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A

Suppose that K is a closed, total cone in a real Banach space X, that A :X!X is a bounded linear
operator which maps K into itself, and that A« denotes the Banach space adjoint of A. Assume that r, the
spectral radius of A, is positive, and that there exist x

!
1 0 and m& 1 with Am(x

!
)¯ rmx

!
(or, more

generally, that there exist x
!
a (®K ) and m& 1 with Am(x

!
)& rmx

!
). If, in addition, A satisfies some

hypotheses of a type used in mean ergodic theorems, it is proved that there exist u `K®²0´ and θ `K «®²0´
with A(u)¯ ru, A«(θ)¯ rθ and θ(u)" 0. The support boundary of K is used to discuss the algebraic
simplicity of the eigenvalue r. The relation of the support boundary to H. Schaefer’s ideas of quasi-interior
elements of K and irreducible operators A is treated, and it is noted that, if dim(X )" 1, then there exists
an x `K®²0´ which is not a quasi-interior point. The motivation for the results is recent work of Toland,
who considered the case in which X is a Hilbert space and A is self-adjoint ; the theorems in the paper
generalize several of Toland’s propositions.

1. Classical Krein–Rutman theory

We recall some standard definitions and some classical variants of the

Krein–Rutman Theorem.

By a cone K (with vertex at 0) in a real Banach space X we mean a convex set

KZX such that (i) Kf(®K )¯²0´, and (ii) (λK )ZK for all λ& 0. We always assume

that K1²0´. Here, (®K )¯²®x :x `K ´ and λK¯²λx :x `K ´. Usually, we assume

that K is closed, and refer to a closed cone. A convex set WZX is called a wedge if

(λW )ZW for all λ& 0, and a closed wedge if W is closed. A cone K in a Banach space

X is called total (in X ) if X is the norm closure of ²x®y :x, y `K ´BK®K. A cone K

in a Hilbert space is total if and only if Kv ¯²0´, where

Kv B ²z r ©z,xª¯ 0 for all x `K ´

and ©[,[ª denotes the inner product on H. A cone KZX is reproducing (in X ) if

X¯²x®y :x, y `K ´. A Banach space X is said to have the bounded decomposition

property (with respect to a cone KZX ) if, for every x `X, there exist bounded

sequences ©y
k
:k& 1ªZK and ©z

k
:k& 1ªZK such that

lim
k!¢

sx®(y
k
®z

k
)s¯ 0.

Clearly, if a cone KZX is reproducing, then X has the bounded decomposition

property.

A cone KZX induces a partial ordering on X by x% y if and only if y®x `K. If

a, b `X and a% b, we denote by [a, b] the set ²x r a%x and x% b´. A cone K is called
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normal if there exists a constant M such that sxs%Msys whenever 0%x% y. If X

is a real Banach space, we denote by X « the Banach space adjoint of X, that is, the

set of continuous linear functionals θ :X!2 with sθs given by

sθs¯ sup²rθ(x)r :sxs% 1´.

If KZX is a cone, we write

K «B ²θ `X « :θ(x)& 0 for all x `K ´.

Note that K « is a closed wedge, and that K « is a cone if K is total. When x `X and

θ `X «, we often write
θ(x)¯©x, θª

and so ©[,[ª in this equation denotes the pairing between X and X «, rather than an

inner product. If X is a real Banach space and A :X!X, then A« :X «!X « denotes the

Banach space adjoint of A, and so

©Ax, θª¯©x,A«θª for all x `X, θ `X «. (1.1)

We always denote by r(A) the spectral radius of A, and so

r(A)¯ lim
n!¢

sAns"/n ¯ inf
n&

"

sAns"/n ¯ r(A«). (1.2)

Recall that, if Xh ¯XiX denotes the complexification of X, then, for x, y `X, we

define

sxiys¯ sup

!
%θ%

#
π

s(cos θ)x(sin θ) ys. (1.3)

If X is a real Banach space, A :X!X is a bounded linear map, and Xh denotes the

complexification of X, then A extends to a bounded, complex linear map Ah :Xh !Xh by

Ah (xiy)¯A(x)iA(y).

With respect to the norm given by (1.3), one can prove that

sAh s¯ sAs (1.4)

and so it follows that

r(Ah )¯ lim
n!¢

s(Ah )ns"/n ¯ lim
n!¢

sAns"/n ¯ r(A). (1.5)

We write σ(Ah ) for the spectrum of Ah , and define σ(A)¯σ(Ah ). We recall that

r(A)¯ r(Ah )¯ sup²rλr :λ `σ(Ah )´. (1.6)

If K is a wedge in a real Banach space X and A :X!X is a bounded linear

operator with A(K )ZK, we write

sAs
K

B sup²sAxs :x `K and sxs% 1´. (1.7)

The same argument as that used to establish the usual spectral radius formula gives

lim
n!¢

(sAns
K
)"/n ¯ inf

n&
"

(sAns"/n

K
)B r

K
(A). (1.8)

If K is a cone, we call r
K
(A) the cone spectral radius of A in K ; in [4], it is called the

partial spectral radius. If we define Y¯K®K, where K is a closed cone in a Banach

space X, Bonsall [5] has observed that Y is a Banach space in the norm defined by

ryr¯ inf²suss�s :y¯ u®� and u, � `K ´. (1.9)
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Furthermore, one has sys¯ ryr for y `K and sys% ryr for all y `Y. If B denotes the

map A considered as a map from (Y, r[r) to (Y, r[r), then

sup²rByr : ryr% 1´B rBr¯ sAs
K

and r(B)¯ lim
n!¢

rBnr"/n ¯ r
K
(A). (1.10)

We refer the reader to [4 ; 5 ; 11, Section 2] for further details.

