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Abstract

We study the max-plus equation

P+p(&) = max (H(s) +y(p(s)), <e[0, M], (%)
E<ssM

where H:[0,M]—(—o0,0) and y:[0,M]—[0,M] are given functions. The function
Y : [0, M]—>[— o0, o0) and the quantity P are unknown, and are, respectively, an eigenfunction
and additive eigenvalue. Eigensolutions s are known to describe the asymptotics of certain
solutions of singularly perturbed differential equations with state dependent time lags. Under
general conditions we prove the existence of a finite set (a basis) of eigensolutions ¢, for
1 <i<gq, with the same eigenvalue P, such that the general solution ¥ to (%) is given by

Y& = (' + 0 (V@ + @ (E)v v (c!+¢7(2)).

Here ¢'e[— o0, o0) are arbitrary quantities and v denotes the maximum operator. In many
cases ¢ = | so the solution ¥ is unique up to an additive constant.
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1. Introduction

This paper is concerned with a class of so-called max-plus equations, specifically
with equations of the form

P+y(&) = max (H(s) +((s), <&e€l0,M], (1.1)

E<s<M

where H and y are given functions satisfying appropriate conditions. We seek an
unknown function ¥ and an unknown quantity PeR, which we regard as an
eigenfunction and an additive eigenvalue, respectively. Eq. (1.1) arises naturally in
the study of the singularly perturbed differential-delay equation

ex(1) = f(x(1),x(t = 1)), r=r(x(1)),

with a state-dependent time lag r as indicated, as described in [16]. Indeed, the
present paper is a companion to [16], playing an essential role in the analysis there.
On the other hand, we believe the results on Eq. (1.1) contained herein are of
sufficient independent interest to warrant a separate exposition, and to this end the
present paper is completely self-contained.

We also mention here the paper [15] in which a more general class of max-plus
eigenproblems of the form

Pyl = max (H(Cs)+y(s)) (1.2)

a(&) <s<B(E)

are considered, although from the somewhat different perspective of topological
fixed point theory. Here o,f:[0,M]—][0, M] are given continuous functions
satisfying o(s) <f(s) in [0, M]. (Note that Eq. (1.1) can be put in the form (1.2) by
making the change of variables § = y(s).) Quite generally, one observes for Eq. (1.2)
that adding a constant to a solution s yields another solution with the same P, just
as multiplying the solution of a linear homogeneous equation by a constant yields
another solution. Also, the maximum of two solutions of Eq. (1.2) with the same P is
again a solution, just as the sum of two solutions of a homogeneous linear equation
is a solution. Thus the max-plus eigenproblem (1.2) is analogous to the linear
Fredholm equation

B(&)
Ax(&) = / h(&,s)x(s) ds,

in which multiplication is replaced with addition, and addition (and integration)
replaced with the max operator. Of course the same remarks apply to Eq. (1.1).
Eq. (1.2) has arisen in other contexts [3,4,12,17], at least when the functions o and
f are constant. In this case it is known [3,17], that the right-hand side of (1.2) defines
a compact operator, although this operator generally is not compact [15] for
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nonconstant o and f. The discrete version
p+zi =max (w; +z;)
jeJ()

of (1.2) has arisen in many applications; see, for example, [1,5-7,13], and the
extensive references therein. Here W = (wj) is a given n x n matrix, ze R" with peR,
and J(i)={1,2, ...,n} is a nonempty subset for every 1<i<n. Max-plus operators
arise quite generally in problems of optimal and stochastic control; see, for example,
[8-11]. We mention the book [14] as a general reference for max-plus analysis.

The quantity M > 0in Eq. (1.1), as it occurs in the delay equation problem [16], in
fact plays the role of a parameter. That is, the given functions H and 7y are defined on
an interval [0, C] for some fixed C > 0 and one considers the problem (1.1) for each
M e (0, C]. In the present paper we also take this point of view. In particular, we
assume throughout, and without further comment, that

H:[0,C]->R, v:[0,C]—]0,C]
are both continuous. Additionally, we assume that

p(&) is strictly increasing in €0, C] and

p(&) <& for every £€(0,C). (1.3)

Observe that y(0) = 0 must hold, although either y(C) = C or y(C) < C may occur.

Our main result is that under additional mild conditions on H and y, for each M
there exist a finite collection of nontrivial ““basis” solutions ¢, say for 1 <i<gq, from
which the general solution of (1.1) for a particular P may be obtained. More
precisely, y satisfies (1.1) if and only if

(&) = (' + 0" () V(e + () v - v (e +9(£)) (1.4)

in [0, M] for some constants ¢ €[— o0, oo ). We denote here xvy = max{x,y}. It is
easy to see that every such choice of ¢/ gives a solution to Eq. (1.1). Thus the thrust of
our result is that (1.4) describes the general solution to (1.1).

The basis solutions ¢’ and their number ¢ in general depend on M. Remarkably,
for any given M the eigenvalue P is the same for all nontrivial solutions to (1.1) and
is given explicitly by

P= max H(&). (L.5)

0<é<M
Clearly P = P(M) depends on M, in general. Our results show that under mild
conditions nontrivial solutions always exist with this P, that is, ¢ = g(M)>1.

