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Nonexpansive Periodic Operators in l1 with Application
to Superhigh-Frequency Oscillations in a
Discontinuous Dynamical System with Time Delay
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We prove that the iterates of certain periodic nonexpansive operators in l1

uniformly converge to zero in l� norm. As a by-product we show that, for any
solution x(t) of the equation

x* (t)=&sign(x(t&1))+ f (x(t)), t�0, x| [&1, 0] # C[&1, 0]

where f : R � (&1, 1) is locally Lipschitz, the number of zeros of x(t) on any
unit interval becomes finite after a period of time, with the single exception of
the case f (0)=0 and x(t)#0.

KEY WORDS: Nonexpansive operators; differential delay equations.

1. INTRODUCTION

Recall that a map F: D/X � X on a Banach space (X, & }&) is called ``non-
expansive'' if &F(a)&F(b)&�&a&b& for all a, b # D. Here we shall be
interested in X=l1(Z), the Banach space of biinfinite absolutely summable
real sequences (an | n # Z) , with &a&1 :=�n # Z |an |. As usual, l+

1 (Z)=
[a # l1(Z) : an�0 \n # Z], and we shall be interested in nonexpansive maps
F: l+

1 (Z) � l+
1 (Z). Our maps will also be ``integral-preserving'' (so &F(a)&1

=&a&1 for all a # l+
1 (Z)) and ``order-preserving'' (defined below), and F

will, in a precise sense described later, be periodic of period N, where N is
a positive integer.
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If a=(an | n # Z) is a bounded, biinfinite sequence, we define &a&� ,
as usual, by

&a&�=sup[ |an |: n # Z]

If F is as above, F k will denote the k th iterate of F, the composition of F
with itself k times. We shall be interested in the following questions:

Question 1. Let DR=[a # l+
1 (Z) : &a&1�R] and suppose that

F: DR � DR is as above. Is it true that limk � � &F k(a)&�=0 for every
a # DR? Is it true that limk � � &F k(a)&�=0, uniformly with respect to
a # DR?

Question 2. If the answers to Question 1 are negative, what can be
said about the iterates F k(a) in general?

Our original motivation for studying such questions came from a very
special case. Assume that _: [0, R] � [0, R] and {: [0, R] � [0, R] are
continuous, strictly increasing functions satisfying _(0)={(0)=0 and

*�
_(t1)&_(t2)

t1&t2

�1&*, *�
{(t1)&{(t2)

t1&t2

�1&* (1)

for some * # (0, 1�2) and all t1{t2 in [0, R]. Define F : DR :=[a # l+
1 (Z):

&a&1�R] � DR by F(a)=b, where

b2n =_(a2n)+{(a2n&1), n # Z
(2)

b2n+1=(Id&{)(a2n+1)+(Id&_)(a2n), n # Z

As a very special case of our general results, we shall prove below that
limk � � &F k(a)&�=0, uniformly with respect to a # DR .

The ideas used in analyzing the above special case are sufficient to
prove the absence of superhigh-frequency solutions x(t) of the equation

x* (t)=&sign(x(t&1))+ f (x(t)), t�0
(3)

x| [&1, 0]=. # C([&1, 0])

Here sign(w)=1 for w>0, sign(w)=0 for w=0, sign(w)=&1 for w<0,
and f : R � (&1, 1) is locally Lipschitz. By the absence of superhigh-fre-
quency solutions we mean that if either .�0 or .#0 and f (0){0, then
there exist T=T.�0 and an integer n. such that x| (t&1, t) has at most n.

zeros for all t�T. . A more precise statement is given in Section 3.
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In this paper we restrict ourselves for simplicity to X=l1(Z). In a
future paper we shall consider ``nonexpansive, periodic'' nonlinear operators
in l1(Zd ) and L1(Rd ), d�1.

For the reader's convenience we mention our principal results.

v We present positive answers to Question 1 for a general, convex
class of nonexpansive operators F: l+

1 (Z) � l+
1 (Z) which is closed

under composition. Theorem 7 in Section 2.4 gives sufficient condi-
tions for pointwise convergence, &F k(x)&� � 0 as k � �, while
Theorem 9 in Section 2.4 describes uniform convergence &F k(x)&�

� 0. Theorem 1 in Section 2.1 describes uniform convergence
&F k(x)&� � 0 for a special operator F related to discontinuous delay
differential equations.

v We give new convergence results for general nonexpansive operators
in Rn with & }&1 -norm in Theorems 2, 3, 4, and 5 of Section 2.3.

v We establish the absence of infinite frequency oscillations in system
(3) in Theorems 11 and 12 of Section 3.1.

The paper is organized as follows: in Section 2.1 we consider an example
of a nonexpansive operator in l1(Z) which relates to Eq. (3) and illustrates the
main ideas implying the uniform convergence &F k(x)&� � 0. In Sections 2.2
and 2.3 we define the main classes of nonexpansive operators in l1(Z)
which are studied later, and we prove related statements on convergence
for the finite-dimensional case. In Section 2.4 we prove our main con-
vergence results for operators in l1(Z). Finally, Section 3 is devoted to the
study of Eq. (3).

2. NONEXPANSIVE PERIODIC OPERATORS

2.1. Nonexpansive Periodic Operators: A Basic Example

Let an operator F: l+
1 (Z) � l+

1 (Z) be defined by (2).
For x=(xn | n # Z) # l+

1 (Z) denote

$(x)=max
n # Z

x2n+1 , 2(x)=max
n # Z

x2n

Proposition "I}I For any x, y # l+
1 (Z),

&F(x)&1=&x&1 , &F(x)&F( y)&1�&x& y&1

$(F(x))+2(F(x))�$(x)+2(x)
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Proof. The first equality is trivial. For the second relation, we denote
z=F(x)&F( y) and then compute

&z&1 = :
n # Z

( |z2n |+|z2n&1| )

� :
n # Z

|_(x2n+1)&_( y2n+1)|+ :
n # Z

|{(x2n)&{( y2n)|

+ :
n # Z

|x2n+1&_(x2n+1)& y2n+1+_( y2n+1)|

+ :
n # Z

|x2n&{(x2n)& y2n+{( y2n)|

= :
n # Z

|x2n+1& y2n+1|+ :
n # Z

|x2n& y2n |=&x& y&1

for y=0, inequalities above turn into equalities. To prove the last
inequality in the assertion of Proposition 2.1, denote z=F(x) and write

z2n =_(x2n+1)+{(x2n)�_($(x))+{(2(x))

z2n&1=x2n&{(x2n)+x2n&1&_(x2n&1)

�2(x)&{(2(x))+$(x)&_($(x))

which completes the proof. g

Theorem }I Under the given hypotheses, the sequence (&F N(x)&� |
N # N) converges to zero uniformly in any ball [&x&1�R].

Proof. For x=x(0) # l+
1 (Z), denote

x(N )=F(xN&1), N�1

$0=$(x), 20=2(x)

2N=_(2N&1)+{($N&1)

$N=(Id&_)(2N&1)+(Id&{)($N&1), N�1

Clearly,

$N+2N=$0+20 , $(x(N ))�$N , 2(x (N ))�2N , N�1 (4)

Let us fix =>0 and an even integer 2m�(R+=)�=. We derive Theorem 1
from
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Proposition "I"I If

$(x)+2(x)�2= (5)

then

$(x(2m&1))+2(x(2m&1))�$2m&1+22m&1&2*2m&1= (6)

where * is defined by (1).

Proof. Relation (5) implies that m($0+20)�2m=�R+=. Hence, for
any n # Z,

x2n+x2n&1+ } } } +x2n&2m+1�m($0+20)&= (7)

We intend to derive from (7) the inequality

x(1)
2n +x (1)

2n&1+ } } } +x (1)
2n&2m+2�(m&1)($1+21)+21&*= (8)

Denote _*=Id&_, {*=Id&{, and observe that the functions _*, {*
satisfy inequalities (1). Then we have

x (1)
2n =_(x2n)+{(x2n&1)

�_(20)&*(20&x2n)+{($0)&*($0&x2n&1)

=21&*(20&x2n+$0&x2n&1)

�21&*(20&x2n)

x (1)
2n&1={*(x2n&1)+_*(x2n&2)

�{*($0)+_*(20)&*($0&x2n&1+20&x2n&2)

�$1&*($0&x2n&1)

b

x (1)
2n&2m+3�$1&*($0&x2n&2m+3)

x (1)
2n&2m+2�21&*(20+$0&x2n&2m+2&x2n&2m+1)

Summing up the latter inequalities, one comes to

x (1)
2n +x (1)

2n&1+ } } } +x (1)
2n+2m&2

�(m&1)(21+$1)+21&*(m(20+$0)&(x2n+ } } } +x2n&2m+1))

which, together with (7), implies (8).
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The same sort of estimation for x (2)
2n ,..., x (2)

2n&2m+3 shows that (8)
implies

x(2)
2n +x (2)

2n&1+ } } } +x (2)
2n&2m+3�(m&1)($2+22)&*2=

We repeat this procedure until we come to

x (2m&1)
2n �22m&1&*2m&1=

The same argument applied to the inequality

x2n&1+x2n&2+ } } } +x2n&2m�m(20+$0)&=

leads to

x (2m&1)
2n&1 �$2m&1&*2m&1=

which completes the proof. g

2.2. Nonexpansive Periodic Operators in l1(Z)

In this section we will always denote l+
1 (Z) by K. Similarly, for n a

positive integer Kn will denote the cone of the nonnegative vectors in Rn,

Kn=[x # Rn : x i�0, i=1,..., n]

and for x # Rn, &x&1 :=�n
i=1 |xi |. If R>0, we shall denote by KR and K n

R

the sets

KR=[x # l1(Z) : &x&1�R], KR=[x # Rn : &x&1�R]

The cone K (respectively, Kn) induces a partial ordering on l1(Z) (respec-
tively, Rn) by x� y if and only if y&x # K (respectively, y&x # K n).

Our goal now is to prove that similar convergence theorems hold for
much more general maps F: KR � KR than those considered in the previous
sections.