We also need to recall the notions of essential spectral radius and cone essential

spectral radius. If S is a bounded subset of a complete metric space (X, d ), Kuratowski

[9] has defined α(S ), the measure of noncompactness of S, as

α(S )¯ inf²ρ" 0 rS¯5
n

i="

S
i
, n!¢, and diameter (S

i
)% ρ for 1% i% n´. (1.11)

Kuratowski observed that α(Sa )¯α(S ) for all S,α(SeT )¯max(α(S ),α(T )) and

α(S )¯ 0 if and only if Sa is compact. If S
n
is a decreasing sequence of closed, bounded

nonempty sets and lim
n!¢ α(S

n
)¯ 0, then Kuratowski proved that U

n&
"
S

n
is

compact and nonempty. If X is a Banach space, Darbo [7] observed that, for all

bounded sets S and T in X and all real numbers λ,

α(cao(S ))¯α(S ),α(ST )%α(S )α(T ) and α(λS )¯ rλrα(S ). (1.12)

Here cao(S ) denotes the smallest closed convex set containing S, and

ST¯²st r s `S, t `T ´.

If X is a real Banach space and A :X!X is a bounded linear operator, then we define

α(A) by

α(A)¯ inf²λ& 0 rα(A(S ))% λα(S ) for all bounded SZX ´. (1.13)

One can easily show that α(A)% sAs and α(AC )¯α(A) for any compact linear

map C. As in [10], we define the essential spectral radius of A as

ρ(A)¯ lim
n!¢

(α(An))"/n ¯ inf
n&

"

(α(An))"/n. (1.14)

We refer the reader to [10] for further details. If KZX is a cone (wedge) and

A(K )ZK, we define α
K
(A) as

α
K
(A)¯ inf²λ& 0 rα(A(S ))% λα(S ) for all bounded SZK ´. (1.15)

Note that α(A)¯ 0 if and only if A is compact, and α
K
(A)¯ 0 if and only if A rK is

compact. We define the cone (wedge) essential spectral radius as

ρ
K
(A)¯ lim

n!¢
(α

K
(An))"/n ¯ inf

n&
"

(α
K
(An))"/n (1.16)

and refer the reader to [11, Section 2] for further details.

With the preliminaries, we can recall several variants of the Krein–Rutman

Theorem.

T 1.1. ([11]). Let K be a closed, total cone in a real Banach space X,

and let A :X!X be a bounded linear operator with A(K )ZK. Assume that ρ(A)¯
ρ! r¯ r(A), where ρ(A) denotes the essential spectral radius of A and r(A) denotes

the spectral radius of A. Then there exist nonzero elements x `K and θ `K « such that

A(x)¯ rx and A«(θ)¯ rθ.
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Theorem 1.1 is a generalization of the original Krein–Rutman Theorem [8], in

which it was assumed that A is compact (and so ρ(A)¯ 0).

T 1.2. ([11]). Let K be a closed cone in a real Banach space X, and let

A :X!X be a bounded linear operator with A(K )ZK. Assume that ρ
K
(A)! r

K
(A),

where ρ
K
(A) denotes the cone essential spectral radius of A and r

K
(A) denotes the cone

spectral radius of A. Then there exists a nonzero element x `K with A(x)¯ r
K
(A)x.

Theorem 1.2 generalizes Bonsall’s theorem [4, Theorem 1.1], in which it is

assumed that A rK is compact, and so ρ
K
(A)¯ 0. In [4, Section 8], Bonsall gives

interesting examples which show that, even if K is a closed, total cone and A rK is

compact, A may fail to be compact on X and r
K
(A) may have different values for

different closed total cones. However, Theorem 1.1 shows that this can only occur if

ρ(A)¯ r(A).

T 1.3. (Bonsall [4]). Let K be a closed, normal cone in a real Banach space

X, and assume that X has the bounded decomposition property. If A :X!X is a bounded

linear operator such that A(K )ZK, then r(A), the spectral radius of A, is in σ(A), the

spectrum of A.

In [4, Section 2], Bonsall has given an elegant example which shows that Theorem

1.3 may fail for a non-normal cone with a nonempty interior. By slightly modifying

Bonsall’s example and working in the Hilbert space of square integrable analytic

functions on the open unit disc in #, one obtains a closed reproducing cone K in a

Hilbert space H and a bounded linear operator A :H!H with A(K)ZK and r(A) a
σ(A). These negative examples increase the interest of a recent result by Toland [15].

Toland proves that, if X is a Hilbert space, K is a closed, total cone in X and

A :X!X is a bounded, self-adjoint linear map with A(K )ZK, then r(A) `σ(A). See

[17] for further results in this direction.

Notice that Theorem 1.3 is different in character from Theorem 1.1 and Theorem

1.2. Under the hypotheses of Theorem 1.3, r(A) may fail to be an eigenvalue of A.

2. Existence and uniqueness of positi�e eigen�ectors

If K is a total cone in a real Banach space X, and A :X!X is a bounded linear

operator such that A(K )ZK, ρ(A)¯ r(A) and ρ
K
(A)¯ r

K
(A), the previously cited

theorems give no information about the existence of an eigenvector u `K with

eigenvalue r(A) or r
K
(A). Recently, Toland [15] has given a self-contained treatment

of Krein–Rutman theory for self-adjoint operators in Hilbert space, and has

incidentally shed some light on the existence of positive eigenvectors when ρ(A)¯
r(A) or ρ

K
(A)¯ r

K
(A). We show here that self-adjointness and Hilbert space structure

are actually irrelevant for much of the work in [15], and that they can be replaced by

hypotheses familiar from the study of mean ergodic theorems [16, pp. 213–215].

However, Toland’s previously cited refinement of Theorem 1.3 involves subtler

questions, and falls outside the purview of our remarks.

If A :X!X is a bounded linear operator on a Banach space X, I denotes the

identity operator and λ aσ(A), we write

(λI®A)−"¯R(λ,A). (2.1)

We recall a definition used by H. Schaefer (see [14, Definition 4.7, p. 326]).
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D 2.1. If X is a Banach space and A :X!X is a bounded linear operator

with spectral radius r(A), A is said to satisfy the growth condition (G) if the family of

operators (λ®r(A))R(λ,A) is uniformly bounded in operator norm for λ" r(A).