Further, a constructive and in some sense explicit description of the basis solutions
@' can be given, and as well there is an explicit characterization of the quantity g.
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Once the relation (1.5) has been established we may subtract P = P(M) from both
sides of Eq. (1.1) to obtain

Y(&) = Jmax (A(s, M)+ (7(5))), (1.6)
where we denote
A(E, M) = H(&) - P(M), (1.7)

Observe that the right-hand sides of (1.1) and (1.6) involve the values of i in the
interval [y(&),y(M)], which may contain ¢ in its interior. This fact highlights the
difficulty in obtaining solutions directly from (1.6) using any sort of evolutionary
approach, that is, an approach which treats £ as “time” and attempts to solve an
initial value problem. On the other hand such an evolutionary approach is feasible
for the equation

Y(&) =, max (A(s, M)+ (7(5))), (1.8)

E<s<y3, (9)

which is related to but different from (1.6). Here
1 CE [0, M] such that y({) = ¢ if such ( exists,
Tm (&) =

M otherwise,

which is the inverse of y in the range of [0, y(M)], and M outside this range. Recalling
(1.3), we see that y;; : [0, M]— [0, M] is well defined and continuous. Note that the
right-hand side of (1.8) involves wvalues of 1 only in the interval
(&), (v (E)] S [y(€), &), which lies to the left of &. (We caution the reader that
P(y34(8)) = 7(M) #¢& when & > 7y(M).) Our analysis will show that certain solutions
of (1.8) also satisfy (1.6), and that solutions to (1.8) can be constructed by an
evolutionary approach, in some sense solving an initial value problem. In particular,
the basis solutions ¢’ will be constructed in this fashion.

Our main result, the Basis Theorem, provides the representation (1.4) for the
general solution of (1.1) and (1.6). It is stated in Section 2 and its proof given in
Section 3. Theorem 2.3, whose statement precedes that of the Basis Theorem, is an
essential component of this result as it gives a precise characterization of the
canonically defined basis functions ¢’ appearing in (1.4). The proof of Theorem 2.3 is
also given in Section 3. All the results in these two sections are stated in terms of a
given but arbitrary M € (0, C].

Section 4 is devoted to understanding how the basis solutions vary with M, which
we regard here as a parameter. This approach is very much motivated by the role our
theory plays in the companion paper [16]. In this section we study the situation in
which for every M e (0, C] there is a unique basis element, that is, g(M) = 1. In this
case the function H (or more precisely the pair (H,7)) is said to be quasimodal. The
quasimodal case includes both the case in which H is monotone increasing in [0, C],
and also the case in which H is monotone increasing in [0, M) to a maximum at
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some M€ (0, C) and then satisfies H (&) < H(M)) to the right of My, where in both
cases we need H(¢) > H(0) for ¢ near 0. Theorem 4.1, the main result of Section 4,
describes how the unique basis solution ¢!(-, M) for each M € (0, C] is related to the
basis solution ¢!(-,C) at M = C.

Throughout this paper we say a function f is strictly increasing if f(&;)<f(&,)
whenever & <&,. If the monotonicity is not strict, and so f(&;)<f(&,) whenever
&1 <&,, then we say that f is monotone increasing. The terms strictly decreasing and
monotone decreasing are defined correspondingly.

2. The basis theorem

We shall allow solutions of Egs. (1.1), (1.6), and (1.8) to take the value —oo (but
not +o0) as well as taking values in R, that is

V[0, M]—>[—o00, ).

(Note however that the kernel functions H and 4 and the additive eigenvalue P are
always finite.) We consider only continuous solutions iy, where by continuity we
mean that [—oo, c0) is endowed with the standard topology in which the sets
[— 0, &) form a neighborhood basis for —oco. By the trivial solution to any of these
equations we mean the solution y(£) = — oo identically in [0, M], all other solutions
being termed nontrivial. We note that every solution ¥ to (1.1) and (1.6) is monotone
decreasing in [0, M], and in particular (&) <y (y(&)) in [0, M] by (1.3).

Let us now define P(M) to be the quantity P given by Eq. (1.5) (the fact that the
additive eigenvalue in (1.1) necessarily equals this quantity for any nontrivial
solution will be established later, in Proposition 2.2). Next let the function 4 be
defined by (1.7). Then clearly 4A(&, M)<0 in [0, M], with A(&y, M) = 0 for at least
one &y [0, M] which in general depends on M. A central role in our analysis will be
played by the set Z(M)<= [0, M] defined as

Z(M)={(e0,M]|A({,M) =0 and A(¢,M)<O0 for every fe({,y;}(é’)]},

which we observe is nonempty as it contains the right-most zero of 4(-, M). Indeed,
we shall see that the cardinality of Z(M) equals the number ¢ of basis solutions and
that there is a canonical one-to-one correspondence between elements of Z(M) and
basis solutions. This correspondence is described precisely in Theorem 2.3 below.

Note that 0e Z(M) if and only if 4(0, M) =0 and that M e Z(M) if and only if
A(M, M) = 0. Also, it is easy to see using (1.3) that the only possible cluster points
of the set Z(M) are 0 and M and that in any case Z(M) is closed. Furthermore, M
cannot be a cluster point of Z(M) if y(M)< M, which is always the case if M <C.
The condition

H(0)< max H(¢) for every small ¢ > 0, (2.1)

0<é<e
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which holds in particular if H'(0) > 0, is necessary and sufficient for 0¢ Z(M), that is
A(0, M) <0, for every M (0, C]. This condition thus precludes, for every M, the
clustering of Z(M) at 0. It also ensures that Z(M) is a finite set for every M < C.
It is not hard to give conditions which preclude clustering of Z(M) at M when
M = C. As noted, one such condition is that y(C) < C. Another condition is that

H(&)< max H(s) for every (e[C —¢,C) (2.2)

0<s<C

for some ¢ > 0, as this ensures that either A(C, C) <0 or else that ¢ = C is an isolated
zero of A(-, C). Thus if either y(C)< C or condition (2.2) holds, and if also (2.1)
holds, then the finiteness of Z(M) for every M € (0, C] is assured.