To motivate our class of maps, we imagine an infinite sequence of
containers of sand at the seashore and we consider a procedure for shifting
sand among containers. for each integer i, we suppose that there are two
containers, Ci and Di . Initially, Ci contains a volume xi�0 of sand and Di

contains no sand. We suppose that �i xi�R<� and that the volume of
each of the containers Cj and Dj , j # Z, is greater than R. We fix an integer
N>1. For each integer i, we wish to apportion all of the sand in Ci among
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the various containers Dj . If i#i $ mod N, we want the rules for shifting
sand from container Ci to be the same, after shifting indices by i $&i, as the
rules for shifting sand from Ci $ . In this sense our procedure is to be peri-
odic of period N. To be more precise, for i, k # Z, let _i, k : [0, R] � [0, R]
be a continuous, increasing function with _i, k(0)=0; we allow the possi-
bility that _i, k#0. We assume that if container Ci contains a volume x i of
sand, then we shift a volume of sand equal to _ i, k(xi ) to container Dk for
k # Z. Since we assume that all of the sand in Ci is shifted to some Dk ,
k # Z, we must assume that

:
k # Z

_i, k(t)=t for all i # Z and for all t # [0, R] (9)

We interpret our periodicity condition as meaning that

_i, k(t)=_i+sN, k+sN(t) for all i, k, s # Z and all t # [0, R] (10)

We carry out the above sand shifting procedure for each container Ci ,
so eventually all the containers Ci , i # Z, are empty, and the sand has been
shifted to the containers Dk . Note that Dk contains a volume yk , where

yk= :
i # Z

_i, k(xi ) (11)

Now we pour all the sand from Dk into Ck for k # Z, so all the containers
Dk are empty and the container Ck contains a volume yk of sand. We can,
at this point, iterate our procedure repeatedly. Our basic question is this:
What can be said about the distribution of the sand as the number of itera-
tions approaches infinity?

We define a map F: KR � KR by F(x)= y, where

yk :=Fk(x) := :
i # Z

_i, k(x i ) (12)

If F m denotes the m th iterate of F with itself and x # KR , we wish to
investigate the behavior of F m(x) as m � �.

For definiteness, we collect our assumptions. In the following recall
that a map %: [a, b] � R is ``increasing on [a, b]'' if %(u)�%(v) whenever
a�u<v�b, and % is ``strictly increasing on [a, b]'' if %(u)<%(v) whenever
a�u<v�b.

Hypothesis H1.1. Let N be a given positive integer and suppose that
0<R�+�. For each pair of integers i, k, assume that _i, k : [0, R] �
[0, R] is a continuous map which is increasing on [0, R] and satisfies
_i, k(0)=0. Assume that Eqs. (9) and (10) are satisfied.
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We shall always assume at least H1.1. Under further assumptions on
F we shall prove that for x # KR

lim
m � �

&F m(x)&�=0 (13)

Indeed, we shall prove that, under further restrictions on F, the limit in
(13) is uniform, provided R<�. However, if we assume only H1.1,
Eq. (13) need not be true and F may, for example, have many periodic
points. Thus, if we define F: K � K by F(x)= y, where yi=xi&1 for i# j
mod N and 1� j�N&1 and yi=xi+N&1 for i#0 mod N, then F is of the
form given by (12), H1.1 is satisfied, and F has periodic points of period N.

We begin by establishing some general facts about F. If D is a subset
of X, where X=l1(Z) or Rn, a map h: D � X is called ``order-preserving''
if h(x)�h( y) whenever x, y # D and x� y. The map h is called ``integral-
preserving'' if

:
i

hi (x)=:
i

xi for all x # D

Here hi (x) denotes the i th coordinate of h(x). The map h is called ``non-
expansive in the l1 -norm'' or simply ``nonexpansive'' if

&h(x)&h( y)&1�&x& y&1 for all x, y # D

If x, y # X, define x 7 y # X, the lattice meet of x and y, by

(x 7y) i=min[xi , yi ]

If h: D � X is integral-preserving and order-preserving and if x 7y # D
whenever x, y # D, then arguments of Crandall and Tartar (1980) prove
that h is l1 -norm nonexpansive.

Lemma "I/I Assume H1.1 and suppose that F: KR � KR is defined
by (12). Then F is integral-preserving, order-preserving, and nonexpansive.

Proof. By the Crandall and Tartar (1980) result, it suffices to prove
that F is integral-preserving and order-preserving. To prove integral-pre-
serving, take x # KR and note that

:
k

Fk(x)=:
k

:
i

_i, k(x i )=:
i

:
k

_i, k(xi )=:
i

x i
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Here we have used Eq. (9). Change of the order of summation is justified,
because all summands are nonnegative. We assume in H1.1 that all of the
maps _i, k are increasing on [0, R], so if u, x # KR and u�x, we obtain

Fk(u)=:
i

_i, k(ui )�:
i

_i, k(xi )=Fk(x)

i.e., F is order-preserving. g

Let N be as in H1.1. For x # l1(Z) and an integer i, we define $ i (x) by

$i (x)=sup[ |xj |: j # Z and j#i mod N ] (14)

We define $(x) # KN by

$(x)=($0(x),..., $N&1(x)) (15)

Obviously we have &$(x)&�=&x&� .
Assuming H1.1, we define for each pair of integers (i, j ) a map

Mi, j : [0, R] � [0, R] by the formula

Mi, j ( p)= :
s # Z

_i+sN, j ( p) (16)

Note that our periodicity condition (10) gives _i+sN, j ( p)=_i, j&sN( p), so

Mi, j ( p)=:
s

_i, j&sN( p)�:
k

_ i, k( p)= p

In fact, we have for 0�p�R and l # Z

:
N&1

j=0

M i, l+ j ( p)= :
N&1

j=0

:
s

_ i, l&sN+ j ( p)= :
k # Z

_ i, k( p)= p (17)

Note also that if i#i $ mod N and l#l $ mod N, then Mi, l=M i $, l $ . For
example, if l $=l+tN for some integer t,

Mi, l $( p)= :
s # Z

_i, l+tN&sN( p)= :
m # Z

_i, l&mN( p)=Mi, l ( p)

If Mi, l is defined as above and H1.1 holds, we define, for !=(!0 , !1 ,...,
!N&1) # K N

R , a map g: K N
R � K N

R by

g(!)=(g0(!), g1(!),..., gN&1(!)), g l (!) := :
N&1

i=0

Mi, l (! i ), 0�l<N
(18)
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Lemma "I�I Assume that H1.1 is satisfied and that F: KR � KR ,
g: K N

R � K N
R are defined by Eqs. (12) and (18), respectively. Then the map

g is integral-preserving and order-preserving. If $(x) is defined by (15), we
have

$(F(x))�g($(x)) for all x # KR (19)

Proof. Using Eqs. (18) and (17), we see that for ! # K N
R we have

:
N&1

l=0

gl (!)= :
N&1

i=0

:
N&1

l=0

Mi, l (!i )= :
N&1

i=0

! i

so g is integral-preserving. The map t [ Mi, l (t) is increasing on [0, R],
because the maps t [ _i, k(t) are increasing on [0, R], so it follows immedi-
ately that g is order-preserving.

If 0�l�N&1 is an integer, select k # Z such that k#l mod N and
$l (F(x))=Fk(x). We have

Fk(x)= :
N&1

j=0

:
s # Z

_j+sN, k(xj+sN )

and because xj+sN�$j (x) for all s, we find that

$l (F(x))=Fk(x)� :
N&1

j=0

:
s

_j+sN, k($j (x))= :
N&1

j=0

Mj, k($j (x))

By our previous remarks, Mj, k(t)=Mj, l (t) for 0�t�R, so

$l (F(x))� :
N&1

j=0

Mj, l ($j (x)) :=gl ($(x))

which proves (19). g

At this point it is convenient to introduce some further notation. As
usual, l�(Z) denotes the Banach space of bounded sequences y=( yk | k # Z)
with

&y&�=sup[ | yk |: k # Z]

We shall always denote by C the cone of nonnegative vectors in l�(Z), so

C=[ y # l�(Z) : yi�0 for all i # Z] (20)
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If n is a positive integer, we define a map %N : K N
R � C by

%N(!)=z, where zj=!i if j#i mod N (21)

We define S: l�(Z) � l�(Z) to be the left-hand shift, so

S(x)= y, where yi=xi+1 for i # Z (22)

The cone C induces a partial ordering on l�(Z) by x� y if and only if
y&x # C. No confusion with the earlier partial ordering induced on l1(Z) by
K should arise, so we shall not distinguish the partial orderings notationally.
A map F: D/l�(Z) � l�(Z) is called order-preserving if F(x)�F( y)
whenever x, y # D and x� y.

For a given R>0 and positive integer N, the class of mappings
F: KR � KR defined by (12) and H1.1 is insufficiently general in one impor-
tant sense, namely, it is not closed under composition of operators. We
now introduce a larger class of operators which remedies this difficulty.

Definition 2.5. Suppose that R>0 and that N is an integer. Define
D=D(R, N )/C/l�(Z) by

D :=KR _ %N(K N
R ) :=KR _ [%N(!): ! # K N

R ]

where C is as in (20) and %N as in (21). If F: D � C is a map, we shall say
that F # F(R, N ) if F satisfies the following conditions:

(a) F: D � C is order-preserving.

(b) The restriction of F to KR , F |KR
, is an integral-preserving map

into KR .

(c) For all x # D, S&NFS N(x)=F(x), where S is the left-shift
operator given by (22).

(d) If g: K N
R � RN is defined by

g(!)=(F0(z), F1(z),..., FN&1(z))

where z=%N(!) and F i denote coordinate i of F(z), then g is an
integral-preserving map.

One can easily see that F(R, N ) is a convex set of operators. The
reader can also verify that SN corresponds to a left-hand shift by N coor-
dinates in l�(Z) and that condition (c) above is equivalent to

Fi (x)=Fi&N(SN(x)) for all x # D and all i # Z (23)
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Also, one easily derives from condition (c) by induction on l that

S&lNFS lN(x)=F(x) for all x # D and all l # Z (24)

A word about condition (d) is in order. If F satisfies conditions (a)
and (c) and ! # K N

R "[0], z=%N(!), one expects in general that

:
i # Z

Fi (z)=�

However, one might hope that

lim
k � �

1
2k&1

:
| j |<k

Fj (z)= lim
k � �

1
2k&1

:
| j | <k

zj (25)

Because S lN(z)=z for all l # Z, Eq. (23) implies that F j&lN(z)=F j (z) for
all l. Thus, the right-hand side of Eq. (25) has limit equal to (1�N ) �N&1

j=0 z j ,
the left-hand side equals (1�N ) �N&1

j&0 F j (z), and [assuming conditions (a)
and (c)] condition (d) is equivalent to the validity of equality (25) for all
z=%N(!), ! # K N

R .
Our next lemma has essentially been proved before, but we state it for

completeness.

Lemma "I>I Assume H1.1 and let F be defined by (12). Then (see
Definition 2.5) we have F # F(R, N ).