Sometimes it will be convenient to use a strengthening of growth condition (G).

D 2.2. If X is a Banach space and A :X!X is a bounded linear

operator with spectral radius r(A)¯ r,A is said to satisfy growth condition (G1) if

there exists a constant M such that

sAns%Mrn for all n& 1. (2.2)

If A satisfies growth condition (G1), it clearly satisfies growth condition (G). In

fact, for λ" r¯ r(A), we have

(λ®r)R(λ,A)¯ (λ®r) λ−" 3
¢

k=!

λ−kAk

and so

s(λ®r)R(λ,A)s% (λ®r) λ−" 3
¢

k=!

λ−kMrk¯M.

If X happens to be a Hilbert space and A is a normal operator, it is well known that

sAs¯ r(A)¯ r and sAns¯ rn for all n& 1, and so growth condition (G1) is satisfied

with M¯ 1.

We also need to recall the definition of a support point and a support boundary

of a closed, convex set.

D 2.3. Let C be a closed, convex set in a real Banach space X. A point

x `C is called a support point of C if there exist a nonzero continuous linear functional

h `X « and a real number α such that h(x)¯α and h(y)&α for all y `C. The support

boundary of C is the union of all support points of C.

It is clear that the support boundary of C is contained in the boundary of C, but

in general the sets are unequal (consider the cone C of nonnegative functions in

Lp[0, 1], 1% p!¢). Bishop and Phelps [1] have proved that the support boundary of

C is always dense in the boundary of C.

With these preliminaries, we can prove our first theorem. In the following, recall

that a subadditive functional on a real vector space X is a map q :X!2 such that,

for all x, y `X and all λ& 0, one has

q(xy)% q(x)q(y) and q(λx)¯ λq(x). (2.3)

T 2.1. Let K be a closed cone in a real Banach space X, and let A :X!X

be a bounded linear operator such that A(K )ZK. Assume the following:

(1) r¯ r(A)" 0.

(2) There exists an x
!
`X with ®x

!
aK and Ax

!
& rx

!
.

(3) A satisfies growth condition (G) (see Definition 2.1).

Then there exists a θ `K «®²0´ such that ©x
!
, θª" 0 and A«(θ)¯ rθ.

Proof. Define q
"
:X!2 by

q
"
(x)¯ inf²sxys :y `K ´. (2.4)
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We leave it to the reader to verify that q
"

is a subadditive functional, that

q
"
(x)¯ 0 for all x ` (®K ), that q

"
(u)% q

"
(�) for all u, � `X with u% �, and that

0% q
"
(x)% sxs for all x. Because K is closed and x

!
a (®K ), we see that q

"
(x

!
)" 0.

We next define a map q :X!2 as

q(x)¯ lim sup
λ!r

+

q
"
((λ®r)R(λ,A)x). (2.5)

Because A satisfies growth condition (G), there exists a constant M such that, for all

λ" r,
(λ®r) sR(λ,A)s%M (2.6)

and this implies that, for all x,

0% q(x)%Msxs. (2.7)

Because (λ®r)R(λ,A) (K )ZK for all λ" r, we also see that

q(x)¯ 0 for all x ` (®K ) (2.8)

and, for all u, � `X with u% �,
q(u)% q(�). (2.9)

Our assumptions about A imply that, for all k" 0,

Akx
!
& rkx

!
. (2.10)

If λ" r, it follows from (2.10) that

(λ®r)R(λ,A)x
!
& (λ®r) λ−" 3

¢

k="

λ−krkx
!
¯x

!
. (2.11)

It follows from (2.11) that, for λ" r,

q
"
((λ®r)R(λ,A)x

!
)& q

"
(x

!
)" 0

q(x
!
)¯ lim sup

λ!r

q
"
(λ®r)R(λ,A)x

!
)& q

"
(x

!
).

(2.12)

Finally, we leave it to the reader to deduce from (2.5) and the fact that q
"

is a

subadditive functional that q is a subadditive functional.

We claim that, if y¯ rx®Ax for some x `X, then q(y)¯ 0. To see this, note that,

for λ" r,
(λ®r)R(λ,A) y¯ (λ®r)x(r®λ) (λ®r)R(λ,A)x. (2.13)

It follows from (2.6) and (2.13) that, for λ" r,

q
"
((λ®r)R(λ,A) y)% s(λ®r)x(r®λ) (λ®r)R(λ,A)xs

% (λ®r) sxs(λ®r)Msxs
(2.14)

which implies that q(y)¯ 0. Note that this argument also shows that q(®y)¯ 0.

We now apply the Hahn–Banach Theorem (see [6, p. 78]) with the subadditive

functional q. On the linear span of x
!
, define a linear functional φ by

φ(βx
!
)¯ βq(x

!
).

If β& 0, it is immediate that φ(βx
!
)% q(βx

!
), while we have φ(βx

!
)! 0% q(βx

!
) if

β! 0. It follows from the Hahn–Banach Theorem that φ can be extended to a linear

map θ :X!2 such that
θ(x)% q(x) for all x.
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By using (2.7), we see that

θ(x)% q(x)%Msxs and θ(®x)¯®θ(x)% q(®x)%Ms®xs

and so rθ(x)s%Msxs for all x, and θ is continuous. If x% 0, we have

θ(x)% q(x)% 0

and so θ `K «. Also, we see that θ(x
!
)¯ q(x

!
)" 0, and so θ1 0. If y¯ rx®Ax, then

©y, θª% q(y)¯ 0.

As already observed, q(®y)¯ 0 also, and so

©®y, θª% q(®y)¯ 0.

We conclude that, for all x `X,

©rx®Ax, θª¯ 0

and so A«(θ)¯ rθ.

The proof of Theorem 2.1 is in the spirit of an argument on [4, p. 66].

If K is total in Theorem 2.1, θ(x)" 0 for some x `K. Otherwise, the facts that

θ `K « and K is total would imply that θ¯ 0, a contradiction.