Clustering at either £ =0 or at £ = C can also be precluded by assuming a
nondegenerate derivative, H%)(¢)#0 for some k>1, at this point, where H is
smooth enough.

Let us now state two key propositions which provide fundamental properties of
solutions. We then state Theorem 2.3 which provides the existence of the basis
solutions. In particular, Theorem 2.3 associates to each nonzero element of Z(M) a
solution of Eq. (1.6) in a canonical fashion. It also provides a link between Eqgs. (1.6)
and (1.8). Lastly, we state our main result, the Basis Theorem, which gives a
representation of the general solution of (1.6), and hence of (1.1), in terms of basis
solutions.

Proposition 2.1. If'y is a nontrivial solution of (1.1) for some PeR then (&) > — o0
for every €0, M). If y(M)<M, which in particular is the case if M <C, then
W(M) > —oo also holds. On the other hand if y(M) = M = C and if also H(C)# P
(necessarily H(C)< P with P = P(C) as in (1.5)), then y(C) = — 0.

Proposition 2.2. I is a nontrivial solution of (1.1) then P is given by Egq. (1.5).

Theorem 2.3. Fix M (0, C] and take any (e Z(M). Assume that { > 0. Then there
exists a solution ¢ : [0, M]|—[— o0, c0) to Eq. (1.6) such that

@(&) =0 for every £€(0,{], and

(&) satisfies Eq. (1.8) for every E€[(, M]. 23)

Moreover, the two conditions (2.3) uniquely characterize ¢ from among all continuous
Sunctions \y : [0, M]—[— o0, 00) which are monotone decreasing. It is furthermore the
case that if (<M then

@(&)<0  for every Ee({, M]. (2.4)
Also, for every &ye[l, M) we have that

@(¢) = max (A(s,M)+()(s))) for every E€[lo S0+ (2.5)

E<s<yy} (&)
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for some & = ¢(&y) > 0. Finally, if (e Z(M) with { > { and § is the solution of (1.6),
(2.3) with { in place of {, then

0(&) =)+ p(&)  for every Eely((), M]. (2.6)

In particular (&) = ¢(C) is constant in [y({),{].

Main Theorem (The Basis Theorem). Fix Me(0,C] and assume that Z(M)
is a finite set with 0¢Z(M), say Z(M)={{}, with g=1 elements.
Let ¢':[0, M]—[—oc0, 00) denote the solution associated to (' by Theorem 2.3,
namely the solution to Eq. (1.6) satisfying (2.3) with { = {'. Then y : [0, M]—[— o0, )
is a solution to (1.6) if and only if  is given by (1.4) for some constants
de[—ow, ).

It is clear from the first line in (2.3) and from (2.4) that different points
of Z(M) yield different solutions in Theorem 2.3. Thus the ¢ basis solutions
@' in the statement of the Basis Theorem are distinct. In general these solutions,
and their number ¢, depend on M. Also note that for any 1<j<g in the

Basis Theorem we may take ¢ = —oo for every i#j and ¢/ = 0. This recovers
the basis solution = ¢/ in (1.4). Taking ¢/ = —oo for every i yields the trivial
solution.

Remark. Our earlier comment that a constructive description of the basis solutions
can be given is embodied in Eq. (2.5) and the surrounding claim. This formula allows
for a direct construction of the solution ¢ by moving £ forward from { to M by steps
of (albeit variable) size e.

Remark. As Z(M) is closed it contains a leftmost (minimum) point, namely
{,eZ(M) satisfying {, <{ for every (e Z(M). Denote by ¢ the solution given by

Theorem 2.3 corresponding to the point {, , where we assume that {, > 0. Then the

solution corresponding to any other point {€ Z(M) for which { <M can be given in
terms of ¢, by the formula

0, ¢el0,],
QD*(é)_(P*(C), éE[C,M],

from (2.6). (If { = M this formula is still valid, namely ¢ (&) = 0 identically in [0, M],
although it requires proper interpretation in the event that ¢, (M) = —00.) In the

Basis Theorem, where Z(M) is a finite set, the basis solutions ¢’ and hence also the
general solution of Eq. (1.1) or (1.6) can thus be obtained from ¢ _ alone (we have
@, = ¢! in the notation of the proof of this theorem). One can thereby regard o' as

a “‘generating solution” for this equation.
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Remark. An explicit formula for ¢ in Theorem 2.3 can be given in the case that
{ = {* is the rightmost (maximum) point of Z(M) if the function H is monotone
decreasing in [*, M]. Let us assume that {* < M otherwise the desired solution is just
the zero function (of course {* > 0 by assumption).