Proof. We already know (Lemma 2.3) that F(KR)/KR and that
F |KR

is integral-preserving, so condition (b) of Definition 2.5 is satisfied.
If x # D=D(R, N ), we must prove that F(x) # C. Thus, if z=%N(!) and
! # K n

R , we must prove that F(z) # C. However, we have

Fi (z)= :
j # Z

_j, i (zj )= :
N&1

j=0

:
s # Z

_j&sN, i (zj&sN )

= :
N&1

j=0

:
s # Z

_ j&sN, i (zj )= :
N&1

j=0

:
s # Z

_j, i+sN(zj ) (26)

Here we have used Eq. (10) and zj&sN=zj for all s # Z; change of summa-
tion order was justified because _j, i (zj )�0 for all i, j. Because we have

:
s # Z

_ j, i+sN(zj )� :
k # Z

_ j, k(zj )=zj
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we derive from the above equations that

0�Fi (z)� :
N&1

j=0

zj�R for all i # Z

and F(z) # C. The fact that F is order-preserving [condition (a)] now
follows directly from the assumption that _i, j is increasing for all i, j.

If ! # K N
R and z=%N(!), condition (d) is equivalent to proving that

:
N&1

j=0

F i (z)= :
N&1

j=0

zi

However, Eqs. (26) and (9) give

:
N&1

i=0

Fi (z)= :
N&1

j=0

:
N&1

i=0

:
s # Z

_j, i+sN(zj )= :
N&1

j=0

:
k # Z

_ j, k(zj )= :
N&1

j=0

zj

so condition (d) is satisfied.
To prove condition (c), we must prove that Fk(x)=Fk&N(S N(x)) for

all x # D and k # Z. Using (10) and (12), we obtain for x # D, k # Z, Fk(x)
=�j # Z _j, k(x j ) and

Fk&N(SN(x))= :
j # Z

_j, k&N(x j+N )= :
j # Z

_ j+N, k(xj+N )= :
j # Z

_j, k(xj )

so condition (c) is satisfied. g

We now prove the crucial property of F(R, N ), namely, that it is
closed under composition.

Lemma "I�I If F # F(R, N ) and D=D(R, N ) is as in Definition 2.5,
then F(%N(K R

N))/%N(K N
R ) and F(D)/D. If g: K N

R � K N
R is defined by

g(!)=(F0(z),..., FN&1(z)), where z=%N(!), then g is integral-preserving and
order-preserving. If x # D instead of KR we can still define $(x) by Eqs. (14)

and (15), and we have

$(F(x))�g($(x)) for all x # D (27)

If 8 # F(R, N ) and if #: K N
R � K N

R is defined by #(!)=(80(z),..., 8N&1(z))
for z=%N(!), then 8 b F # F(R, N ), and for all ! # K N

R and z=%N(!) we
have

#(g(!))=(80(F(z)),..., 8N&1(F(z)))
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Proof. We already know that F(KR)/KR . If ! # K N
R and z=%N(!),

we see that S lN(z)=z for all l # Z, so Eq. (23) implies that

Fj (z)=Fj&lN(z) for all l # Z

If we define !� =(F0(z),..., FN&1(z))= g(!), it follows that

F(z)=%N(!� )

Condition (d) in Definition 2.5 implies that

:
N&1

i=0

!� i= :
N&1

i=0

F i (z)= :
N&1

i=0

!i�R

so !� # K N
R and F(z)=%N(!� ) # %N(K N

R ). It follows that F(D)/D.
Condition (d) implies that g is integral-preserving, and g is order-

preserving, because F: D � C is assumed order-preserving.
The definition of $(x) implies that for x # D,

x�%N($(x))

so, because F is order-preserving, we obtain that

F(x)�F(%N($(x)))

By definition of $i (F(x)) [and because F(x) # D], for each i, 0�i�N&1,
there exists ki#i mod N with

$i (F(x))=Fki
(x)�Fki

(%N($(x)))

By our previous argument we know that F(%N($(x))) # %N(K N
R ), so

Fi (%N($(x)))=Fki
(%N($(x))), and we obtain that

$i (F(x))�F i (%N($(x)))= g i ($(x))

which implies (27).
To prove that 8 b F # F(R, N ), we have to prove that conditions

(a)�(d) of Definition 2.5 are satisfied. Condition (a) implies that F and 8
are order-preserving on D, and we have that F(D)/D. It follows that if
x, y # D and x� y, we have F(x), F( y) # D, and F(x)�F( y), so

8(F(x))�8(F( y))

This proves that 8 b F satisfies condition (a).
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We know that 8 and F are integral-preserving on KR and that
F(KR)/KR , 8(KR)/KR . It follows that for x # KR

:
i

8i (F(x))=:
i

Fi (x)=:
i

x i

so 8 b F is integral-preserving on KR and satisfies condition (b).
Condition (c) implies that S &NFS N=F and S &N8S N=8, so we find

that

8 b F=(S&N8SN ) b (S&NFSN )=S &N(8 b F ) S N

and 8 b F satisfies condition (c) of Definition 2.5.
In order to prove that 8 b F satisfies condition (d), we have to prove

that if ! # K N
R and z=%N(!), then

:
N&1

j=0

8 i (F(z))= :
N&1

j=0

z j

However, we have already proved that F(z) # %N(K N
R ) and

F(z)=%N(F0(z),..., FN&1(z))=%N(g(!))

It follows from the definition of # that

#(g(!))=(80(F(z)),..., 8N&1(F(z)))

Condition (d) implies that # and g are integral-preserving, so

:
N&1

j=0

8 j (F(z))= :
N&1

j=0

#j (g(!))= :
N&1

j=0

gj (!)= :
N&1

j=0

!j= :
N&1

j=0

z j

and we see that 8 b F satisfies condition (d). This completes the proof of
Lemma 2.7. g

2.3. l1-Norm Nonexpansive Maps in RN and Weak Convergence Results

In the previous section we have defined the class F(R, N ), which is
the class of nonexpansive, periodic (or NEP) maps F: KR � KR which will
be of interest to us. Without further assumptions, we have seen that it is
false that limk � � &F k(x)&�=0 for x # KR . Nevertheless, one can make
some useful observations about the iterates F k(x), and these comments
form the basis for our later, stronger convergence theorems.
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To begin we need to recall some general results concerning iterates of
l1 -norm nonexpansive maps h: K N

R � K N
R . The following lemma is due to

Akcoglu and Krengel (1987), but with important refinements of Scheutzow
(1988, 1991). We denote below the least common multiple of the integers
[1, 2,..., N ] by lcm(N ).

Lemma "I� oSee Akcoglu and Krengelii }���u Scheutzowi }���i }��}pI

If R>0 and N is a positive integer, let h: K N
R � K N

R be an l1-norm non-
expansive map such that h(0)=0. If x # K N

R , there exists !x # K N
R and an

integer px= p�1 such that p | lcm(N ), limk � � hkp(x)=!x , h p(!x)=!x ,
and h j (!x){!x for 1� j<p. If h is also integral-preserving, then &!x&1=
&x&1 for all x # K N

R .

Not every divisor p of lcm(N ) is the minimal period of some periodic
point ! # K N

R of some l1 -norm nonexpansive map h: K N
R � K N

R with h(0)=0.
We refer the reader to Nussbaum (1991), Nussbaum and Scheutzow
(1998), Nussbaum and Verduyn Lunel (1999), and Nussbaum et al. (1998)
for precise results in this direction and refinements of Lemma 2.8.

Our next proposition may have some independent interest, so we
isolate it as a theorem.

Theorem "I Suppose that R>0, N is a positive integer and h: K N
R � K N

R

is order-preserving, h(0)=0, and h is l1-norm nonexpansive. Suppose that
( yk | k�0) is a sequence of points in K N

R such that yk+1�h( yk) for all
k�0. Then there exists an integer p which is a divisor of lcm(N ) and is such
that limm � � ymp=!, where h p(!)=! and h j (!){! for 0< j<p. For any
integer j�0, limm � � y j+mp=h j (!).

If h has no periodic point of minimal period p>1, then limm � � ym=!,
where h(!)=!.

Proof. Denote q=lcm(N ). For any x # K N
R , Lemma 2.8 implies that

there exists !x # K N
R with limk � � hkq(x)=!x and hq(!x)=!x . It follows

that for each n�1, limk � � hkq( yn)=zn, where hq(zn)=zn. Note also that

&yk+1&1�&h( yk)&1=&h( yk)&h(0)&1�&yk&1 (28)

so :k :=&yk&1 is a decreasing sequence of nonnegative reals and limk � � :k

=: exists. If :=0, we are done, so we assume that :>0. Note that, for
n�1,

&zn&1= lim
k � �

&hkq( yn)&hkq(0)&1�&yn&1 (29)
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Because yk+1�h( yk) and h is order-preserving, we easily see that yk+m�
hm( yk) for all k�0, m�0, and y(m+1) q�hq( ymq). It follows that

lim
k � �

hkq( y(m+1) q)=z(m+1) q� lim
k � �

h(k+1) q( ymq)=zmq (30)

It follows from (30) that there exists ! # K N
R with

lim
m � �

zmq=! (31)

and !�zmq for all m�1. If u=(1, 1,..., 1) and $>0, we conclude from
Eq. (31) that there exists an integer m$ such that

!�zmq�!+
$
2

u for m�m$ (32)

Since zmq=limk � � hkq( ymq) and hkq( ymq)� ykq+mq, we obtain from (32)
that, given $>0, there exists an integer n$ such that

ynq�!+$u for n�n$ (33)

We claim that limk � � ykq=!. If not, there exists a sequence ni � �
such that yni q � !$ and !${!. Equation (33) implies that !$�!, and since
!${!, we have &!$&1�&!&1 . However, we obtain from (29) that

:= lim
i � �

&yni q&1=&!$&1� lim
i � �

&zni q&1�&!&1

which contradicts &!$&1<&!&1 and proves that limk � � ykq=!. Equa-
tion (31) and the fact that hq(zmq)=zmq imply that hq(!)=!.

Because h(0)=0 and h is l1 -norm nonexpansive, we see that &hm(!)&1 ,
m�1, is a decreasing sequence; and since &hkq(!)&1=&!&1 for all k�1, it
follows that &hm(!)&1=&!&1 for all m�1.

We claim that for every integer j�1, limm � � ymq+ j=h j (!). The
proof follows easily from the case j=0. If the claim is wrong, there exists
a subsequence of integers (mi | i�1) with

lim
i � �

ymi q+ j=!$, !${h j (!)