As an immediate consequence of Theorem 2.1, we obtain a more general-seeming

theorem. In Theorem 2.2, note that the spectral mapping theorem implies that

(r(A))m¯ r(Am).

T 2.2. Let K be a closed, total cone in a real Banach space X, and let

A :X!X be a bounded linear map with A(K )ZK. Assume the following:

(1) r¯ r(A)" 0.

(2) There exist x
!
`X and an integer m& 1 with ®x

!
aK and Amx

!
& rmx

!
.

(3) Am satisfies growth condition (G) (see Definition 2.1).

Then there exists a θ `K «®²0´ with A«(θ)¯ rθ.

Proof. If we apply Theorem 2.1 to Am, we see that there exists a ψ `K «®²0´ with

©x
!
,ψª" 0 and (A«)m(ψ)¯ rmψ. Furthermore, because K is total, there exists a

u `K with ©u,ψª" 0. Define θ `X « by

θ¯ 3
m−"

j=!

r−j(A«)j(ψ).

Because (A«) (K «)ZK «, we see that θ `K « ; and

©u, θª&©u,ψª" 0

and so θ1 0. An easy calculation shows that A«(θ)¯ rθ.

We also want to prove, under hypotheses such as those of Theorem 2.2, that A has

a positive eigenvector corresponding to the eigenvalue r(A). First, we need some more

definitions.

D 2.4. Let C be a closed, convex subset of a Banach space X, and let

T :X!X be a bounded linear operator. We shall say that T has the weak properness
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property on C if, whenever ©x
n
:n& 1ªZC is a bounded sequence in C with

lim
n!¢ sT(x

n
)s¯ 0, then there exists a subsequence ©x

nj

ª which converges in the

weak topology on X.

L 2.1. Let K be a closed wedge in a Banach space X, and let A :X!X be a

bounded linear operator with A(K )ZK. Let r¯ r
K
(A) be defined by (1.8), and let ρ¯

ρ
K
(A) be defined by (1.16). If (i) X is reflexi�e, or (ii) e�ery closed, bounded con�ex

subset of K is weakly compact, or (iii) ρ
K
(A)! r

K
(A), then rI®A has the weak

properness property on K.

Proof. Assertions (i) and (ii) follow immediately from the Eberlein–Smulyan

Theorem [16, p. 141]. Assertion (iii) follows by a standard argument, but we give the

proof for completeness. Assume that ©x
n
:n& 1ª is a bounded sequence in K, and that

lim
n!¢ srx

n
®Ax

n
s¯ 0. Define B¯ r−"A and y

n
¯x

n
®Bx

n
, so that lim

n!¢ sy
n
s¯

0. By the definition of ρ
K
(A), there exists an integer m& 1 and a number λ with 0%

λ! 1 such that α
K
(Bm)% λ (see (1.15)). An easy induction yields

x
k
¯Bmx

k
3

m−"

j=!

B jy
k
. (2.15)

If we define Σ¯²x
k
:k& 1´, Γ¯²y

k
:k& 1´ and L¯3m−"

j=!
B j, then Γ has compact

closure, and (2.15) implies that

ΣZBm(Σ )L(Γ ). (2.16)

Using the Kuratowski measure of noncompactness α, we derive from (2.16)

α(Σ )%α(Bm(Σ ))α(L(Γ ))¯α(Bm(Σ ))% λα(Σ ).

Since λ! 1, we conclude that α(Σ )¯ 0 and Σ has compact closure. Thus there exists

a subsequence n
i
such that ©x

ni

ª converges in the norm topology.

D 2.5. Let C be a closed, convex subset of a Banach space X, and let

B :X!X be a bounded linear operator with B(C )ZC. We shall say that B has the

fixed point property on C if, whenever DZC is a closed, bounded convex subset of

C with B(D)ZD, then B has a fixed point in D.

As is suggested by Lemma 2.2, the weak properness property and the fixed point

property are closely related.

L 2.2. Let K be a wedge in a Banach space X, and let A :X!X be a bounded

linear operator with A(K )ZK. Assume the following:

(1) r¯ r(A)" 0.

(2) A satisfies growth condition (G1).

(3) rI®A satisfies the weak properness property on K.

Then BB r−"A has the fixed point property on K.

Proof. Let DZK be a closed, bounded convex set with B(D)ZD. Because

A satisfies the growth condition (G1), there exists a constant M such that, for any

x `X,
sup²sBnxs :n& 0´%Msxs. (2.17)
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We define a norm r[r on X by

rxrB sup²sBnxs :n& 0´. (2.18)

The reader can verify that r[r is indeed a norm, and (2.17) implies that r[r and s[s are

equivalent. Furthermore, it is immediate from (2.18) that, for all x `X,

rBxr% rxr
and so rBr% 1.

Now select u `D, and, for each integer n& 1, define a map B
n
:D!D by

B
n
(x)¯ n−"u(1®n−")B(x).

Because rBr% 1, one can see that B
n

is a Lipschitz map with Lipschitz constant less

than or equal to 1®n−". The contraction mapping principle implies that B
n
has a fixed

point x
n
, and so

x
n
®r−"A(x

n
)¯ n−"u®n−"B(x

n
).

Because B(x
n
) `D, and we assume that D is bounded, we conclude that

lim
nU¢

srx
n
®Ax

n
s¯ 0.

The weak properness property implies that, by taking a subsequence, we can assume

that x
n
Ux. Because D is closed and convex, it is weakly closed, and x `D. Because

rI®A is continuous in the weak topology on D, then rx®Ax¯ 0, and the proof is

complete.

T 2.3. Let the assumptions and notation be as in Theorem 2.2. In addition,

assume that rI®A satisfies the weak properness property on K (see Definition 2.4). Then

there exist θ `K «®²0´ with A«(θ)¯ rθ and y `K®²0´ with A(y)¯ ry and ©y, θª" 0.

Proof. We have already proved the existence of θ. Select x `K with ©x, θª" 0.