Denoting ¢ = ¢* for this solution and defining

% o 07 56[0,4/*],
o= { H(E) -~ H(E), el M), 27

we claim that

P*(&) =Y A*("(¢)) for every Ee[0, M]. (2.8)
n=0

To establish this claim note first that as {*e Z(M) we have 4({*, M) = 0 and hence
A(E, M) = H(&) — H(L*) in [0, M]. Thus 4*(&) = A(¢, M) in [(*, M]. Also, A* is
monotone decreasing in [0, M] and A4*(¢) <0 in ({*, M] otherwise {* would not be the
rightmost point of Z(M). As A*(£) = 0 in an interval to the right of the origin, we
see that the sum (2.8) has only finitely many nonzero terms unless both ¢ = M = C
and y(C) = C hold, in which case ¢*(C) = —oo. In any case ¢@* is a continuous
monotone decreasing function and it vanishes in [0,{*]. Thus by the uniqueness
claim in Theorem 2.3 it suffices to verify that ¢* satisfies Eq. (1.8) in [*, M]. In this
range the maximum in (1.8) is achieved at s = &, so there (1.8) for the function ¢*
becomes

@*(&) = A*(&) + @™ (1(8))- (2.9)
One now easily verifies (2.9) using formula (2.8).

Remark. The condition { > 0 in Theorem 2.3 is necessary as the following example
shows. Suppose that H is monotone decreasing with H (&) < H(0) throughout (0, M].
Then Z(M) = {0}. Arguing as in the above remark, one sees that a monotone
decreasing solution of Eq. (1.8) as in Theorem 2.3 with { =0, or in fact any
nontrivial solution of Eq. (1.6) in [0, M], would satisfy Eq. (2.9) in that interval with
(2.7) and {* = 0. Such a solution, normalized to vanish at ¢ = 0, would then again
be given by (2.8). However for certain H and y sum (2.8) diverges to — oo for every
£e(0, M) and so no such solution exists. For example, if y(§)>¢ — K& holds in a
neighborhood of ¢ =0 for some K > 0 then the iterates &, = y"(&) of every & =
£0€(0, M) satisfy liminf,_, ,né, > 0 (see [15, Proposition 4.20] for this estimate,
where a related example is given). If also H'(0)<O0 then one sees further that
lim sup,,_, ., nA*(y"(¢)) <0, and so (2.8) diverges.

Remark. The generic situation is exemplified by the class of functions ¥ < C}r [0, C]
defined as follows. First let C2[0,C] = {H e C?[0, C]| H'(0) > 0}, which is an open
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subset of C2[0, C]. We consider only H e C2[0, C] in order to ensure that 0¢ Z(M), as
in the statement of the Basis Theorem. Now let % denote the set of all He C?[0, C]
which enjoy the following two properties: (1) whenever H'(£) = 0 for some 0<é<C
then H”(£)#0; and (2) whenever H'(&;) = 0 and H"(£;) <0 for 0<¢; <&, < C then
H(&)#H(&). Then 9= C2[0, C] is an open dense subset. We claim that if He%
then ¢(M) =1 for all but finitely many M €(0, C], for which ¢g(M) = 2. This claim
follows directly from the following straightforward observations. First, if H €% then
for every M €(0, C] the function H achieves its maximum in [0, M] at most twice in
this interval, never at ¢ = 0, and if twice then one of the points where the maximum
is achieved is M. Second, there are only finitely many M for which the maximum of
H in [0, M] is achieved twice in that interval.

Remark. As stated at the beginning of this section, we do not consider solutions
which take the value +oco. This is a genuine restriction as the following example
shows. Let H(¢) =0 and y(&) = /2 identically in [0, M] = [0, 1]. Then for every
P > 0 one has that (&) = —K log ¢ satisfies (1.1) where K = P/log?2 and where
¥ (0) = oo. Thus ¥ is not a solution as considered above. Certainly, the existence of
such i is not covered by either Proposition 2.2 or by the Basis Theorem. Of course,
one can give a parallel theory in which one seeks solutions ¥ : [0, M] - (— o0, 0] to
the equation

P+3(¢) = min (H(s) +d(y(s)), Ee0, M], (2.10)
E<ssM
where here (&) = —(¢), and also P=—P and H(¢) = —H(&). One obtains
analogs of Theorem 2.3 and the Basis Theorem for Eq. (2.10).

Remark. The requirement that solutions y be continuous is significant. If a function
Y satisfying (1.1) possessed a discontinuity (necessarily a jump of size W (&y+) —
V¥ (&y—) = —k <0, by monotonicity) at some &y e (0, M) then Eq. (1.1) implies that y
would possess a jump of size at least —k, that is of size —R< — k, at & = y(&). Thus
at each iterate &, = y"(&;) we would have ¥(&,+) — (&,—) < — k. But this would
force ¥(&) - oo as £€—0 and so Y(0) = 0.

Remark. Egs. (1.1) and (2.10), and in particular the example above with H(&) =0
and y(&) =¢&/2, are closely related to the theory of linear Perron—Frobenius
operators. To see a simple case of this connection define 0(¢) = e ), and also
J=e"and G(¢&) = e 7 and observe that (1.1) becomes

#0(&) = min  G()0((s)).

E<s<M

Note that 0 is monotone increasing, and that if G is also monotone increasing then
the above equation becomes

M0 =7(0), F(0)(S) = G(o(r(9), (2.11)
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where the second equation in (2.11) defines the transformation %, which is an
example of a Perron—Frobenius operator. The special case G(£) = 1 and (&) = £/2
treated above was studied long ago by Bonsall [2]. For further remarks and
references to Perron—Frobenius operators see [18], and particularly Remark 3.7 and
Section 5 in that paper.

We close this section with the proofs of Propositions 2.1 and 2.2. We leave the
proofs of Theorem 2.3 and the Basis Theorem to the next section.