It follows that

!$= lim
i � �

ymi q+ j� lim
i � �

h j ( ymi q)=h j (!)
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Since !$�h j (!) and !${h j (!) we must have that

&!$&1<&h j (!)&1=&!&1

We already know that (&yn&1 | n�1) is a decreasing sequence with limit :,
so

:= lim
m � �

&ymq&1=&!&1= lim
i � �

&ymi q+ j&1=&!$&1

This contradiction proves the claim.
To complete the proof, let p be the minimal positive integer such that

hp(!)=!. Since hq(!)=!, we know that p | q. It suffices to prove that if
0�r<p, then

lim
m � �

ymp+r=hr(!)

Our previous results show that if 0� j1<q, 0� j2<q, and j1#j2 mod p,
then

lim
k � �

ykq+ j1=h j1(!)=h j2(!)= lim
k � �

ykq+ j2

It follows that, given =>0, there exists k=>0 such that

&ykq+ j&h j (!)&1<=

whenever k�k= is an integer and 0� j<q. Select a positive integer s such
that q=sp and let m be any integer with m�sk= . We can write

m=ls+m0 , 0�m0<m

where l, m0 are integers. Let r be a fixed integer, 0�r<p; for m as above,
we have

mp+r=(ls+m0) p+r=lq+(m0 p+r)=lq+ j

where 0� j<q and l�k= . It follows that

&ymp+r&hr(!)&1=&ylq+ j&h j (!)&1<=

which completes the proof. g

398 Nussbaum and Shustin



A norm & }& on RN is called ``strictly monotonic'' if 0�x� y and x{ y
implies that &x&<&y&. Examples are provided by the lp-norms & }&p for
1�p<�:

&x&p=\ :
N

i=1

|xi |
p+

1�p

If one uses Theorem 1.1 from Nussbaum (1994) instead of Lemma 2.8, then
the following generalization of Theorem 2 follows by the same reasoning
used to prove Theorem 2.

Theorem /I Let assumptions and notation be as in Theorem 2, but sup-
pose that R=� and replace the assumption that h is l1 -norm nonexpansive
by the hypothesis that h is nonexpansive with respect to a strictly monotonic
norm & }&. Then all the conclusions of Theorem 2 remain valid.

We can now prove our first theorem concerning iterates of operators
F: KR � KR , F # F(R, N ).

Theorem �I Suppose that R>0, N is a positive integer and F: KR � KR

is an element of F(R, N ) (see Definition 2.5). Let g: K N
R � K N

R be defined
by condition (d) of Definition 2.5 and for y # KR define $( y) # K N

R by
Eq. (15). For a fixed x # KR , define !k=$(F k(x)) for k�0. Then
!k+1�g(!k) for k�0, and there exists an integer p�1, p | lcm(N ), and a
point ! # K N

R such that

(a) limk � � !kp+ j= g j (!) for all j�1, and

(b) g j (!){! for 0< j<p.

If g has no periodic points in K N
R of minimal period >1, then limk � � !k=!

and g(!)=!.

Proof. Lemma 2.7 implies that g: K N
R � K N

R is integral-preserving and
order-preserving, so we know that g(0)=0 and g is l1 -norm nonexpansive.
Lemma 2.7 also implies that !k+1�g(!k) for k�0. Theorem 4 now follows
immediately from Theorem 2. g

Without further assumptions on F, one can say little more than
Theorem 4. Using results from Nussbaum (1991, 1994), Nussbaum and
Verduyn Lunel (1999), and Nussbaum et al. (1998), it is easy to construct
examples which illustrate aspects of Theorem 4.
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For r�0, let 7r=[x # K N : &x&1=r], a compact, convex set. If
g: K N

R � K N
R is integral-preserving and order-preserving, then g(7r)/7r for

0�r�R, and the Brouwer fixed point theorem implies that g has a fixed
point in 7r . We shall now obtain conditions on g which ensure that g has
a unique fixed point in 7r for 0�r�R and that g has no periodic points
of minimal period >1. If these conditions are satisfied by the map g in
Theorem 4, one obtains a corresponding refinement of the conclusions of
Theorem 4.

Definition 2.9. Suppose that G/RN and that .: G � R is a map. We
shall say that ``. is increasing on G and strictly increasing on G in the i th
variable'' if whenever x, y # G and yj�xj for j{i and yi<xi , it follows that
.( y)<.(x).

An N_N matrix A=(aij ) is called ``nonnegative'' if a ij�0 for i, j=
1,..., N. A nonnegative matrix A is ``primitive'' if there exists an integer p�1
such that all entries of A p are strictly positive.

Definition 2.10. Suppose that G/RN and f : G � RN is a map, f (x)
=( f1(x),..., fN(x)) for x # G. If A is a nonnegative matrix, we shall say that
``A is a strict monotonicity incidence matrix for f on G '' if whenever aij>0,
fi is increasing on G and strictly increasing on G in the j th variable.

Remark 2.11. Suppose that H is an open, convex subset of RN,
that f : H � RN is an order-preserving C 1 map and that x [ f $(x)=
((�fi ��xj )(x)) extends as a continuous map to H� , also denoted x [ f $(x).
For each x� # H� there exists =>0 such that f $(x� ) is a strict monotonicity
incidence matrix for f on G :=[x # H� : &x&x� &�=]. The straightforward
argument is left to the reader.

We do not assume in Definition 2.10 that f is C1, because many of the
most interesting examples of integral-preserving, order-preserving maps on
KN are not C 1 (see Nussbaum, 1991; Nussbaum and Scheutzow, 1998;
Nussbaum and Verduyn Lunel, 1999; Nussbaum et al., 1998).

Lemma "I}"I Suppose that G/RN and that f : G � G is order-preserv-
ing and g: G � RN is order-preserving. Assume that A is a strict monotonicity
incidence matrix for f on G and B is a strict monotonicity matrix for g on G.
Then BA is a strict monotonicity incidence matrix for g b f on G.

Proof. Let C=BA and suppose that cij>0. Then there exists k,
1�k�N, such that bik>0 and akj>0. If x, y # G, x� y and xj> yj , the
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definition of A implies that f (x)� f ( y) and fk(x)> fk( y). The definition of
B now implies that g( f (x))�g( f (x)) and gi ( f (x))>gi ( f (x)), which com-
pletes the proof. g

Theorem <I Suppose that R>0, N is a positive integer, g: K N
R � K N

R

is integral-preserving and order-preserving, and that for each r, 0<r�R,
'r # 7r :=[x # K N

R : &x&1=r] is a fixed pont of g. Assume that for each r,
0<r�R, there exist =r>0 and a nonnegative primitive N_N matrix Ar

such that Ar is a strict monotonicity incidence matrix for g| Gr
, where Gr=

[x # KN
R : &x&'r&1�=r] (see Definitions 2.9 and 2.10). Then for 0<r�R

and for each x # 7r , limk � � gk(x)='r. If (!k | k�0) is a sequence of
points in K N

R such that !k+1�g(!k) for each integer k�0, then (&!k&1 |
k�0) is a decreasing sequence with limit equal to r and limk � � !k='r.

Proof. By virtue of Theorem 4, it suffices to prove that for x # 7r and
0<r�R, limk � � gk(x)='r. We know that g is nonexpansive with respect
to the l1 -norm and g('r)='r, so g(Gr)/Gr . It follows by applying
Lemma 2.12 that for each positive integer m, Am

r is a strict monotonicity
incidence matrix for gm|Gr

. Since Ar is assumed primitive, select m such that
Am

r has all positive entries. We define 1r=[x # 7r : &x&'r&1� 1
2=r], and

we claim that for all x, y # 1r with x{ y we have

&gm(x)& gm( y)&1<&x& y&1

To see this, suppose that x, y # 1r and x{ y. The reader can verify that
&(x 7y)&'r&1�&x&'r&1+&y&'r&1==r , so x 7 y # Gr . Let S+=
[i: 1�i�N, xi> y i ], S&=[i: 1�i�N, xi< yi ] and S0=[i: xi= yi ].
Because x{ y, we know that S+ or S& is nonempty. However, the
assumption that �i xi=�i yi implies that S+ and S& both are nonempty.
It follows that x, y, and x 7 y are elements of Gr , x 7y�x, x 7 y� y,
x7 y{x, and x 7y{ y. Let gm

i denote the i th coordinate function of gm.
Because Am

r has all positive entries and Am
r is a strict monotonicity

incidence matrix for gm on Gr , we conclude that

gm
i (x)& gm

i (x 7 y)>0, gm
i ( y)& gm

i (x 7 y)>0 for 1�i�N (34)

We conclude from Eq. (34) that, for 1�i�N,

| gm
i (x)& gm

i ( y)|=| gm
i (x)& gm

i (x7 y)+ gm
i (x 7 y)& gm

i ( y)|

<gm
i (x)& gm

i (x 7 y)+ gm
i ( y)& gm

i (x 7 y)
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so, using the integral-preserving property of gm, we deduce that

&gm(x)& gm( y)&1 = :
N

i=1

| gm
i (x)& gm

i ( y)|

< :
N

i=1

(gm
i (x)& gm

i (x 7 y)+ gm
i ( y)& gm

i (x 7 y))

=&x&1&&x 7 y&1+&y&1&&x 7 y&1=&x& y&1

For x # 7r we see that

&gk+1(x)&'r&1=&g(gk(x))& g('r)&1�&gk(x)&'r&1

so (&gk(x)&'r&1 | k�0) is a decreasing sequence with limit :�0. If :=0,
we are done, so we assume, by way of contradiction, that :>0. Select a
subsequence ki � � such that gki (x) � ! # 7r and &!&'r&=:. If :� 1

2=r ,
our previous result shows that

&gm(!)& gm('r)&1=&gm(!)&'r&1<:

and this implies that &gki+m(x)&'r&1<: for all sufficiently large i, which
contradicts the fact that &gk(x)&'r&1�: for all k�0. If :> 1

2=r , define
x� =(1&t) !+t'r, 0<t<1, where t is selected so that &x� &'r&1= 1

2=r and
&x� &!&1=:& 1

2 =r . As before we have &gm(x� )&'r&1< 1
2=r , so we conclude

that

&gm(!)&'r&1 �&gm(!)& gm(x� )&1+&gm(x� )&'r&1

<&!&x� &1+ 1
2=r=:

We now obtain a contradiction by the same argument as before. g

Our next result follows immediately from Remark 2.11 and Theorem 5.

