lu,Lv;D): u, veC(x,y) and Lu ~ DLv}.

It follows easily that

k(L) = suY>{k(x,y):x,yeC},

N(L) = suv{N(x,y):x,yeC},

A(L) = sup{A{x,y):x,yeC}.

By using these equations and (6), we see that

k(L) = mp{k(x, y):x,yeC]

= sup{N(x,y):x,yeC}

= N(L)

= supjtanh \A{x, y): x,yeC}

= tanh(sup {±A(a;, y):x,yeC})

= tanh^A(L). I

In addition to Lemma 3*11, another tool to simplify the proof of Theorem 3-5 will
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be the replacement of the linear map L with a map SLT, where S and T are suitably
chosen linear bijections.

LEMMA 3-12. Let C be a cone in a real vector space V,D be a cone in a real vector space
W and L a linear map from V to W with L(C) £ D and A(L;C,D) < oo. Let V1 and W1

be real vector spaces and S: V1->V and T: W-*-W1 be linear bijections. Define cones Ct

and Dx by Cx = <S""l(C) and Dl = T(D) and let L1 = TL8. Then

N(L;C,D)=N(L1;C1,D1),

In particular, to prove the identity in Theorem 3-5 it is sufficient to prove it for the map
LY and the cones C1 and D1.

Proof. Lemma 3-1 implies that w(Sv/Su;C) = w(v/u;C\) and d(u,v;Cx) = d(Su,
Sv;C) for all appropriate u,veC1. Similarly, we have d{T£,,Ty\;D^) = d(£,,7];D) and
CJ(TV i'T£,;D\) = w(n/!;;D) for all appropriate E,,neD. The identities claimed all follow
immediately from this. I

4. Classification of two-dimensional cones

In this Section, we shall show that the closure of a two-dimensional cone in the
plane is either a half-plane or may be identified by means of a linear isomorphism
with the positive quadrant. These representations give a simple formula for the
projective metric in a two-dimensional cone. These facts are almost self-evident, but
their proof does not appear to be as simple as one might expect.

The topology used on the plane throughout this section will be the usual Euclidean
topology.

THEOREM 4 1 . Let Cbea two-dimensional cone in IR2. Then exactly one of the following
two alternatives is true.

(1) C is a cone and there exist linearly independent vectors u and v such that

C = {Au + fiv. A,/t ^ 0},

6 = {Au + fiv: A,fi> 0}.

(2) C is not a cone and there exist linearly independent vectors u and v such that

C = {Au+fiv: AeU,u^0},

C = {Au + uv: Ae(R,/M> 0}.

Proof. Since C is two-dimensional, it contains two linearly independent vectors, a
and b. I t follows that

: A, ft > 0}

is an open set contained in C, so Aa+/iibeC whenever A,u > 0. In particular, there
is a disc centred at (a + b) and contained in C, so there is a disc centred at —(a + b)
entirely disjoint from C, and hence — (
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We define x = 2a + beC and y = —(a + b)$C, and note that x and y are linearly

independent. We now consider two cases: that C is a cone, and that it is not a cone.
If C is a cone, define T by

r = sup{*e (0 , l):(l-t)y + tx$C}.

Our selection of x and y ensures that 0 < T < 1, that u = (1 — T) X + ry e dC, and that
(because x and y are linearly independent) u 4= 0. Since we are assuming that C is a
cone, —u^C. We now define a by

a- = sup{se(0,1): (l-s)(-u) + sx$C}.

As before, we find that 0 < a < 1, that v = (l — a)( — u) + axedC and, since x and y
are linearly independent, that u and ?; are also linearly independent.

Since C is a wedge, we have

We easily derive from Lemma 3-8 that C = C, so

(J = C 2 {AM +/tv: A,/̂  > 0}.

To complete the proof, it suffices to show that

0 = {Au + fiv. A,ju,^ 0}.

If not, then there exists a point z = Aou + /ioveC with either Ao < 0 or ju0 < 0. We
may assume without loss of generality that Ao < 0 and note that then fi0 > 0, since
otherwise we would have z =t= 0, zeC and —zeC. We now have, by Lemma 3-8,
that

AO\V) = fioveC,

contradicting the fact that v e 8C.
We now consider the alternative case, that C is not a cone. Since C is a wedge, there

exists u =# 0 with u, —ueC. It follows that uedC, since otherwise we would have
ueC = 0 and —ueC, from which it would follow by Lemma 3-8 that

l()= C.
Similarly, —uedC.