For each integer k& 1, define λ
k
¯ rk−" and define x

k
as

x
k
¯ (λ

k
®r)R(λ

k
,A)x.

Because λ
k
" r, x

k
`K, and growth condition (G) implies that ©x

k
ª is a bounded

sequence. A calculation gives

©x
k
, θª¯©x, (λ

k
®r)R(λ

k
,A«) θª¯©x, θª.

Using (2.13), we see that

(rI®A)x
k
¯ (λ

k
®r)x(r®λ

k
)x

k

and so we conclude that

lim
k!¢

srx
k
®Ax

k
s¯ 0.

It follows from the weak properness property that there exists a weakly convergent

subsequence x
ki

U y `K and that

©y, θª¯ lim
i!¢

©x
ki

, θª¯©x, θª" 0.

Finally, we see that

0¯ lim
i!¢

rx
ki

®Ax
ki

¯ ry®Ay.
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R 2.1. Instead of it being assumed that a point x
!

exists as in Theorem

2.2(2), suppose that there exist m& 1 and u1 0 so that Amu¯ rmu. If ®u aK, we can

take x
!
¯ u, and otherwise we can take x

!
¯®u. Thus the conclusions of Theorem 2.2

and Theorem 2.3 are satisfied if, instead of assuming the existence of x
!
as in Theorem

2.2, we assume that, for some m, Am has an eigenvector u with eigenvalue rm. If Xh
denotes the complexification of X, and Ah is the usual extension of A to Xh , then, if there

exists an eigenvalue λ of Ah such that λm¯ rm, where r¯ r(A) and m& 1, then it

follows that (Ah )m(w)¯ rmw for some w `Xh , w1 0. This in turn implies that there

exists a u `X, u1 0, with Amu¯ rmu.

If X is a real Banach lattice, Remark 2.1 can be refined. As usual, Xh denotes the

complexification of X.

C 2.1. Let X be a real Banach lattice in the ordering induced by a closed

cone KZX, and assume that the absolute �alue on X extends to Xh (see [13, p. 274]). Let

A :X!X be a bounded linear operator with A(K )ZK. Assume the following:

(1) r(A)" 0.

(2) There exists an eigen�alue λ `σ(A)¯σ(Ah ) with rλr¯ r(A).

(3) A satisfies growth condition (G).

(4) rI®A satisfies the weak properness property on K.

Then there exist θ `K «®²0´ with A«(θ)¯ rθ and y `K®²0´ with Ay¯ ry and

©y, θª" 0.

Proof. By Theorem 2.3, it suffices to prove that there exists an x
!
`X which

satisfies Theorem 2.2(2). If Ah is the complexification of A, then by assumption there

exist u `Xh , u1 0, and λ `#, rλr¯ r, with Ah (u)¯ λu. It follows that

rAh (u)r¯ rλr rur%Ah (rur)¯A(rur).

Taking x
!
¯ rur, we see that Theorem 2.2(2) is satisfied.

The hypotheses of Theorem 2.1, Theorem 2.2 and Theorem 2.3 are close to

optimal, as is indicated by the following examples.

E 2.1. Let l
"

denote the real Banach space of absolutely summable

sequences x¯ (x
"
,x

#
,… ,x

n
,…). If x ` l

"
, we write

sxs
"
¯3

¢

j="

rx
j
r.

Define X¯2¬l
"
. X is a real Banach space, and, for (s,x) `X, we define

s(s,x)s¯ rsrsxs
"
.

Define a set KZX by

K¯²(s,x) `X : rsr% sxs
"
and x

i
& 0 for 1% i!¢, where x¯ (x

"
,x

#
,…)´.

We leave to the reader the verification that K is a closed cone. If (s,x) `K, then

(®s,x) `K, and so K®K contains all points of the form (2s, 0), s `2. Similarly, one

can verify that K®K contains all points of the form (0,x) for x ` l
"
, and one concludes

that X¯K®K. The reader can also verify that K is normal.
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Define U to be the shift to the right on l
"
:

U(x)¯ (0,x
"
,x

#
,… ,x

k
,…) where x¯ (x

"
,x

#
,… ,x

k
,…).

Define A :X!X by

A(s,x)¯ (s,Ux).

We leave to the reader the verification that A(1, 0)¯ (1, 0) and that sAns¯ 1 for all

n& 1. It follows that r(A)¯ 1, A satisfies growth condition (G1), and all hypotheses

of Theorem 2.2 and Theorem 2.1 are satisfied, and so there exists a θ `K «®²0´ with

A«(θ)¯ θ and θ((1, 0))" 0. Recall that X « can be isometrically identified with 2¬l¢,

where l¢ is the real Banach space of bounded sequences in the sup norm and, for

(t, y) `2¬l¢,

s(t, y)s¯max(rtr, sys
l¢

).

If (t, y) `2¬l¢, then (t, y) gives an element of X « as follows:

((t, y)) (s,x)¯ st3
¢

i="

x
i
y
i
.

Define V : l¢ ! l¢ to be the shift to the left, so that

V(y)¯ (y
#
, y

$
,… , y

k
,…) where y¯ (y

"
, y

#
,… , y

k
,…).

With the above-mentioned identification of 2¬l¢ and X «, we have

A«(t, y)¯ (t,V(y)).

If e is the element of l¢ all of the components of which equal 1, and θ¯ (1, e), one

can verify that θ((1, 0))" 0, θ `K « and A«(θ)¯ θ, as is insured by Theorem 2.1. Note,

however, that (1, 0) is also a fixed point of A« but that (1, 0) aK «.
However, I®A does not have the weak properness property on K, and there does

not exist a u `K®²0´ with A(u)¯ u. Indeed, if u¯ (s,x) `K®²0´ and Au¯ u, we find

that

(s,x)¯A((s,x))¯ (s,Ux).

This implies that x¯Ux, from which one sees that x¯ 0. Because rsr is smaller than

or equal to sxs, for (s,x) `K, we conclude that s¯ 0, which contradicts u1 0. This

shows that the weak properness property, or something like it, is necessary in Theorem

2.3.