Corollary >I Suppose that R>0 and N is a positive integer, that
g: K N

R � K N
R is an integral-preserving, order-preserving map and that for

each r, 0<r�R, 'r # 7r :=[x # K N
r : &x&1=r] is a fixed point of g. For

each r, 0<r�R, assume that there exists =r such that (writing Hr=
[x # K1 N

R : &x&'r&1<=r]) g| Hr
is C1, the map x [ g$(x) extends continuously

to a map (also denoted x [ g$(x)) on H� r and g$(x) is a primitive matrix.
If (!k | k�0) is a sequence of points in K N

R such that !k+1�g(!k) for
all k�0, then (&!k&1 | k�0) is a decreasing sequence with limit r and
limk � � !k='r.
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Remark 2.13. By using results from Sections 2 and 3 of Ishikawa and
Nussbaum (1990), one can refine Corollary 6 and obtain information
about the rate of convergence of gk(x), &x&1=r, to the fixed point 'r.

2.4. Strong Convergence Results for Iterates of NEP Maps on l+
1 (Z)

If F # F(R, N ), we now wish to give further conditions which imply
that for all x # KR ,

lim
k � �

&F k(x)&�=0

As usual, we denote by [ej : j # Z] the standard orthonormal basis of
l2(Z), so the coordinates of ej all equal zero except for coordinate j, which
equals one.

Definition 2.14. Suppose that D/l�(Z). A map .: D � R is
``increasing on D and strictly increasing on D in variable j '' if for all $>0,
there exists =>0 such that for all x, y # D with x� y and yj&xj�$, one
has

g( y)& g(x)�=

In Definition 2.14, x� y means that xk� yk for all k # Z.

Definition 2.15. Suppose that D/l�(Z) and F: D � l�(Z) is an
order-preserving map. A bounded linear map A: l1(Z) � l1(Z) will be called
``a strict monotonicity incidence matrix for F on D'' if

(1) for all j # Z, A(ej )=�i # Z aij ei , where ai, j�0 for all i, j # Z and
�i # Z aij�1, and

(2) if aij>0, then F i : D � R is increasing on D and strictly increasing
on D in variable j.

If A is as in Definition 2.15, we shall refer to aij as the (i, j ) entry
of A.

We shall need a slightly stronger assumption than that a map .: D � R
is increasing and strictly increasing on D in variable j.

Definition 2.16. Suppose that D/l�(Z) and F: D � l�(Z) is order-
preserving. Assume that A is a strict monotonicity incidence matrix for F
on D. Given a constant c>0, we shall say that ``A is a strict monotonicity
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incidence matrix with constant c for F on D'' if for all x, y # D with x� y,
we have

Fi ( y)&Fi (x)�c :
j, aij >0

( yj&x j ) (35)

Remark 2.17. Suppose that F, H # F(R, N ) (see Definition 2.5) and
A is a strict monotonicity incidence matrix with constant c for F on D.
Then for any t # (0, 1], A is a strict monotonicity incidence matrix with
constant tc>0 for tF+(1&t) H on D.

Remark 2.18. Suppose that .: G/K N
R � R is increasing on G and

strictly increasing on G in variable j in the sense of Definition 2.9. If G is
closed, R<�, and . is continuous, a simple compactness argument shows
that for each $>0 there exists =>0 such that for all x, y # G with x� y
and yj&xj�$, one has .( y)&.(x)�=. Thus, Definitions 2.9 and 2.14 are
consistent.

Remark 2.19. Suppose that H1.1 is satisfied and that F: KR � KR

is defined by Eq. (12). We have proved (Lemmas 2.6 and 2.7) that
F # F(R, N ) and F: D(R, N ) :=D � D, where D(R, N ) is as in Defini-
tion 2.5. In particular, we have proved that

Fi (x) := :
j # Z

_ j, i (x j )<�

for all x # D. For each i, let Ji=[ j # Z : _j, i is strictly increasing on
[0, R]]. Define aij=0 of j � Ji and select aij>0 if j # Ji . We can also
arrange that �i aij�1. Define a bounded linear map A: l1(Z) � l1(Z) by
A(ej )=�i aij ei . Then A is a strict monotonicity incidence matrix for F on
D(R, N ). To see this, suppose aij>0 and, given $>0, suppose x, y # D,
x� y, and yj&xj�$. Because _ j, i is strictly increasing on [0, R], there
exists =>0 such that _j, i (t)&_j, i (s)�= for all x, t # [0, R] with t&s�$.
For this =>0 we have

Fi ( y)&Fi (x)= :
k{ j

(_k, i ( yk)&_k, i (xk))+_ j, i ( yj )&_ j, i (xj )

�_j, i ( yj )&_j, i (xj )�=

Next, suppose that c>0. For each i # Z, let

J c
i =[ j # Z : |_ j, i (t)&_j, i (s)|�c |t&s| for all t, s # [0, R]]
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Define bij=0 if j � J c
i . Select bij>0 if j # J c

i . We can also arrange that
�i bij�1 for all j # Z. If we define a bounded linear operator B: l1(Z) �
l1(Z) by B(ej )=�i b ij ei , then B is a strict monotonicity incidence matrix
with constant c for F on D(R, N ). To see this, note that if x, y # D(R, N )
and x� y, we have

Fi ( y)&Fi (x)= :
k, bik=0

(_k, i ( yk)&_k, i (xk))+ :
k, bik>0

(_k, i ( yk)&_k, i (xk))

� :
k, bik>0

(_k, i ( yk)&_k, i (xk))

�c :
k, bik>0

( yk&xk)

Remark 2.20. Suppose that F # F(R, N ) and that for x, y # D(R, N )
with x� y and yj&x j�$ we have Fi ( y)&F i (x)�=. If m is an integer and
y~ =SmNy, x~ =S mNx, we have that x~ � y~ and y~ j&mN&x~ j&mN�$; and we
derive from (24) that

Fi&mN( y~ )&Fi&mN(x~ )=F i ( y)&F i (x)�=

It follows that if A is a strict monotonicity incidence matrix for F on
D(R, N ), we can assume that aij=ai&mN, j&mN for all integers i, j, m. The
same sort of argument shows that if A is a strict monotonicity incidence
matrix with constant c for F on D, we can assume that aij=ai&mN, j&mN

for all integers i, j, m. Thus, we shall always assume that our incidence
matrices for F # F(R, N ) satisfy aij=ai&mN, j&mN for all integers i, j, m.
Note that if F # F(R, N ) and A is a strict monotonicity incidence matrix
with constant c>0 for F on D(R, N )=D, then necessarily, for each i,
aij>0 for at most finitely many j.

Lemma "I"}I Suppose that F, G # F(R, N ) (see Definition 2.5).
Assume that A is a strict monotonicity incidence matrix for F on D(R, N )
and B is a strict monotonicity incidence matrix for G on D. Then BA is a
strict monotonicity incidence matrix for G b F on D. If A� is a strict
monotonicity incidence matrix with constant c>0 for F on D and B� is a
strict monotonicity incidence matrix with constant d >0 for G on D, then B� A�
is a strict monotonicity incidence matrix with constant dc>0 for G b F on D.

Proof. If C=BA, one easily checks that C(ej )=� j cijei , where cij=
�k b ikakj . One easily derives from the corresponding properties of A and B
that C is a bounded linear map of l1(Z) into itself, that cij�0 for all
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integers i, j, that cij=ci&mN, j&mN for all integers, i, j, m, and that � i cij�1.
Similar remarks apply to C� =B� A� . To show that C is a strict monotonicity
incidence matrix for G b F on D, suppose that cij=�k b ikakj>0. Then there
exists k # Z such that bik>0 and akj>0. Select $>0 and suppose that
x, y # D, x� y, and yj&x j�$. By definition, there exists '>0, dependent
only on $, k, j, such that F( y)�F(x) and Fk( y)&Fk(x)�'. By definition
of the strict monotonicity incidence matrix for G, there exists =>0, dependent
only on ', i, k, such that G(F( y))�G(F(x)) and Gi (F( y))&Gi (F(x))�=.
This proves that BA is a strict monotonicity incidence matrix for G b F on D.

Suppose that a~ kj is the (k, j ) entry of A� and b� kj is the (i, k) entry of B� .
If x, y # D and x� y, we have

Fk( y)&Fk(x)�c :
j, a~ kj>0

( yj&xj ) and

Gi (F( y))&Gi (F(x))�d :
k, b� ik>0

(Fk( y)&Fk(x))

It follows that

Gi (F( y))&G i (F(x))�cd :
k, b� ik>0 \ :

j, a~ k, j>0

( yj&x j )+ (36)

Define =kj=1 if a~ kj>0 and =kj=0 if a~ kj=0; define ' ij=1 if b� ik>0 and
'ik=0 if b� ik=0. Equation (36) gives that

Gi (F( y))&Gi (F(x))�cd :
k \:

j

'ik=kj ( yj&xj )+
=cd :

j \( yj&xj ) :
k

' ik=kj+ (37)

Changing the order of summation in (37) is justified, because all summands
are nonnegative. Note that �k 'ik =kj�1 if c~ ij=�k b� ika~ kj>0, so we obtain
from (33) that

Gi (F( y))&Gi (F(x))�cd :
j \( yj&xj ) :

k

'ik=kj +
�cd :

j, c~ ij>0

( yj&xj )

This proves that B� A� is a strict monotonicity incidence matrix with constant
cd>0 for G b F on D. g
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Suppose now that F # F(R, N ) and that g: K N
R � K N

R is defined by
g(!)=F(%N(!)) (see Lemma 2.7). We know that $(F k+1(x))�g($(F k(x)))
and g is integral-preserving, so

&$(F k+1(x))&1 := :
N&1

i=0

$i (F k+1(x))�&g($(F k(x)))&1

= :
N&1

i=0

$i (F k(x)) (38)

and &$(F k(x))&1 is a decreasing sequence.
We want to prove (under further assumptions on F ):

(a) For each x # KR , limk � � &F k(x)&�=0

We also want to prove a stronger, uniform version of (a):

(b) For each '>0 there exists k(') such that &F j(x)&��' for all
x # KR and all j�k(').

Because &$(F k(x))&1 is decreasing, (a) is equivalent to

(a$) For each x # KR , there exists an integer m�1 such that
limk � � &$(F km(x))&1=0.

and (b) is equivalent to

(b$) For each '>0 there exists m=m(') and k=k(') such that
&$(F km(x))&1�' for all x # KR .