Now, select veC, and note that v and w are linearly independent, since otherwise
v would be a scalar multiple of u, and hence an element of dC. Because C is a wedge
containing u, —u and v,

C 2 {Au+fiv: AeR,/i ^ 0}.

To complete the proof, we must show that C contains no element of the form
AQU + ^V, where fi0 < 0. If C does contain such an element, then Aou + \/io\ veC, so
by Lemma 38 we have

Ao u = |(A0 u+/i0 v) + |(A0 u + | / t » e 6

contradicting the fact that uedC. I

COROLLARY 4-2. (Using the same notation and hypotheses as Theorem 4-1.)
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If C is a cone and x and y are elements of C, so

x = Aj u + A2 v, y =

with A^ A2,/ilt fi2 > 0, then x is comparable to y and

M(x/y) = m&x\-±,-*\,

logy1

m(x/y) = min ] — , — >,

cj(x/y) =

d(x,y)-

// , on the other hand, C is not a cone then if xeC, ysV and x dominates y then
(o(y/x;C) = 0, and if x is comparable to y in C, then d(x,y;C) = 0 .

Proof. The proofs of the results which apply when C is a cone are left as a simple
exercise for the reader. The proof of the remainder of the corollary follows.

Suppose x dominates y in the order relation induced by C. By Theorem 41 , we
have

x =

acx ^ cy ^ cPx-

— aAj) u + (fi2 — aA2) v e C,

Now, suppose

This is equivalent to

Thus, by the representation of C, a\2 < /i2 ^ /?A2. Thus, if A2 = 0 then /i2 — 0 and
both x and y are multiples of u, so o)(y/x) — 0 and if they are comparable then
d(x,y) = 0.

We shall now assume that A2 > 0, and show that m(y/x) =M(y/x) = /i2/A2. Let
e > 0 and let a = /*2/A2 — e and /? = ju,JA2 + e. We have

which is an element of C, hence C because its v coordinate is strictly positive, so
ocx ^ cy. A similar argument shows that y < cfix, so since e may be arbitrarily small
we have

Thus, ui(y/x) = 0 and if x is comparable to y then rf(a;, y) = 0. I
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To use these results concerning the closures of cones instead of a more detailed
classification scheme based on the cones themselves, we need to know that if C is a
cone then it induces the same projective metric and oscillation as C. This is the
content of the next lemma.

LEMMA 4-3. Let C be a cone in a real topological vector space V such that C is also a
cone. Then for all xeC and ye V, x dominates y xoiih respect to C if and only if x
dominates y with respect to C, and in this case

M(y/x;C)=M(y/x;C),

m(y/x;C) = m(y/x\G).

Proof. I t is clear that if x dominates y in C then x dominates y in C and

M(y/x;C)>M(y/x;C),

m(y/x;C) ^m(y/x;C).

Because of the identities M(y + Ax/x) = M(y/x) + A and m(y + Ax/x) = m(y/x) + A,
which are true for any partially ordered vector space, and the fact that y + Axe C for
sufficiently large A, it is sufficient to prove the lemma for yeC.

Let a = m(y/x;C) and fi = M(y/x;C). Since C is closed, ax ^y ^ fix, and since
yeC, a and fi are both strictly positive. Writing ax < y < fix in terms of the cone,
we have that y — ax and fix — y are elements of C. Since yeC and y — axeC, we have
by Lemma 3-8 that for te(0,1),

-ax)eC

which implies that atx ^ cy for all te(0,1), so m(y/x;C) ^ a = m(y/x;C). A similar
argument shows that M(y/x; C) ^ M(y/x ;C). I

COROLLARY 4-4. Let C be a cone in a two-dimensional real vector space V such that C
is also a cone. Then for all xeC and ye V, x dominates y with respect to C if and only
if x dominates y with respect to C, and in this case

M(y/x;C)=M(y/x;C),

m(y/x;C) = m(y/x;C).

Proof. If xeC, this is a special case of the previous result. If x = 0, then it is
trivially true. As in the previous result, it is sufficient to prove this for y comparable
to x, by adding a sufficiently large multiple of x to y. If xe8C\{0}, then by the
representation in Theorem 4-1, we have that for some veC,

C =

C = {Ax + fiv: A,/J, > 0}.