If x¯ (1, 0) in this example, one can verify that d(x,K ), the distance of x to K,

equals sxs, and d(x,®K )¯ sxs. Such an example is impossible if the map y!sys
is Fre! chet-differentiable away from 0. One can prove that, if K is a closed, total cone

in a real Banach space X, x1 0, and the map y!sys is Fre! chet-differentiable away

from 0, then either d(x,K )! sxs or d(x,®K )! sxs.

In our next example, we show that, if all hypotheses of Theorem 2.1 except growth

condition (G) are satisfied, then, in the notation of Theorem 2.1, it may not be

possible to select a positive eigenvector θ of A« with ©x
!
, θª" 0.

E 2.2. For i& 1, define ε
i
¯ i−", and note that

0
n

i="

(1ε
i
)¯ n1 and lim

n!¢
(n1)"/n ¯ 1. (2.19)
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Define a weighted shift operator U : l
"
! l

"
by

U(x)¯ (0, (1ε
"
)x

"
, (1ε

#
)x

#
,… , (1ε

k
)x

k
,…).

Let X¯2¬l
"
, let K be defined as in Example 2.1, and define A :X!X by A(s,x)¯

(s,Ux). The reader can verify that A(K )ZK. If x ` l
"
and Uk(x)¯ y, one can see that

y
j
¯ 0 for j%k and

y
j+k

¯x
j 0 0

j+k−"

i=j

(1ε
i
)1 j& 1. (2.20)

It follows from (2.20) that

sUks¯0
k

i="

(1ε
i
)¯k1

and so r(A)¯ 1, but A does not satisfy growth condition (G1). Also, using (2.20), one

can see that, for any nonzero x ` l
"
, lim

k!¢ sUkxs¯¢, and this implies that A has

no nonzero fixed point in K.

Define V : l¢ ! l¢ by

V(y)¯ ((1ε
"
) y

#
, (1ε

#
) y

$
,… , (1ε

k
) y

k+"
,…) where y¯ (y

"
, y

#
,…).

Identifying X « with 2¬l¢, one can see that

A«((t, y))¯ (t,V(y)).

If A«(t, y)¯ (t, y), the formula for V implies that

y
j
¯ 01j1 y

"
for j& 2. (2.21)

If t¯ 0, y
"
" 0 and y

j
is given by (2.21), then A«(t, y)¯ (t, y) and (t, y) `K «, but

((t, y)) (1, 0)¯ 0. If A«(t, y)¯ (t, y) and t" 0, then ((t, y)) (1, 0)¯ t" 0 and (2.21) is

satisfied. However, if we select j so large that y
"
j−"! t and define x ` l

"
by x

i
¯ 0 for

i1 j and x
j
¯ 1, we see that (®1,x) `K and ((t, y)) (®1,x)¯®ty

"
j−"! 0, and so

(t, y) aK «. We have proved that there does not exist a θ `K «®²0´ such that A«(θ)¯
θ and θ((1, 0))" 0, and, comparing Theorem 2.1, we conclude that A does not satisfy

growth condition (G) (as can be seen directly).

Theorem 2.1, Theorem 2.2 and Theorem 2.3 concern the existence of positive

eigenvectors. One can also ask about the uniqueness of such eigenvectors. Classically,

this question has been studied via the concept of irreducibility (see [13, pp. 269, 270]).

Recall that, if K is a closed cone in a Banach space X, then a point z `K is called a

quasi-interior point of K if X is the closed linear span of [0, z]. The reader can verify

that, if z is a quasi-interior point of K, then z is not in the support boundary of K. If

A :X!X is a bounded linear operator with A(K )ZK and r¯ r(A), then A is called

irreducible if, for every λ" r and every x `K®²0´, AR(λ,A)x is a quasi-interior point

of K. Note that, if x `K is an eigenvector of A with eigenvalue r, λ" r, and A is

irreducible, then (λ®r) λ−"[xAR(λ,A)x]¯x is a quasi-interior point, and therefore

x is not in the support boundary of K.

If K is a closed, total cone in a Banach space X of dimension greater than 1, then

the previously mentioned theorem of Bishop and Phelps [1] asserts that the support

points of K are dense in the boundary of K. Since no support point can be a quasi-

interior point of K, it follows that K contains nonzero points which are not quasi-

interior points. Surprisingly, this simple observation seems new. As is remarked on
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[13, p. 270], the existence of nonzero elements of K which are not quasi-interior points

leads to a refinement of a uniqueness result for positive eigenvectors (see [13, Theorem

3.2, p. 270]). Thus the support boundary is useful even in the ‘classical ’ approach to

the uniqueness of positive eigenvectors. Here we shall generalize irreducibility by

directly assuming that our positive operator A has no eigenvector which lies in the

support boundary of K and has eigenvalue r(A), and we shall exploit this assumption

to prove the uniqueness of positive eigenvectors.

If X is a Banach space and B :X!X is a bounded linear operator, we denote the

null space of B by N(B) :

N(B)¯²x `X rBx¯ 0´. (2.22)

If λ is an eigenvalue of B, recall that λ is called algebraically simple if

V
k&

"
N((λI®B)k) is 1-dimensional.

Lemma 2.3 is a simple exercise.

L 2.3. Let X be a Banach space, and let A :X!X be a bounded linear

operator which satisfies growth condition (G) (see Definition 2.1). Then, if r¯ r(A), we

ha�e

5
¢

k="

N((rI®A)k)¯N(rI®A).

Proof. Suppose that this is not true. Then there exist x1 0 and y with

ry®Ay¯x and rx®Ax¯ 0.

By a simple induction argument, we find that

Aky¯ rky®krk−"x for k& 1. (2.23)

If λ" r, (2.23) implies that

(λ®r)R(λ,A) y¯ (λ®r) λ−" 3
¢

k=!

λ−kAky¯ (λ®r) λ−" 3
¢

k=!

λ−k[rky®krk−"x]

¯ y®(λ®r)−"x.