Theorem �I Suppose that F # F(R, N ) and that A is a strict monoton-
icity incidence matrix for F on D=D(R, N ) (see Definition 2.15). Suppose
that for each i, 0�i<N, there exist integers mi and ni{0 such that Ami has
positive entries in the (i, i ) position and the (i, i+niN ) position. Then, for
every x # KR , we have limk � � &F k(x)&�=0.

Proof. Let m
*

=lcm([mi : 0�i�N&1]), so m
*

=ti mi for some
positive integer ti . If :kj denotes the k, j entry of Ami and we recall that
:kj>0 implies :k+mN, j+mN>0 for all integers m, we see that Am*=(Ami )ti

has positive entries at the (i, j ) position for 0�i<N and j=i+tni N,
for 0�t�ti . Let g(w)=F(%N(w)) for w # K N

R . Because $(F k+1(x))�
g($(F k(x))), Theorem 2 implies that, for q=lcm(N ) and x # KR ,
limk � � $(F kq(x)) exists and equals !=!x , where gq(!)=!. Let p=
lcm(q, m

*
) and write p=simi . Lemma 2.21 implies that A� :=A p is a

strict monotonicity incidence matrix for F� :=F p. Lemma 2.7 implies that
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F� # F(R, N ) and that g~ =F� b %N= g p. Our selection of p ensures that
limk � � $(F� k(x))=!, where g~ (!)=!. Also, we see that A� has positive
entries at the (i, j ) position for i # Z and j # [i+sni N : 0�s�si ] (where
we put ni1

=ni2
if i1#i2 mod N ). For convenience, we write F, g, and A

instead of F� , g~ , and A� , and we use the above properties.
To complete the proof, it suffices to prove that limk � � $(F k(x))=0.

We assume not, so !{0, and we argue by contradiction. Select a fixed
integer i, 0�i<N, such that !i=maxk !k . Write x j=F j(x). Suppose, for
each j, that k( j ) is an integer such that k( j )#i mod N and limj � � x j

k( j )

=!i . By our construction, such a sequence k( j ), j�1, exists. If Fk(x)
denotes the k th coordinate of F(x), we have

x j
k( j ) =Fk( j )(x j&1)= gi ($(x j&1))&(gi ($(x j&1))&Fk( j)(x j&1))

=Fk( j )(%N($(x j&1)))&(Fk( j )(%N($(x j&1)))&Fk( j)(x j&1)) (39)

We claim that limj � � x j&1
k( j )+sni N

=! i for 0�s�si . For, suppose not. By
taking a subsequence jl � � as l � � and an appropriate s, 0�s�si , we
can assume that lim j � � x j&1

k( j )+sniN
=:<! i . If we write k( j )=i++ jM,

where +j # Z, Eq. (23) gives

Fk( j )(%N($(x j&1)))&Fk( j )(x j&1)

=Fi (%N($(x j&1)))&F i (S+j N(x j&1)) (40)

We know that Fi is strictly increasing on D in the i+sni N coordinate,
because we write A for A� and the (i, i+sni N ) entry of A� is positive. By
our construction, %N($(x j&1))�S+j N(x j&1) for all j; and the limit as j
approaches � of the i+sniN coordinate of %N($(x j&1)) [respectively,
S+j N(x j&1)] is !i (respectively, :). It follows from the definition of a func-
tion being strictly increasing on D that there exists =>0 such that for all
sufficiently large j,

Fi (%N($(x j&1)))&F i (S +j N(x j&1))�= (41)

If we use Eqs. (40) and (41) in Eq. (39), we see that for all sufficiently
large j,

x j
k( j )�gi ($(x j&1))&= (42)

Because limj � � x j
k( j )=! i=limj � � gi ($(x j&1)), Eq. (42) gives a contra-

diction.
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Thus, the assumption that limj � � x j
k( j )=! i=maxk !k implies that

limj � � x j&1
k( j)+sniN

=! i for 0�s�si . But now we can apply the same obser-
vation to conclude that

lim
j � �

x j&2
k( j )+sni N

=! i for 0�s�2si

In general, for m�1, we find that

lim
j � �

x j&m
k( j )+sni N

=! i for 0�s�msi (43)

Because si�1 and we assume that ni{0, it follows that

lim
j � �

inf &x j&m&1= lim
j � �

inf &x j&1�(m+1) ! i

However, &x j&1=&x&1 , because F is integral-preserving, so if we select m
so that (m+1) !i>&x&1 , we obtain a contradiction. Thus, the assumption
that !{0 leads to a contradiction. g

As a simple example of how Theorem 7 can be used, we give the
following.

Corollary �I Assume hypothesis H1.1 and let F # F(R, N ) be defined
by (12). For every i # Z, assume that _i&1, i and _ ii are strictly increasing on
[0, R]. Then for every x # KR , limk � � &F k(x)&�=0.

Proof. Our assumption imply that for every i # Z, Fi , the i th coor-
dinate function of F, is increasing on D=D(R, N ) and strictly increasing
on D in variable j for j=i and j=i&1. If A is a strict monotonicity
incidence matrix for F on D, it follows that ai, i&1>0 and aii>0. This
implies that the (i, j ) entry of Ak is positive for i&k� j�i. In particular,
the (i, j ) entry of AN is positive for i&N� j�i, and the hypotheses of
Theorem 7 are satisfied with mi=N and ni=&1 for 0�i<N. g

It remains to give conditions under which &F k(x)&� converges to zero
uniformly for x # KR .

Theorem �I Suppose that F # F(R, N ) and that A is a strict monoton-
icity incidence matrix with constant c>0 for F on D(R, N ) [see Defini-
tion 2.16, where F(R, N ) and D(R, N )=D are as in Definition 2.5]. For
each i, 0�i<N, assume that there exists an integer mi�1 and an integer
ni{0 such that Ami has positive entries in the (i, i ) and (i, i+niN ) positions.
Then, given any '>0, there exists an integer k(') such that &F k(x)&��'
for all x # KR and all k�k(').
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Proof. Define m=lcm([mi : 0�i<N ]) and write m=si mi . As in the
proof of Theorem 7, Am has positive entries at the (i, j ) position for
0�i<N and for j # [i+sn iN : 0�s�si ]. If bkj denotes the (k, j ) entry
of Am, we know that bk++N, j++N=bkj for all integers +; so if ni1

=ni2
for

i1#i2 mod N, we find that Am has a positive entry at (i, j ) if i # Z and
j # [i+sni N : 0�s�si ].

Because &$(F k(x))&1=�N&1
i=0 $i (F k(x)) is a decreasing function of k,

it suffices to prove that, given =>0, there exists k(=)=k such that
�N&1

i=0 $i (F mk(x))�N= for all x # KR . Recall (Lemma 2.21) that Amk is a
strict monotonicity incidence matrix with constant cmk for F mk on D(R, N )
and that Amk has positive entries at the (i, j ) positions for i # Z and j #
[i+sniN : 0�s�ks i ].

Define l to be the smallest positive integer such that lN=�R+=.
Select an arbitrary x # KR . If �N&1

i=0 $ i (x)�N=, then we know that
�N&1

i=0 $i (F k(x))�N= for all k�1, and we are done. Thus assume that
�N&1

i=0 $i (x)>N=. Define y=%N($0(x),..., $N&1(x)), so y # D(R, N ) and
y�x. For each i, let F k

i be the i th coordinate function of F k, and let
xk=F k(x) and xk

i =F k
i (x). Choose integers +i , i=0,..., N&1, such that

F ml
i++i N

(x) :=xml
i++iN

=$i (F ml (x))

Lemma 2.7 implies that F ml # F(R, N ), �N&1
i=0 F ml

i ( y)=�N&1
i=0 $ i (x), and

F ml
i++i N

( y)=F ml
i ( y). Putting this information together we find that

F ml
i ( y)&F ml

i++iN
(x)=F ml

i++iN
( y)&F ml

i++i N
(x)

�cml \ :
l&1

s=0

($i (x)&xml
i++iN+sni N

)+ (44)

Adding (44) for 0�i�N&1, we obtain

:
N&1

i=0

(F ml
i ( y)&F ml

i++iN
(x))= :

N&1

i=0

$ i (x)& :
N&1

i=0

$i (F ml (x))

�cml \l :
N&1

i=0

$ i (x)& :
N&1

i=0

:
l&1

s=0

xml
i++iN+sni N+

�cml \l :
N&1

i=0

$ i (x)& :
j # Z

xml
j +

=cml \l :
N&1

i=0

$ i (x)& :
j # Z

xj+ (45)
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Since we assume that �N&1
i=0 $i (x)>N=, we have that

l :
N&1

i=0

$i (x)& :
j # Z

xj>lN=&R�=

and we have proved that for any x # KR such that �N&1
i=0 $ i (x)>N=, we

have

:
N&1

i=0

$i (F ml (x))� :
N&1

i=0

$ i (x)&cml= (46)

If &$(F ml (x))&1�N=, we know that &$(F j(x))&1�N= for all j�ml.
Otherwise, we apply the same argument to xml and conclude that

:
N&1

i=0

$ i (F ml (xml))= :
N&1

i=0

$i (F 2ml (x))� :
N&1

i=0

$ i (F ml (x))&cml=

� :
N&1

i=0

$ i (x)&2cml=

In general, if �N&1
i=0 $i (F jml(x))>N= for 0� j�k&1, we find that

:
N&1

i=0

$i (F kml (x))� :
N&1

i=0

$i (x)&kcml=�R&kcml= (47)

If k is the first positive integer such that R&kcml=�N=, it follows from
(47) that there must exist j, 0� j�k, such that �N&1

i=0 $i (F jml(x))�N=,
and this completes the proof. g

The following is a simple application of Theorem 9 to our original
class of operators. The proof follows from Remark 2.19 and Theorem 9 and
is left to the reader.

Corollary }�I Assume hypothesis H1.1 and let F # F(R, N ) be defined
by (12). Assume that there exists c>0 such that for integers i with 0�i�
N&1 and all real numbers s, t # [0, R], we have

|_i&1, i (t)&_ i&1, i (s)|�c |t&s| and |_ i, i (t)&_i, i (s)|�c |t&s|

Then for every '>0 there exists k( j )�0 such that &F k(x)&��' for all
x # KR and all k�k( j ).

Note that Corollary 10 contains as a very special case the example
studied in Section 2.1.