Proof of Proposition 2.1. If (&) = —co for some ¢ then (1.1) implies that y(y(&)) =
— o0, and hence that ¥(y"(¢)) = — oo for every n>=1. If either y(£) <& or £ = 0 then
(&) >0 as n— o0, so Y(0) = —oo. This, with the monotonicity of ¥, forces ¥ to be
the trivial solution, a contradiction. Thus () = ¢ > 0 and so & = M, to establish

the first two sentences of the proposition. To prove the final claim set £ = M = C in
Eq. (1.1) to obtain

P+y(C)=H(C)+y(C).
The inequality H(C)# P now forces y(C) = —c0. O
Proof of Proposition 2.2. For any £€[0, M) we have, taking s = & in (1.1), that
P+y(&)ZH(E) +y((8)=H(S) +(S)
As (&) > —oo by Proposition 2.1 it follows that P> H () and so

P> H(E). 2.12
pmax (€ (2.12)

Now let &;€[0, M] be any point at which H achieves its maximum in that interval.
Then again from (1.1) with £ = 0 and from the monotonicity of

P+y(0)<H(&) + omax Y(y(s)) = H(&o) +(0).

Canceling (0) > —oo gives the opposite inequality to (2.12). This establishes
(1.5). O

3. The proofs of Theorem 2.3 and the Basis Theorem

We maintain the notation and conventions of the previous section. We begin with
a technical lemma, which is followed by a result which establishes a uniqueness
property for monotone solutions of Eq. (1.8).
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Lemma 3.1. Let o,f:[¢,6]-R and Q:o(é), B(&)] > [— 00, 0) be continuous,
with both o and } monotone increasing and o(E) < B(&) holding in £, &]. Let

9 = Jomax O(s). (3.1)

Suppose Eye &y, &,) is such that
@€)< (o) (3.2)

Sor every &€&y, &y + O] for some § > 0, and that a(&y) < f(&y). Then the following two
properties hold. First, there exists ¢ > 0 such that

P& = oA 0(s) (3.3)

Sor every E€|&y, &y + €. Second, if additionally inequality (3.2) is strict for every
Ee (&, & + 0] then

O(s) <p(&o) = O(x(&o)) (3.4)
Jfor every se(a(So), B(So)l-
Proof. We have from (3.1) that

O(B(&o)) < (&) (3.5)

and to prove (3.3) we consider two cases depending on whether or not this inequality
is strict. Assume first that (3.5) is an equality and let 0 <e<J be small enough that
#(&) <P(&) for every E€ (&g, & + e [é1, & Then for such &

@(&) = O(B(&))s  max Q)<  max  O(s) = () <p(So), (3.6)
(&) <s<P(&o) a(&) <s<p(&)
where we have used (3.2). The inequalities in (3.6) are all equalities and so we have
(3.3). Assume now that inequality (3.5) is strict and choose ¢ so that both

ey 218 <0(0) (3.7)

and a(&) < B(&y) hold for every Ee &y, &y + €] =[&1, &]. For such ¢ let us write (3.1) as

= max s) | v max s) ). 3.8
(P(é) (x(é)ssg[i(éﬂ) Q( )> (/f(5<))<5</5(f) Q( )> ( )

It follows from (3.7) that the first of the two terms in the right-hand side of (3.8)
achieves the maximum there, again giving (3.3).

We now prove (3.4). Fixing any se («(&,), f(&y)], we have that se[x(&), f(&)] for
every ¢ > &, sufficiently near &, and for such ¢ we have from (3.1) that ¢(&) = Q(s).
Combining this with (3.2), which is assumed strict, gives us the strict inequality in
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(3.4). The equality in (3.4) now holds because the maximum in (3.1), when & = &, is
achieved only at the point «(&y). O

Proposition 3.2. Let y, : [y(&1), &)= [—00, 0) be continuous in [y(&), ], where

[£1,E] <0, M] and &, > 0. Also suppose that Y(&) = (&) for every E€[y(&)), &, and
that both  and tﬁ satisfy Eq. (1.8) and are monotone decreasing in [&1,&,). Then

W(&) = (&) for every Ce[y(&1), &

Proof. Let & = sup{¢e &), &) | w(E) = (&)}, If & = & we are done, so suppose
that &ye[¢;, &,). We use Lemma 3.1, taking «(¢) = ¢ and B(&) = 73/ (&), with O(s) =
A(s, M) +y(y(s)). Thus the function ¢ in (3.1) satisfies @(&) =y(&) in [, &)
Noting that «(&)) = &<y, (Eo) = B(&) as & e (0, M), we have the first conclusion
(3.3) of Lemma 3.1, namely that

Y(&) = max (A(s, M) +y(y(s))) (3.9)

E<s<yy (&)

for every Ee[&y, & + €] for some ¢ > 0. In a similar fashion we obtain again (3.9) in
such an interval but with  replacing . However, the right-hand sides of both
equations involve only the values of ¥ and i to the left of &, where they agree, so it

follows that (&) = (&) throughout [&y, &) + ¢]. But this contradicts the definition
of &. O

The next result establishes a basic property of solutions of Eq. (1.6). It is followed
by the proof of Theorem 2.3.

Proposition 3.3. Let  be a solution of (1.6) in [0, M]. Suppose that A({, M) =0 for
some {€[0, M]. Then y(y({)) = ¥({) and hence \ is constant in [y({),{].