It follows that

lim sup
λ!r

+

s(λ®r)R(λ,A) ys¯ lim sup
λ!r

+

(λ®r)−" s(λ®r) y®xs¯¢

which contradicts growth condition (G).

We shall also need a simple geometric lemma.

L 2.4. Let K be a closed cone in a Banach space X. Suppose that x
!
and x

"

are distinct �ectors with x
"
`K. If we define x

t
¯ (1®t)x

!
tx

"
, then either (i) there

exists a τ!¢ such that xτ `K and x
t
aK for all t" τ, or (ii) there exists a σ"®¢ such

that xσ `K and x
t
aK for all t!σ.

Proof. Define τ¯ sup²t :x
t
`K ´ and σ¯ inf²t :x

t
`K ´. Because x

"
`K, then τ and

σ are well defined. We must prove that τ!¢ or σ"®¢. If τ¯¢, there exists a

sequence t
k
!¢ with x

tk

`K. It follows that lim
k!¢ t−"

k
x
tk

¯ (x
"
®x

!
) `K. If
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σ¯®¢, a similar argument shows that x
!
®x

"
`K. If u¯ (x

"
®x

!
), then we have

assumed that u1 0, and we have shown that ³u `K if σ¯®¢ and τ¯¢. This

contradicts the fact that K is a cone, and so σ"®¢ or τ!¢.

T 2.4. Let K be a closed, total cone in a real Banach space X, and let

A :X!X be a bounded linear operator with A(K )ZK. Assume the following:

(1) r(A)¯ r" 0.

(2) There exist y `X and m& 1 with ®y aK and Amy& rmy.

(3) A satisfies the growth condition (G1) (see Definition 2.2).

(4) rI®A satisfies the weak properness property on K (see Definition 2.4).

Then there exist x
"
`K®²0´ and θ `K «®²0´ with A(x

"
)¯ rx

"
and A«(θ)¯ rθ and

©x
"
, θª" 0. Furthermore, we ha�e

5
¢

k="

N((rI®A)k)¯N(rI®A) (2.24)

and, if the dimension of N(rI®A) is greater than 1, then A has an eigen�ector u which

lies in the support boundary of K and has eigen�alue r. If A has no eigen�ector which

lies in the support boundary of K and has eigen�alue r, then r is an algebraically simple

eigen�alue of A.

Proof. The existence of x
"

and θ follow from Theorem 2.3, because growth

condition (G1) is less general than growth condition (G). Equation (2.24) follows

from Lemma 2.3. Thus it suffices to assume that dim(N(rI®A))& 2 and prove the

existence of an eigenvector of A with eigenvalue r in the support boundary of K.

Take x
!
`N((rI®A)) such that x

!
and x

"
are linearly independent. Define

x
t
¯ (1®t)x

!
tx

"
. By Lemma 2.4, there exists a number γ such that xγ `K and either

x
t
aK for all t" γ or x

t
aK for all t! γ. For definiteness, assume that x

t
aK for

γ! t. Because x
!
and x

"
are linearly independent, we know that xγ 1 0. It follows that

there exists a δ" 0 with x
t
aKe(®K ) for γ! t! γδ.

Let B¯ r−"A and let rxr be the norm defined by (2.18) so we know that

rB(x)r% rxr for all x and rxr%Msxs, where M is a constant as in Definition 2.2.

Choose a fixed number t with γ! t! γδ such that

ρ(x
t
)B inf²rx

t
®yr :y `K ´! rx

t
r.

(Such a choice is possible because ρ(xγ)¯ 0! rxγr). If ρ(x
t
)!α! rx

t
r, then define a set

Cα as
Cα ¯²y r y `K and ry®x

t
r%α´.

The reader can verify that Cα is a closed, bounded convex set ; Cα is nonempty and

0 aCα because ρ(x
t
)!α! rx

t
r. If y `Cα, then B(y) `K (because y `K ) and

rB(y)®x
t
r¯ rB(y®x

t
)r% ry®x

t
r%α.

Thus we have shown that B(Cα)ZCα, and Lemma 2.2 implies that B has a fixed point

in Cα. Select a sequence α
k
with α

k
! ρ(x

t
)+, and, for each α

k
, let u

k
be a fixed point of

B in Cα
k

. By the weak properness property, we can assume by taking a subsequence

that u
k
U u. Because Cα is closed in the weak topology, we have u `Cα for

ρ(x
t
)!α! rx

t
r. In particular, we have u1 0, u `K and rx

t
®ur% ρ(x

t
), and so the

definition of ρ(x
t
) implies that rx

t
®ur¯ ρ(x

t
). The weak continuity of B implies that

Bu¯ u.
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It remains to prove that u is in the support boundary of K. Let V¯²y r ry®x
t
r!

ρ(x
t
)´ so that V is an open convex set disjoint from the closed, convex set K. The

Hahn–Banach Theorem implies that there exists a nonzero continuous linear

functional h on X with h(y)& 0 for all y `K and h(z)! 0 for all z `V. Because

u `Va fK, we must have h(u)¯ 0, and u is in the support boundary of K.

If X is reflexive or K is locally weakly compact or ρ
K
(A)! r

K
(A), Lemma 2.1

implies that rI®A satisfies the weak properness property on K. If X is a real Hilbert

space with inner product ©[,[ª, the Riesz–Fischer Theorem implies that there is a

conjugate linear isometry J :X!X « defined by J(y) (x)B©x, yª. If A :X!X is a

bounded linear operator and A* denotes the Hilbert space adjoint of A, then A*¯
J−"A«J. Using these observations, one easily obtains a Hilbert space version of

Theorem 2.4.

T 2.5. Let K be a closed, total cone in a real Hilbert space H, and let

A :H!H be a bounded linear operator with A(K )ZK. Assume the following:

(1) r(A)B r" 0.

(2) There exist y `X and m& 1 with ®y aK and Amy& rmy.

(3) A satisfies growth condition (G1) (which is true if A is normal ).