411Nonexpansive Operators with Application to Superhigh-Frequency Oscillations



3. DISCONTINUOUS DELAY EQUATIONS

3.1. Statement of the Problem

We study the equation

x* (t)=&sign(x(t&1))+ f (x(t)), t�0 (48)

with a locally Lipschitz function f : R � R satisfying | f (x)|�p<1, and
sign(x)=1, 0, or &1 according to whether x is positive, zero, or negative.
This is a model of an autonomous system with a retarded relay control
element. For a general theory of delay equations we refer to Dieckmann et
al. (1995), Hale (1971), and Hale and Verduyn Lunel (1993), and for dis-
continuous delay equations to Utkin (1992). Models like (48) were used in
some control systems (see Andre and Seibert, 1956; Bartolini et al., 1997;
Choi and Hedrick, 1996; Moskwa and Hedrick, 1989).

The Cauchy problem x(t)=.(t), t # [&1, 0], has a unique continuous
solution x. for any . # C[&1, 0]. All these solutions oscillate around the
zero level, and the frequency function,

&.(t)=*(x&1
. (0) & (t*&1, t*)) t*=max[{�t: x.({)=0]

is decreasing (see Shustin et al., 1993). Hence there always exists the limit
frequency

N.= lim
t � �

&.(t) # N _ [0] _ [�]

In particular, once the frequency becomes finite, it will be finite thereafter.
Properties of solutions to (48) with a finite limit frequency are basi-

cally known (see Mallet-Paret and Nussbaum, 1986, 1992; Mallet-Paret,
1988; Shustin et al., 1993; Walther, 1981, 1991, 1995). For the reader's
convenience we present a proof of the existence of periodic solutions with
arbitrary even limit frequency N. . Our proof is simpler than earlier methods.

Assume that . # C[&1, 0] is negative everywhere but .(0)=0. Then,
in the interval [0, 1], x.(t) coincides with the solution of the equation

x* (t)=1+ f (x(t)), x(0)=0

In the interval [1, z+1], x.(t) coincides with the solution of the equation

x* (t)=&1+ f (x(t)), x(1)=x.(1)
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where z>1 is the unique zero of the latter solution. Finally, in the interval
[z+1, w], x.(t) coincides with the solution of the equation

x* (t)=1+ f (x(t)), x(z+1)=x.(z+1)

where w is the unique zero of the latter solution. Since the constant sign
intervals for x.(t), t # [0, w], are of length >1, x.(t) extends for t�w
periodically with period w, and it has N.=0. Note that

4
1+ p

�w�
4

1& p
(49)

Given any *>0, one can similarly construct a solution [which we denote
X*(t)] to the equation

x* (t)=&sign(x(t&1))+ f (*x(t)), t�0

which has N.=0 and a period w(*) satisfying (49). Now, for arbitrary
positive integer n, put

Y*, n(t)=
1

nw(*)+1
} X*((nw(*)+1) t), t�0

Hence

Y4 *, n(t)=X4 *((nw(*)+1) t)

= &sign(X*((nw(*)+1) t&1))+ f (*X*((nw(*)+1) t))

= &sign(X*((nw(*)+1) t&nw(*)&1))+ f (*(nw(*)+1) } Y*, n(t))

= &sign(Y*, n(t&1))+ f (*(nw(*)+1) } Y*, n(t))

Due to (49) there exists a positive *n satisfying *n(nw(*n)+1)=1, which
thereby defines a solution Yn to (48) with a period

w(*n)
nw(*n)+1

# \1
n

,
1

n+1+
Its limit frequency is 2n.

We state the question: Do there exist solutions to (48) with the infinite
limit frequency N.=�? We prove here the following result by means of
the above theory of nonexpansive operators.
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Theorem }}I There are no solutions x. to (48) with N.=� with the
single exception of the case f (0)=0, x.(t)#0.

Moreover, we show that if . # C[&1, 0] has infinitely many zeros
(but is not identically zero), then the length of the interval with infinite
frequency of oscillations can be uniformly estimated.

Theorem }"I For any =>0 there exists T=>0 such that

&.(t)<� as t�T=

provided

max[length(I): I is a connected component of [&1, 1]".&1(0)]�=

Independently Theorems 11 and 12 were proved by Akian and Bliman
(2000) in a way similar to that of Shustin (1995).

Some results in this direction were obtained before.

v Shustin (1995) considered the equation

x* (t)=&sign(x(t&1))+ f (x(t), t), t�0

with a twice differentiable function f (x, t), satisfying | f (x, t)|�p<1.
It was shown that for any p0 # (&1, 1) there exists =( p0)>0 such
that the statement of Theorem 12 holds under the condition

f (x, t)= p0+xg(x, t), max[g(x, t), gx(x, t), gt(x, t)]�=( p0)

v Dix (1998) considered the equation

x* (t)=s(x(t&{(t))) (50)

where s(0)=0, s(x)=&p0<0 when x>0, s(x)= p1>0 when x<0,
and {(t) is a nonincreasing bounded positive function with {$(t)<1.
He showed that the only infinite frequency solution of this equation
is identically zero.

3.2. NEP Operators Associated with Delay Equations

The proof of Theorems 11 and 12 is strongly based on properties of
the operators in l+

1 (Z) studied in Section 2.1. In the sequel it is more con-
venient to define these operators not in l+

1 (Z) but on the set of increasing
bounded biinfinite sequences in R.
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Let tn # R, n # Z, be such that

tn�tn+1 , n # Z, lim
n � &�

tn=: # R, lim
n � �

tn=; # R

These data define, in particular, an element a=(an : n # Z) # l+
1 (Z):

an=tn+1&tn , n # Z, &a&1=;&:

The image 9([tn])=[t$n]/[:, ;] is constructed as follows. For any n # Z
we take the solutions x=!n(t), t # R, of the Cauchy problem

x* =1+ f (x), x(t2n)=0

and the solution x='n(t), t # R, of the Cauchy problem

x* =&1+ f (x), x(t2n&1)=0

All functions !n(t) are strongly increasing, and all functions 'n(t) are
strongly decreasing, hence there is a unique point t$2n # [t2n , t2n+1] such that
!n(t$2n)='n+1(t$2n), n # Z, and there is a unique point t$2n&1 # [t2n&1 , t2n]
such that 'n(t$2n&1)=!n(t$2n&1), n # Z. One can easily see that

t$2n&t2n=_(a2n+1), t2n&t$2n&1={(a2n)

where _, { are nonnegative functions which can be found from the equations

|
s

0

dx
1+ f (x)

=_(t), |
s

0

dx
1& f (x)

=t&_(t) (51)

where 0�s�t,

|
s

0

dx
1+ f (x)

=&{(&t), |
s

0

dx
1& f (x)

=t+{(&t) (52)

where t�s�0. One can easily see that b=(bn | n # Z) # l+
1 (Z), bn=

t$n+1&t$n , n # Z, satisfies

b2n=_(a2n)+{(a2n&1), b2n+1=a2n+1&{(a2n+1)+a2n&_(a2n)

Due to (51), (52), the functions _, { are differentiable and satisfy

_$(a)=
1& f (!)

2
, {$(a)=

1& f (')
2
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with some &a�'�0�!�a. Hence _, { satisfy (1) with *=(1& p)�2,
p=sup | f (x)|. Then the operator b=F(a) satisfies the hypotheses of
Theorem 1.

3.3. Uniform Convergence to Zero of Certain Sequences

Here we pass from biinfinite bounded sequences to bounded closed
subsets which later will be interpreted as zero sets of solutions to (48) on
unit segments.

For a closed set G/R we denote by Ga/G the set of points in G
which are not isolated.

Definition 3.1. (1) Denote by G the set of pairs (G, E ), where G/
[0, 1] is closed, and E: [0, 1] � [&1, 0, 1] is such that E |G=0, and
E: [0, 1]"G � [\1] is locally constant. Denote by G0 the set of (G, E ) # G

such that 0, 1 # G, and the measure of G is zero if f (0){0.

(2) Define a map ?: C[0, 1] � G by

. # C[0, 1] [ (G, E ), G=.&1(0), E(t)=sign(.(t))

Denote C0[0, 1]=?&1(G0).

(3) Define an operator J: G0 � C[0, 1], J(G, E )=�, as follows:

�(a)=|
a

0
(&E(t)+ f (�(t))) dt

The operator J is well defined, since the latter equation is uniquely solvable
with respect to �. Moreover, it is injective.

Now we shall construct an operator 1 : G0 � C0[0, 1] such that
? b 1=Id and Im(1 )/Im(J ). First, for x=1 (G, E ), put x(t)=0, t # G.
Let I=(:, ;) be a component of [0, 1]"G. Take the solution y(t) of the
Cauchy problem

x* (t)=E(t)+ f (x(t)), x(:)=0, :�t�;

and the solution z(t) of the Cauchy problem

x* (t)=&E(t)+ f (x(t)), x(;)=0, :�t�;

There exists a unique !=!(I) # (:, ;) such that y(!)=z(!). Put

x(t)= y(t), :<t�!, x(t)=z(t), !<t<;
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The function x constructed above belongs to ?&1(G, E ), and is J(G� , E� ) for
the following (G� , E� ) # G0 :

G� =Ga _ Geven _ [!(I ): I is a connected component of [0, 1]"G]

and Geven is the set of isolated points t # G such that E(t&0)=E(t+0). By
construction, x(t) is differentiable in [0, 1]"G� . For any t # [0, 1]"G� we
define E� (t)=&sign(x* (t)).

We can partially order the set ?&1(G, E ) & Im(J ): for x1 , x2 # ?&1(G, E )
& Im(J ),

x1 ox2 � x1(t) E(t)�x2(t) E(t), t # [0, 1]"G (53)

One can easily see that 1 (G, E ) is the unique maximal element in
?&1(G, E ) & Im(J ).

The element (G� , E� ) can be viewed as an image of the operator 9,
described in the previous subsection. Note that G� a=Ga . Let I=(:, ;) be
a component of [0, 1]"Ga . The set [:, ;] & G yields an increasing biin-
finite sequence [referred to below as a tame sequence of (G, E )]. We shall
obtain such a sequence by numbering the points of the set [:, ;] & G in
increasing order so that on any interval (t2n , t2n+1) we have E=1, and on
any interval (t2n&1 , t2n) we have E=&1. Let us describe the construction
of a tame sequence in detail. If I & G=<, E(t)=1, t # I, then put

tn=:, n�0, tn=;, n>0

If I & G=<, E(t)=&1, t # I, then put

tn=:, n�1, tn=;, n>1

If I & G{<, we put t0=t for some t # I & G, and then define tn , n{0, in
the following recursive procedure:

v if tn=;, put tm=;, m>n;

v if tn=:, put tm=:, m<n;

v if t2n=! # I, E(!+0)=1, put t2n+1='=min[t # [:, ;] & G, t>!];

v if t2n=! # I, E(!+0)=&1, put t2n+1=!;

v if t2n&1=! # I, E(!+0)=1, put t2n=!;

v if t2n&1=! # I, E(!+0)=&1, put t2n='=min[t # [:, ;] & G,
t>!];

v if t2n=! # I, E(!&0)=&1, put t2n&1='=max[t # [:, ;] & G,
t<!];
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v if t2n=! # I, E(!&0)=1, put t2n&1=!;

v if t2n+1=! # I, E(!&0)=&1, put t2n=!;

v if t2n+1=! # I, E(!&0)=1, put t2n='=max[t # [:, ;] & G, t<!].