Suppose x dominates y in C, so ax < Gy ^ cPx- Let y = Ax+/iv, then by the
representation of C we have

SO/J, = 0. Thus, y is a scalar multiple of x andM(y/x) = m(y/x), regardless of the cone.
Finally, if x dominates y in C, then it dominates y in C since 0 3 0, so by the

previous part, m{y/x) =M(y/x) in either cone. I
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COROLLARY 4-5. In the notation of Theorem 31 , if C and D are cones and dim(F) =
dim(JF) = dim(O) = dim(Z>) = 2, then

k(L;C,D) = k(L;C,D),

N(L;C,D)=N(L;C,D),

A(L;C,D) = A(L;C,D).

Proof. This result follows easily from 4-4. I

LEMMA 4-6. To prove Theorem 3-5, it is sufficient to prove it in the case that
dim(F) = dim(PF) = dim(C) = dim(Z>) = 2, C and D are cones and L is injective.

Proof. We already know that it is sufficient to prove Theorem 3-5 when dim(F) =
dim(TF) = dim(C) = dim(Z)) = 2 and L is injective. If C or D is not a cone, then it
is immediate from Corollary 4-2 and the fact that A does not increase either d oi w
that k(A;C,D), N(A;C,D) and A(̂ 4;O,Z>) are all zero, so Theorem 3-5 is trivially
true. I

LEMMA 4-7. To prove Theorem 3-5, it is sufficient to prove it in the case that V =
W = U2, C = D = {xe U2: xv x2 ^ 0} and L is represented with respect to the standard
basis by the matrix

[ d
where a, b, c, d > 0 and ad —be =j= 0.

Proof. We know by Lemma 4-6, that to prove Theorem 3-5, it is sufficient to prove
it in the case that dim(F) = dim(TF) = dim(C) = dim(I>) = 2, C and D are cones and
L: V^ W is injective with L(C) c D.

Corollary 4-5 implies that we may replace C by C and D by D without affecting k,
N or A, and hence assume that C and D are closed.

Theorem 4-1 implies that there are linearly independent vectors u, veC and u,
veD such that

D =

Define S:(R2^F and T: W->U2b

We have that 8 and T are injective linear maps with S(K) = C and T(D) = K, where
K is the standard cone in IR2. By Lemma 3-12, it suffices to prove Theorem 3-5 with
L replaced by Lx = TLS, C = D=K and F = W = IR2. Let L1 be represented with
respect to the standard basis by the matrix

d

so L^ljO) = (a,c) and L(0,1) = (b,d). Because L^K) ^K, a, b, c and d are non-
negative; because L is injective, ad —be =t= 0. We are also assuming that A(L1;K,K)
<oo, so by Proposition 2-9, (a, c) and (b, d) are comparable in K. A little thought
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shows that this is true only if either a = b = 0, c = d = 0 or all of a, b, c and d are
positive. Either of the first two cases contradict the hypothesis that ad — bc=¥ 0, so
we must have a, b. c, d > 0. I

5. Completion of the proof of the Birkhoff-Hopf theorem

We know from Lemma 4-7 that to prove Theorem 35, it is sufficient to prove it in
the case that V = W = U2, C = D = {xeR2: xl,x2 ^ 0} and L is represented with
respect to the standard basis by the matrix

J- dY

where a, b, c, d > 0 and ad — bc=$= 0.
To prove the theorem for this restricted case, we shall use the simple formulae for

w and d in (R2 to convert the problem into a simple exercise in calculus.
Before we start, we shall use one final reduction. This is not strictly necessary, but

it substantially simplifies the calculus.

LEMMA 5"1. TO prove Theorem 3-5, it is sufficient to prove it in the case that V =
W = R2, C = D = {xe U2: x1: x2 ^ 0} and L is represented with respect to the standard
basis by the matrix

A =

where a > 1.

Proof. Bearing in mind Lemma 4-7, all we need to show is that, with the given
spaces and cones, then given a matrix

A -\a b

| c d
there exists a matrix

A' =

with k(A') = k{A), N(A') = N(A) and A(A') = A(A).
We shall construct this matrix by multiplication on the left and right by matrices

which are bijections on the cone. According to Lemma 3'12, this does not affect N,
k or A.