Proof. With ( as in the statement of the proposition we have that

Y((0)< max (A(s, M) +¢(y(s)) = (E) <y (2(0),

(<s<M

where the monotonicity of { gives the final inequality above. This proves the
result. [

Proof of Theorem 2.3. With ( as in the statement of the theorem consider the set
P ={(y,lo) | (o, M] and 1 :[0,{)]—>[—00, o0) is continuous
and monotone decreasing, with (&) =0 for every £e(0,(]

and with Eq. (1.8) holding in [{,{o]}.
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We seek a unique element of Z for which {, = M, as this will provide a solution to
the problem (2.3). We begin by observing that £ is nonempty as it contains the pair
(Y, (o) with ¥ the zero function in [0,{] and {y ={. This is the case because
A({, M) =0 and so (1.8) holds at & = (.

Next suppose we have two elements (, ), (¥, Co) € 2 with {y<{o. Let y = lm[o_f,()]

denote the restriction of ¥ to [0,o]. Then (1/;, {o)€Z, and in particular np satisfies
Eq. (1.8) in [, (o], where in making this observation we use the fact that the right-
hand side of (1.8) depends only on values of the solution to the left of &. Thus Y =
by the uniqueness result Proposition 3.2, wherein we take &, = { and &, = {,, and so
 is an extension of ¥ from [0, (] to the larger interval [0,(o]. We conclude that the
set 2 is totally ordered with respect to the order given by extension of a function,
and that for every (, there is at most one element (i, () € 2.
Now let

o = sup{{o€e(, M] | there exists (,{) €2}

We claim there exists an element (, &) € 2, that is, there exists a maximal element of
2. From the total ordering we have immediately the existence of some
W :[0,&) > [~ o0, 00) with (&) =0 in [0,{], with (1.8) holding in [, &), and with
Y continuous and monotone decreasing. Indeed, i is just the common extension of
all the elements of 2 with {p <&;. Now set /(&) = limg_, ¢, (&), thereby extending
¥ continuously to the closed interval [0, &)]. By continuity i satisfies Eq. (1.8) at
¢ = &, and hence throughout [{, &y], and so (¥, &) €2, as desired.

Let us denote by (¢, &y) the maximal element of & obtained above. We now claim
that ¢, =M. Assume to the contrary that ¢&,<M and define

10,73/ (&)] = [0, 00) by

R (P(é)a 66[()’60]7
PO =9 max (Al M)+o((), elénrif @), (310

E<s<yy} (&)

observing that ¢ is continuous and monotone decreasing in [0, 7,/ (&y)]. Next extend
¢ to the right of £, by setting

@(&) = max (A(s,M)+p(y(s))) for every £e[&y, vy (&) (3.11)

E<s<y31(9)

Note the different formulas for the upper limits of the maxima in (3.10) and (3.11).
In particular note that the right-hand side of (3.10) depends only on values of ¢ to
the left of &;, while the right-hand side of (3.11) depends only on values of @ to the
left of 73, (&). Also observe that the extension (3.11) of ¢ is continuous at &, since at
that point Eq. (3.11) reduces to (1.8).

We now consider two cases, in each case seeking a contradiction. First, if
&y =7(M) then in fact the two upper limits in the maxima in (3.10) and (3.11) are the
same, 73/ (&) = 73/ (&) = M. Also, both maxima are taken over a region where ¢
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and { agree, lying to the left of y(M), so it follows that ¢(&) = (&) everywhere in
[0, M]. One also sees by replacing @ with ¢ in (3.11) that the extension of ¢ given
there is monotone decreasing and satisfies Eq. (1.8) in [£), M] and hence throughout
[(, M]. Thus (¢, M)e 2 and this implies that &, = M, a contradiction.

For the second case we assume that &y <y(M). Here we wish to apply Lemma 3.1
to Eq. 3.11), taking (&) = ¢ and B(&) = 73/ (&), and Q(s) = A(s, M) + p(3(s)).
Note first that Eq. (3.11) in fact holds for every e[, 73/ (o), as @ and @ agree in
[0,&] and ¢ satisfies (1.8) in [, &]. We therefore take ¢, = { and & =7,/ (&) in
Lemma 3.1. Also note that { <&, <73/ (&), in particular because { > 0. Thus all that
remains to be checked for the lemma to apply is inequality (3.2) in some interval to
the right of &,. To this end we observe that

max (A(s, M)+ o(r(s)))< | max - p(y(s)) = p(&o) = @(&)  (3.12)

7 (G0) <5<y, (9) 7t (G0) <5<y, (9)

for Ee [y, 73/ (&), as A(s, M)<0 and @ is monotone decreasing. Note that in the
penultimate equality in (3.12) we have used the fact that y(y;/(&)) = &, which holds
because &y <y(M). From (3.11) and (3.12) we have for such ¢ that

@(¢) = max (A5, M)+ ((s)))< max  (A(s, M)+ p((s)))

E<s<yy (O So<s<y/ (9

( max <A<s,M>+¢<y<s>>>>v< max <A<s,M>+¢<y<s>>>>

do<s<yyf (&) 7 (G0) <5<y (9)

< (o) ve(é) = o),

to give (3.2) as desired. We now conclude from Lemma 3.1 that (3.3) holds for
Eeléy, & + ¢] for some ¢. However, the right-hand side of (3.3) for such & is the same
as the right-hand side of (3.10), in particular because we are taking a maximum over
a range where ¢ and § agree. We thus have that ¢(&) = @(&) in [&y, & + ¢]. Now
having shown that ¢ and { agree in this interval, we may replace @ with ¢ in (3.11)
for this range of ¢ and conclude that ¢ satisfies Eq. (1.8) there. We conclude that ¢
satisfies (1.8) in [{, & + ¢] and so (¢, &y + &) e, which contradicts the definition
of fo.