Then [:, ;] & G� is the set of points of the sequence [t$n]=9([tn]) with
added (if necessary) points :, ;.

Definition 3.2. Let (G, E ) # G0 . Define &G, E&� to be the maximum
length of a component I of [0, 1]"G.

Lemma �I�I All sequences (&G(N ), E (N )&� | N # N) such that

(G(0), E (0)) # G0 , (G(m&1), E (m&1))=?(J(G(m), E (m))), m�1 (54)

converge to zero, uniformly with respect to (G(0), E (0)) # G0 .

Proof. We exploit the same idea as in the proof of Theorem 1.
Put $(G, E ) [resp. 2(G, E )] to be the maximum length of a compo-

nent I of [0, 1]"G with E(t)=1, t # I [resp. E(t)=&1, t # I ]. As has been
shown in the proof of Proposition 2.1,

$(J&11 (G, E ))�_($(G, E ))+{(2(G, E )) (55)

2(J&11 (G, E ))�$(G, E )&_($(G, E ))+2(G, E )&{(2(G, E )) (56)

For an arbitrary element (G� , E� ) # J&1?&1(G, E ),

$(G� , E� )�$(J&11 (G, E )), 2(G� , E� )�2(J &11 (G, E ))

We shall prove even stronger statement. Let (:~ , ;� ) be a component of
[0, 1]"G� a , and the set [:~ , ;� ] & G� yields a tame sequence (t~ n | n # Z). The
interval (:~ , ;� ) is contained in a component (:, ;) of [0, 1]"Ga [see Shustin
(1995) or Section 3.4 below]. Let (tn | n # Z) , (t$n | n # Z) be tame sequen-
ces of points of the sets [:, ;] & G and [:, ;] & G� , respectively, where
(G� , E� )=J&11 (G, E ).

Proposition /I�I In the above notation, for any n # Z, k # N, there
exists m # Z such that

t~ n+k&t~ n�t$n+k+2m&t$n+2m

Proof. Since the function �=J(G� , E� ) vanishes at G, we have the
following:
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v Geven & (:~ , ;� )/G� , since any point t* # Geven is an extremum of �;

v any nonempty interval (tn , tn+1) contains a point of G� , since � must
have an extremum in (tn , tn+1);

v if tn<t$n<tn+1 , then (tn , t$n] & G� and [t$n , tn+1) & G� are nonempty;
in this case, if t$n=t~ s , then n#s mod 2: this follows from the fact
(pointed out before) that the graph of � in [tn , tn+1], glued out of
trajectories of the equations x* =\1+ f (x) lies in the domain bounded
by the graph of 1 (G, E ) and the t-axis;

v if t$n<t$n+1 , then [t$n , t$n+1] contains at least two points of G� , which
is a consequence of the above reasoning.

Without loss of generality we can suppose that t~ n<t~ n+k . We consider
several cases.

Case 1. Let k=1. Then the graph of the function x(t)=J(G� , E� )
restricted to the segment [t~ n , t~ n+1] lies in a curvilinear triangle bounded
by the t-axis and the graph of the function 1 (G, E ) on [ts , ts+1] for some
s # Z (see Fig. 1). Since all these graphs consist of integral lines of the
differential equations x* =\1+ f (x), one can easily derive that

t~ n+1&t~ n�t$s+1&t$s or t$s&t$s&1

according to whether n&s is even or odd.

Fig. 1. Functions J(G� , E� ) and 1 (G, E ).
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Case 2. Assume that k>1 and t$n+2m�t~ n<t$n+2m+1 . If t$n+2m+k=;,
we are done. If t$n+2m+k<;, then by construction,

t$n+2m<t$n+2m+1< } } } <t$n+2m+k

Since any segment [t$n+2m+i , t$n+2m+i+1], 1�i<k, contains at least two
points of G� , one easily derives that there are at least k points of G� in
[t$n+2m , t$n+2m+k]; hence t~ n+k�t$n+2m+k , and we are done.

Case 3. Assume that k>1 and

t$n+2m+1�t~ n<t$n+2m+2 (57)

If t$n+2m+k=;, we are done. So, assume that t$n+2m+k<;; hence by con-
struction,

t$n+2m+1<t$n+2m+2< } } } <t$n+2m+k

Due to (57), the derivatives of the functions 1 (G, E ) and J(G� , E� ) at t~ n+0
have different signs. Therefore the segment (t~ n , t$n+2m+2] contains at least
two points of G� . As above, since any segment [t$n+2m+i , t$n+2m+i+1],
1<i<k, contains at least two points of G� , one obtains at least k points of
G� in (t~ n , t$n+2m+k], which completes the proof. g

Proposition 3.4 together with (55) and (56) implies that the sequence
($(G(N ), E (N ))+2(G(N ), E (N )) | N # N) is decreasing. Its uniform conver-
gence to zero follows from a statement similar to Proposition 2.2.

Proposition /I<I Let =>0 and 2m�(1+=)�=, m # N. If

$(G(0), E (0))+2(G(0), E (0))�2= (58)

then

$(G(2m&1), E (2m&1))+2(G(2m&1), E (2m&1))

�$(G(0), E (0))+2(G(0), E (0))&2*2m&1= (59)

where *=(1& p)�2 and p=sup | f (x)|.

Proof. Relation (58) implies that

m($(G(0), E (0))+2(G(0), E (0)))�1+=

Hence, for any component (:, ;) of [0, 1]"G (0)
a and any tame sequence

(tn | n # Z) of (G(0), E (0)), it holds that

tn+2m&tn�m($(G(0), E (0))+2(G(0), E (0)))&=, n # Z
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Using this was a starting point, we derive (59) from the following implica-
tions, which are immediate consequences of (55), (56), Proposition 3.4, and
the computation performed in the proof of Proposition 2.2 with *=
(1& p)�2, p=sup | f (x)|.

(1) If, for some N�0, k�1, and any tame sequence (tn |, n # Z) of
(G(N ), E (N )) in the closure of any component of [0, 1]"G(N )

a , there holds

tn+2k&tn�k($(G(N ), E (N ))+2(G (N ), E (N )))&!, n # Z

then any tame sequence (t~ n | n # Z) of (G(N+1), E (N+1)) satisfies

t~ 2r+2k&1&t~ 2r �(k&1)($(G (N+1), E (N+1))+2(G(N+1), E (N+1)))

+$(G(N+1), E (N+1))&!*, r # Z

t~ 2r+2k&t~ 2r+1 �(k&1)($(G (N+1), E (N+1))+2(G(N+1), E (N+1)))

+2(G(N+1), E (N+1))&!*, r # Z

(2) If, for some N�0, k�1, and any tame sequence (tn | n # Z) of
(G(N ), E (N )) in the closure of any component of [0, 1]"G(N )

a , there holds

t2r+2k+1&t2r �k($(G(N ), E (N ))+2(G (N ), E (N )))

+$(G(N ), E (N ))&!, r # Z

t2r+2k&t2r&1�k($(G(N ), E (N ))+2(G (N ), E (N )))

+2(G(N ), E (N ))&!, r # Z

then any tame sequence (t~ n | n # Z) of (G(N+1), E (N+1)) satisfies

t~ n+2k&t~ n �k($(G (N+1), E (N+1))

+2(G(N+1), E (N+1)))&!*, n # Z g

3.4. Infinite Frequency Oscillations

Now we are ready to complete the proof of Theorems 11 and 12. We
start with the following observation. any solution x.(t) to (48) is absolutely
continuous, hence is differentiable almost everywhere. In particular, this
implies that if f (0){0, then the zero set of any solution x.(t) to (48) has
zero measure in [1, �). Indeed, if x.(t*)=0, where x* .(t*) exists, then
x* .(t*){0, which says that t* is an isolated zero of x. . Therefore, x&1

. (0)
& [1, �) is contained in the union of a zero measure set and a countable
set.
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We argue by contradiction. Assume that there exists a nonzero solu-
tion x(t), t�&1, of Eq. (48) which has infinitely many zeros in any unit
interval of [0, �). To describe the structure of the set x&1(0), we recall
here observations made by Shustin (1995). Consider the sets

Sn=x1(0) & [n, n+1]&n/[0, 1], n # N

where &n means the shift by n to the left. Note that Sn{[0, 1] for all
n # N: for f (0){0 this as explained above; for f (0)=0, Sn=[0, 1] would
imply x(t)#0, contrary to the assumption on x(t). Next consider the sets
Sn, a of accumulation points of Sn , n�1. They are closed and nonempty,
since all Sn are supposed infinite. For any two points t$<t" # Sn the func-
tion x(t) has an extremum t*+n # (t$+n, t"+n) which must correspond
to a zero t*+n&1 of x(t); hence t* # Sn&1 . It follows that Sn&1, a#Sn, a ,
n>1, so the set S�, a=�n Sn, a is nonempty. Let t0 # S�, a . The above
argument gives, in particular, that all the points t0+n, n # N, n�1, are
zeros of x(t).

Now we introduce a sequence ( (G(N ), E (N )) | N=0, &1, &2,...) of
elements of G (see Definition 3.1):

G(N )=x&1(0) & [t0+1&N, t0+2&N]&(t0+1&N )

E (N )(t)=sign(x(t+t0+1&N )), t # [0, 1]

where &(t0+1&N ) means the corresponding shift to the left. By construc-
tion, (G(N ), E (N )) # G0 , and any two elements (G(N ), E (N )) and (G(N&1),
E (N&1)) are related as

(G(N&1), E (N&1))=?J(G(N ), E (N )), N�0

which coincides with (54) up to shifts of index in Z. Fix positive =<
&(G(0), E (0))&� . There exists N= # N such that for any sequence in Lemma 3.3
the & }&� -norm of the element with number N= is less than =. This conclu-
sion applied to the finite sequence of elements constructed above,

(G(N ), E (N )), 0�N�&N=

says that

&G(0), E (0)&�<=

which contradicts the assumption made and, thereby, proves Theorem 12
with T==N=+2.
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