We begin by finding positive diagonal matrices Dx and D2 such that DXAD2 is
doubly stochastic, that is that its row and column sums are all 1. Let

[ x 01 \v 0

n • ^ = n
II O* I I I I II

u x2j L u y2

so
1 2 Ux2y1 dx2y2\

Now, for 0 ^ xl ^ 1, let x2 = 1— xlt yx = l/(ax1 + cx2) and y2 = l/(bx1 + dx2). This
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makes the columns of D1AD2 sum to 1; to make the rows also sum to 1, it is sufficient
to have

axy bx1 _
ax1 + cx2 bxx + dx2

Now let

Since 0(0) = 0 and (9(1) = 2, there exists x1 e (0,1) such that d^) = 1. With this value
of xx, and x2, y1 and y2 as defined above, D1 andZ>2 are positive a,ndD1AD2 is positive
and doubly stochastic, so

DAD -\ P l~

Now, if det(^4) > 0, let P be the identity matrix, and if det(^4) < 0 let P be the
permutation matrix

•0 11

(recall that det(^4) #= 0 by hypothesis), so

PD AD -
y y

where y > 1/2. Finally, let D be 1/(1 —y) times the identity matrix, so

where a > 1.
Since A' was obtained from A by multiplication on the left and right by matrices

which are bijections on the cone, A' has the same projective diameter, oscillation
ratio and contraction ratio as A. I

Remark 5-2. If A is any nxn matrix, all of whose entries are positive, then there
exist positive diagonal matrices D1 andD2 such that D1AD2 is doubly stochastic, and
such matrices are unique up to scalar multiplication. Such results are called DAD
theorems; references to the relevant literature may be found in section 4 of [22], and
in [6] and [24]. Clearly, the key result above is a direct proof of the DAD theorem
for 2 x 2 matrices; conversely, it is a special case of results in section 4 of [22] that
Theorem 35 can be used to give an easy direct proof of the above-mentioned DAD
theorem in the nxn case. Thus, there is a close connection between DAD theorems
and Theorem 35.

We may now give the simple proof of the Birkhoff-Hopf Theorem for the case of
positive matrices of the type given in Lemma 51 .

THEOREM 5-3. Let A be the matrix

a 1
1 a

where a > 1, and consider A acting on R2, partially ordered by the usual cone. Then

N(A) =
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N(A) = sup

49

x,yeC
ydominatesz

Since o)(Ax/Ay)/oj(x/y) is independent of positive scalar multiples of either x or y, we
may take a cross-section through the cone. It is convenient to consider x = (l,s) and
y = (l,t) for non-negative s and t. For (o(x/y) to exist and be non-zero, we must have
s, t> 0 and s =t= t. Thus,

... .. u)(Ax/Ay)
N(A) = sup 7 y / .

w(x/y)

Now, if we use the standard formula for w in R2,

oc + s l+as

N(A) = sup
S,t>0

= sup

a + t l+cd

t

(a'-l)t

= sup <j)(t)

where

The maximization of <j> over (0, oo) is a simple problem: <f> is non-negative, its only
stationary point is at 1 and its limits at 0 and oo are both zero; it follows that its
supremum is attained at 1 and is equal to

<x2-l a - 1

(a+1)2 a + 1

A similar approach to the contraction ratio gives an apparently more difficult
maximization problem. We have

k(A) = sup
log (a + s)(l+at)

(a+ 0(1 +as)
S,t>0

= SUp \\]f{s,t%
s,e>o

where

log s)(l+at)
+ as)

log j
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It is convenient to write

logs — log t
where

a + t
fit) = log l+at'

Using the generalized mean value theorem, we have that for 0 < s < t there exists T
with s ̂  T ^ t and

logs-log t

= f'(r)r

(1-«2)T
(a + T)(l+ar)

I t is immediate from this that sup \\j/\ ^ sup <f>, both suprema being taken over the
domains of the functions. To show that sup |̂ ~| ̂  sup <p, fix t > 0 and choose an
arbitrary positive e. By the mean value theorem argument above, — i/r(t — e,t + e) =
(j>{r) for some r e [t — e, t + e]. Since (j> is continuous at / and e may be made arbitrarily
small, this shows that \\[r\ attains values arbitrarily close to <fi(t) for any given t. I t
follows that sup \ifr\ ^ sup <j>.