Our original assumption that £, < M is therefore false, and thus £, = M and we
have that ¢ satisfies (2.3), as desired. Also, formula (2.5) with ¢ = ¢(&;) holds by
Lemma 3.1, and we have seen it play a central role in the above construction of ¢.

We next show that ¢ constructed above satisfies Eq. (1.6) in [0, M]. Taking any
Eoe[l, M], let us first show that ¢ satisfies (1.6) at this point. With y = ¢ in Eq. (1.8),
we maximize both sides of this equation over the range ¢ € [&,, M]. For the left-hand
side of (1.8) we obtain ¢(&) for the maximum as ¢ is monotone decreasing. For the
right-hand side of (1.8) we obtain the maximum of A(s, M) + ¢(y(s)) over the union
of the intervals [, 73/ ()] for such &, namely over the interval [¢), M]. However, this
gives precisely Eq. (1.6) at the point &, as desired.
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To show that (1.6) also holds in [0, (] we have for every ¢ in that interval that

0=0(&) = () = max (A(s, M)+ o(y(s)))< max (A(s, M)+ ¢(y(s)))

(<s<M E<ssM

(<s<M

= (max. at5.00) + 006 ) v (_ma, (40530 + 00000

< (max 006 ) Vo) = 06(E)v ol0) = 0v0 =0 (3.13)

E<s<(

All the inequalities in (3.13) are equalities, to give (1.6). Note that we have used in
(3.13) the fact that (1.6) holds at the point {, which we established in the paragraph
above.

We now prove (2.4), and by monotonicity it is enough to establish this inequality
in ({,{ + ¢] for some ¢. Taking &, = { in (2.5) and ¢ as in the surrounding statement,
we have for every £e({,{ + ¢] that

e(¢)= max (A(s, M)+ (y(s))) = max A(s,M)<0. (3.14)

s<y () E<s<y31(0)

In particular ¢(y(s)) = 0 throughout the range in (3.14) as y(s) <{, and the strict
inequality in (3.14) holds by virtue of the fact that {e Z(M).

Finally, let us establish (2.6). With { as given, we have that A(f, M)=0 as
{eZ(M) and so both ¢ and & are constant in [y(),] by Proposition 3.3. This gives
the equation in (2.6) in that interval, as ¢({) = 0. Denoting ¢(¢) = (&) — ¢({), we
have that both ¢ and ¢ satisfy Eq.(1.8) in [{, M] and agree in [y({),(] and so

&

Proposition 3.2 implies that they agree throughout [y({), M]. Thus (2.6) holds as
stated. [

The next result shows that solutions of Eq. (1.6) also satisfy Eq. (1.8) for certain
ranges of &. This will allow us to make the connection between general solutions of
(1.6) and the basis solutions, which satisfy (1.8) in certain intervals.

Proposition 3.4. Let  satisfy Eq. (1.6) in [0, M] and set
U= {Ze[0, M]|9(&) > (13 ()} (3.15)

Then U< (0, M) is an open set and Eq. (1.8) holds at every e U. If (¢,&)< U is a
maximal connected component of U then & = y({) for some (€ Z(M) which satisfies

either {e(&1,&) or else { =0 (3.16)
and also

V(&) <y(l) for every E€(L, M]. (3.17)



J. Mallet-Paret, R.D. Nussbaum | J. Differential Equations 189 (2003) 616-639 631

If we have an interval [, &)= [0, M]\U in the complement of U then (&) = y(&,) is
constant for e[,y (E)].

Proof. Without loss  is a nontrivial solution. Clearly U is a relatively open subset
of [0, M], and as y;/(0) =0 and y;; (M) = M we have that 0, M ¢ U. Thus U is
open. Now fix any e U. Then breaking the interval [£, M] into two pieces at the
point 7,/ (&), we may write Eq. (1.6) as

Mé)z( max (A(S,M)Jrl//(V(S))))V( max (A(s,M)+¢(y(s)))>

E<s<yy (9) 7 (E)<s<M

= ( max - (A(s, M) + lﬂ(?(@))) V(i (9)- (3.18)

E<s<y3(9)

As (&) > Y (y;/ (€)) holds we have that the first of the two terms to the right of the
final equality in (3.18) achieves the maximum, which gives Eq. (1.8). With (1.8) thus
holding in U, it follows by continuity that (1.8) holds throughout U.

Let (¢1,&)< U be a maximal connected component of U. Suppose first that
& >0, hence & <93/ (&), and so Ee(&1,73/ (€1)) for every ¢ > & sufficiently near
&,. For such ¢ we have that

WD) = w(E) =¥ (E1) > (v () (3.19)

as & ¢ U but (e U, where the fact that i is monotone decreasing is used. In fact,
monotonicity implies that (3.19) holds for every &e(&,7;/ (¢1)] so it follows that

(¢, (E)]S U, hence (&1, 75/ (81)]<= (&1, &) and so
(€D e(ér &), (3.20)

Also observe from (3.19) that 7,/ (&) <73/ ()< M and thus & = y({) for some
{e(0, M). Thus the inclusion in (3.16) holds, which is just (3.20). Writing & = y;/}(¢)
in (3.19) gives ¢(5)<¢(C) for every & > { near {, and hence for every EG(C,M] by
monotonicity. This directly gives (3.17).