Then there exist x
"
`K®²0´ and θ `K*®²0´ with A(x

"
)¯ rx

"
, A*(θ)¯ rθ and

©x
"
, θª" 0. (Here K*B ²y r ©x, yª& 0 for all x `K ´). Furthermore, (2.24) is satisfied,

and, if the dimension of N(rI®A) is greater than 1, then A has an eigen�ector u which

lies in the support boundary of K and has eigen�alue r.

3. The cone spectral radius and the functional χ
K
(A)

In [15], Toland restricts himself to self-adjoint operators in a real Hilbert space H

with inner product ©[,[ª, and he never introduces the cone spectral radius. Instead,

if A :H!H is a bounded linear operator and K is a closed wedge, Toland defines

χ
K
(A)¯ sup²©Ax,xª :x `K and sxs% 1´ (3.1)

and works with χ
K
(A). We shall now relate χ

K
(A) to sAs

K
and r

K
(A) (see equations

(1.7) and (1.8)).

L 3.1. Let K be a closed wedge in a real Hilbert space H with inner product

©[,[ª. Let A :H!H be a bounded linear operator with A(K )ZK. Then one has

χ
K
(A)% sAs

K
and

lim sup
n!¢

(χ
K
(An))"/n % lim sup

n!¢
(sAns

K
)"/n ¯ r

K
(A). (3.2)

If K is a closed cone and ρ
K
(A)! r

K
(A) (see (1.16)), then equality holds in (3.2). (Recall

that ρ
K
(A)¯ 0 if A rK is compact). If A is self-adjoint and ©Ax,xª& 0, for all x in the

closed linear span of K, then
χ
K
(A)¯ sAs

K
. (3.3)

Proof. The inequality χ
K
(A)% sAs

K
follows from the Cauchy–Schwarz in-

equality, and (3.2) is then an immediate consequence. If ρ
K
(A)! r

K
(A)Bα, Theorem

1.2 implies that there exists an x `K, sxs¯ 1, with A(x)¯αx, and so

χ
K
(An)&©Anx,xª¯αn

which implies equality in (3.2).
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If A is self-adjoint and ©Ax,xª& 0, for x in H
!
, the closed linear span of K, then

define a bilinear form (u, �) as (u, �)B©Au, �ª. Because we assume that (u, u)& 0 for

all u `H
!
, the Cauchy–Schwartz inequality applies and gives

(u, �)#% (u, u) (�, �).

Taking u¯x `K with sxs% 1 and �¯Ax, we obtain

©Ax,Axª#¯ sAxs%%©Ax,xª©A#x,Axª% χ
K
(A) sA#xs sAxs

% χ
K
(A) (sAs

K
)$.

(3.4)

If we select a sequence x
k
`K with sx

k
s¯ 1 and sAx

k
s!sAs

K
, we obtain from (3.4)

(sAs
K
)%% χ

K
(A) (sAs

K
)$

which implies that sAs
K

% χ
K
(A). We already know the opposite inequality, and so

we obtain (3.3).

L 3.2. Suppose that K is a closed wedge in a real Hilbert space H with

inner product ©[,[ª. Let A :H!H be a bounded, self-adjoint linear operator with

A(K )ZK. Then, for all n& 1, we ha�e sAns
K

¯ (sAs
K
)n, and so r

K
(A)¯ sAs

K
.

Proof. We know that

r
K
(A)¯ inf²(sAns

K
)"/n :n& 1´ and sAns

K
% (sAs

K
)n

and so it suffices to prove that r
K
(A)¯ sAs

K
. Notice that, for any n& 1, A#n is self-

adjoint, A#n(K )ZK, and ©A#ny, yª& 0 for all y in the closed linear span of K. It

follows from Lemma 3.1 that

sA#ns
K

¯ χ
K
(A#n)¯ sup²©A#nx,xª :x `K, sxs¯ 1´

¯ sup²sAnxs# :x `K, sxs¯ 1´¯ (sAns
K
)#.

If we apply this observation repeatedly, then we see that

(sAs
K
)m¯ sAms

K
for m¯ 2j, j& 1.

It follows that

r
K
(A)¯ lim

m!¢
(sAms

K
)"/m¯ sAs

K

and the proof is complete.

L 3.3. Suppose that K is a closed wedge in a real Hilbert space H and that

B :H!H is a bounded, normal linear operator such that (B*B) (K )ZK. Then it follows

that sBks
K

¯ (sBs
K
)k for all k& 1.

Proof. B*B is self-adjoint, and so Lemma 3.2 implies that

(sB*Bs
K
)k¯ s(B*B)ks

K
. (3.5)

However, we obtain from Lemma 3.1

s(B*B)ks
K

¯ s(B*)kBks
K

¯ sup²©(B*)kBkx,xª :x `K, sxs¯ 1´

¯ sBks#
K
.

(3.6)
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Using (3.5) and (3.6), we see that

(sBs
K
)k¯ sBks

K
for all k& 1.

Lemma 3.1, Lemma 3.2 and Lemma 3.3 enable us to give a refinement of Theorem

1.2.

T 3.1. Let K be a closed cone in a real Hilbert space H, and let

A :H!H be a bounded, normal linear operator such that A(K )ZK and A*(K )ZK.

If ρ
K
(A)! sAs

K
(where ρ

K
(A) is defined by (1.16)), then there exists a u `K®²0´

with Au¯ (sAs
K
) u and χ

K
(A)¯ sAs

K
. In particular, these conclusions hold if A rK is

compact.

Proof. It follows from Lemma 3.3 that r
K
(A)¯ sAs

K
Bα, and Lemma 3.1

implies that χ
K
(A)%α. If ρ

K
(A)!α, then Theorem 1.2 implies that there exists a

u `K with sus¯ 1 and Au¯αu. If A rK is compact and α¯ 0, then A(x)¯ 0 for all

x `K, and such a u certainly exists. It follows that

χ
K
(A)&©Au, uª¯α

and so χ
K
(A)¯ sAs

K
.
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