We thus have
a - 1

N(A) = k(A) =
a + 1 '

I t remains to be shown that tanh|A(^4) = (a— l ) / ( a+ l ) .
Let e1 = (1,0) and e2 = (0,1) be the standard basis vectors for R2. A(C) is given by

the set of all non-negative linear combinations of Ae1 and Ae2; it follows from
Proposition 2-9 that

A(A) = diam(vl(C)) = d(Aev Ae2).

Since Ae1 = (a, 1) and Ae2 = ( l ,a), we have d(AeitAe2) = log a2 = 2 log a.
Now, since A(̂ 4) = 2 log a, a = exp(A(^4)/2) and

l _ .
j - tanh 5

Finally, we show that if the projective diameter is infinite then the oscillation and
contraction ratios are both equal to 1.

THEOREM 5-4. Let V and W be real vector spaces partially ordered by cones C and D,
respectively. Suppose that L is a linear operator from V to W with L(C) £ D and
A(L;C,D) =oo. Then

N(L;C,D) = !c(L;C,D) = 1.

Proof. Given M > 0, there exist x and y such that d(Lx,Ly) > M. Consider the two-
dimensional subspaces V generated by x and y and W generated by Lx and Ly (Lx
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and Ly are linearly independent since d(Lx, Ly) > 0; this implies that x and y are also
linearly independent).

We place a partial ordering on W by means of the cone D and on V by means of
the cone C generated by x and y, so

C = {Ax + fiy: A,fi ̂  0}.

Since C is a subcone of C, d(u,v;C) ^ d(u,v;C).
Now, regarding L as a map from V ordered by C to W ordered by D, L has

projective diameter d(Lx,Ly) (by Proposition 2-9), so we may conclude from the
result for the finite projective diameter case that given e > 0 there exist u,veC with

d(Lu,Lv;D) ,
d(u,v;C) ''

Now, d(Lx,Ly;D) >M and d(u,v;C) ^ d(u,v;C), so

d(Lu,Lv;D)

d(u,v;C)
tanhjM—e.

Thus, by choosing large M and small e, we may find u and v such that
d(Lu,Lv;D)/d(u,v;C) is arbitrarily close to 1. Since we know a priori that
k(L) ̂  1, we conclude that k(L) = 1.

A similar proof shows that N(L) = 1. I

6. Positive matrices and integral operators

In the special case that V = Un, W = Um, C = {xe Un: xt ̂  0 for all i] and D =
{x s Um: x( ^ 0 for all i}, Theorem 3-5 is usually stated in a sharper form with an explicit
formula for A(L;C,D) in terms of the matrix representation of L. To establish this
formula, it will be useful first to prove more general results.

If we take C as in Remark 2-10 and L: C^-C to be the identity map, then
A(L;C,C) = 0 and L(C) contains non-zero elements which are not comparable in C.
If, however, we impose mild additional conditions then Proposition 2-9 implies that
(in the notation of Theorem 3-5) all non-zero elements of L(C) are comparable. A
slightly less general version of this result has been obtained by Eveson[ll].

LEMMA 61 . Let the notation and hypotheses be as in Theorem 3-5. Assume that ifu and
v are any non-zero elements of L(C) such that u dominates v in D, thenM(v/u) > 0 (this
will be the case if D(u, v) is a cone whenever u and v are non-zero elements of L(C) such
that u dominates vinD). Then it follows that all non-zero elements ofL(C) are comparable
in D.

Proof. Let S = L(C) ^ D, so S is convex and diam(<S;Z>) < oo. It now follows from
Proposition 2-9 that any two non-zero elements of S are comparable in D. I

We now return to the case where V = Un,W = Um and C andD are the cones of non-
negative vectors in V and W, respectively. If we consider the elements of IRn as
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column vectors and if A = (atj) is an m x n matrix, then A defines a linear map on Un

and if ai} ^ 0 for 1 < i,j ^ n, then A(C) £ D. We let ê  (1 ^ j < n) denote the jth
standard basis vector for Rn, so^4e^ is the jth column of the matrix A. The reader may
easily verify that if x and y are. elements of C then

d(x,y;C) = log m&x°^, (7)

with a corresponding formula for the cone D.

T H E O R E M 6-2. Let V=Un, C = {xsUn: xt^ 0 for l ^ i ^ n}, W = Um and D =
{xeUm: xt ^ 0 for 1 ^ i ^ m}. Let A be an mxn matrix (ai}) such that atj ^ 0 for
1 ^ i ^ TO, 1 5j j ^ n, so A(C) £ D. If {ei: 1 ̂  i ^ n} is the standard orthonormal basis
for Mn, assume that there exists a set J £ {1,2,. . . ,n} such that Aet and Ae} are non-
zero and comparable in D for each i,jeJ and Aet = 0 for all i$J. Then it follows that
A(^4) = A(A ;C,D) is finite and

A(A) = max d(Aei,Aej). (8)
i.jeJ

If, moreover, ati > 0 for all 1 ̂  i ^ m, 1 ^ j ^ n then

A(A)= max d{Aei,Ae^) = log max ^i^si. (9)
^n apjaqi

Proof. Let T = {Aet: ieJ} and observe that

A(C) = {tx: t ^ 0 and xeco(T)}.

By using parts (a) and (b) of Proposition 2-9, we see that

A(A) = diam(^(O);Z») = diam(co(T);Z») = dimm(T;D)

which yields (8). Equation (9) follows from this and the explicit formula for
Aej) in (7). I

Equation (9) is closely related to results of E. Hopf[16], who observed that
analogous formulae hold for integral operators.

THEOREM 6-3. (See Hopf[16]). Suppose S is a compact Hausdorff space, /i is a
regular Borel measure on S of full support (so u(G) > 0 for any open set G £ S) and
k:SxS^*R is a positive continuous function. Let V = C(S), the Banach space of
continuous, real-valued functions on 8 and let C be the cone of non-negative functions
in V. Define A : V'-* V by

{Ax)(s)= k(s,t)x(t)/i(dt) (10)
Js

Then it follows that

ma* ^ ' ° * ( t t ) * } . (11)
s,t.u,vk(s,v)k(u,t)
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Proof. If x and y are non-zero elements of C we have

M(Ay/Ax) = max

i " = Ml Ax/Ay) = max
u SsH^^yWfiidr)'

Thus we obtain that

„, . , . . , , . . , . \{kls,T)klu,v)xlv)y(T
M(Ay/Ax)M(Ax/Ay) = max J] K ' y ' K >yy

„ jf k(s, v) k(u, T) X{V) y(r) ft(dv

From this formula, we easily conclude that

XA;C,C)=X{A)

= inf{A >0: \\ [k(s, T) k(u, v) - A2k(s, v) k(u, T)] x{y) y(r) /i(dv) fi(dr) «S 0

for all x,yeC\{0} and s,ueS}.
If we define A by

* 2 k(s,r)k(u,u)
A2 = max '-,

s,T,u,vk{S,v)k(u,T)

we obviously have (̂̂ 4) ^ A. If 0 < A < A, we have

k(s, T) k{u, v) - A2k(s, v) k(u, T) > 0

for (s,u)eU1xW1 and (v, r)eU2 x W2, where U} and W} are open sets. There exist
continuous functions x, yeC\{0} which vanish outside U2 and W2 respectively. If
(s, u) e f/j x Wlt we find that

so x(A) > A. It follows that (̂̂ 4) = A and that (11) holds. I

Remark 6-4. If fi is not of full support, one obtains

K, ., ^ , k(s,t)k(u,v)
AlA) s% log max -^— ,

*s,t,u,vk(s,v)k(u,t)'

but equality need not hold, as one may see by taking fi = 8, the Dirac delta measure.
If keLl(SxS) is a non-negative function such that

ess.sup k(s,t)[i(dt) <oo,
s J

then k defines a bounded integral operator A: E = LX(S)-+E by (10). If C is the cone
of non-negative functions in E, the argument above shows that

X(A) ̂  inf {A ̂  0: k(s, T) k(u, v) — A2k(s, v) k(u, T) ̂  0 for almost all s, u, v, T}.
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However, our previous arguments do not prove that equality holds in (11).
We note that in the generality of Remark 6-4 it is easy to find functions

keL^iS x S) such that A : L°° -+L00 is not a compact map: see remark 5-6 in section
5 of [6].
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