We now show that {€ Z(M). We apply Lemma 3.1 at the point &, = { with &; and
&, as above, and taking o(&) = & and B(&) = 73, (&) with O(s) = A(s, M) + Y (y(s)).
With these choices we have ¢(&) = (&) for the function ¢ given by (3.1) for every
Eelé), &)< U, as Eq.(1.8) holds in that interval. Note that «(&))<p(&y) as
Eoe(é1,8)<= (0, M). Also, the inequality in (3.17) gives inequality (3.2), which is
strict. Thus the second conclusion (3.4) of Lemma 3.1 holds and so

A(s, M) + Y (y(s)) <y (&) = A(Eo, M) + b (7(S0)) (3.21)

for every se (&, 737 (&o)]. Now & = 9(&) <y(s) <& =73/ (&) for such s, and so
U(y(&)) = ¥(p(s)) = ¥(&) in light of the equalities in (3.19) and again from the
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monotonicity of . Subtracting this quantity from (3.21) gives
As, M) <0 = A(&y, M)

for every se (&, 73/ (&)], and we have from this that { = & e Z(M), as desired.

Now suppose that (&,&,)<= U is a maximal connected component of U with
¢, = 0. Then taking { = 0 we have that (&) <y(y(&)) <0 for every & > 0 near 0, as
7(&)e U, and this gives (3.17). Setting & = 0 in Eq. (1.8), which holds there as 0e U,
gives A(0, M) = 0 which directly implies that { = 0e Z(M).

Finally, suppose that [, &] <= [0, M]\U. For every &€&y, &] we have that (&) =
W (y3/ (€)) and hence that  is constant in [, 73/ (£)] by monotonicity. As &<7y3/ (&),
at least for £#¢;, &,, we see that  is constant in the union of these intervals, namely
in the set [¢},73/ (&2)]. This is as claimed. O

Corollary 3.5. Let \y be a nontrivial solution of (1.6) in [0, M]. Suppose that y(&y) =
W(yaj (&o)) for some Eye[0,7(M)]. Then either there exists (€ Z(M)N[&y, M| such
that

=y (&), <eléo,ll;
w@{ eI, (3.22)

or else Y(&y) = —oo in which case &g = M = C and y(C) = C.

Proof. Let U be as in (3.15) and note that &y ¢ U. Suppose first that Un [&y, M]# ¢
and observe that the point ¢; = inf (U n[&, M]) is either the left-hand endpoint of a
maximal connected component (&;,&,) = U of U of else the decreasing limit of such

points. By Proposition 3.4 it is the case that & = y({) for some (e Z(M) = Z(M).
Also, as [&, &, [0, M]\U we have by this result that i is constant in [&, 75/ (¢1)] =
[£o,] to give the equality in (3.22). Finally, the inequality in (3.17) implies the
inequality in (3.22).

Now suppose that Un[&y, M] = ¢. Again by Proposition 3.4 we have that ¥ is
constant in [&, 75,/ (M)] = [&, M], with a value which we may assume to be finite
otherwise {, = M = C and y(C) = C by Proposition 2.1. Also by assumption
y(M) €&y, M], and so (M) = y(y(M)). This equation implies, upon setting £ = M
in Eq. (1.6), that A(M, M) = 0, from which it follows immediately that M e Z(M).
Thus (3.22) holds with { = M, as desired. [

Remark. If A({, M) =0 with { > 0 but {¢ Z(M) then the construction in the proof
of Theorem 2.3 still yields a solution ¢ of (1.6) which satisfies (2.3). However, (2.4)
can no longer be true by Corollary 3.5. In fact if we let (e Z(M) with ¢ > { denote
the first point of Z(M) to the right of { and let p denote the solution of (1.6), (2.3)
with  in place of {, then in fact it is the case that the solutions ¢ and @ are the same.

Indeed, ¢(¢) = 0 holds for £€[0,{] and hence at least for £€(0, (] by Corollary 3.5,



J. Mallet-Paret, R.D. Nussbaum | J. Differential Equations 189 (2003) 616-639 633
where we take & = 0 in that result. Of course ¢(&) = 0 in [0, {] as well. Both ¢ and ¢

are monotone decreasing and satisfy Eq. (1.8) in [5, M], so these functions are
identical by the uniqueness claim of Theorem 2.3.

With the above results we are ready to prove our main theorem.

Proof of the Basis Theorem. With ¢’ as in the statement of the theorem, as noted
earlier we have that for any choice of ¢ €[— o0, o0) the right-hand side of (1.4) is a
solution of (1.6). Thus we must show that every solution yy of (1.6) has the form (1.4)
for some ¢'. We label the ¢ elements of Z(M) corresponding to the order

€]<C2<...<C‘I

and we let Yy be any nontrivial solution of (1.6). By Corollary 3.5 with &, = 0 this
solution satisfies (3.22) for { = C’eZ(M), for some unique 1<;j<gq. Let us call the
integer j the index of the solution .

Our proof that every nontrivial solution of Eq.(1.6) has the form (1.4) will
proceed by reverse induction on the index, that is, we assume the result holds for
solutions with indices k satisfying j + 1 <k <q and we prove it for solutions with
index j. The case j = ¢ begins the induction. The reader will observe that our
argument below applies both to the case where 1<j<g, for which the induction
hypothesis is assumed, and also to the initial case j = g¢.

We keep our solution i of index j fixed from now on, where 1<;<q, and with the
induction assumption holding if j <g. Also, without loss we may assume that (0) =
0, as adding a constant to a solution preserves the form of representation (1.4).

Consider the set U in (3.15) associated to . If U = ¢ then /(&) = 0 identically in
[0, M] from the final statement of Proposition 3.4, and so M € Z(M) by Corollary 3.5
where we take &y = 0. In this case M = {4, the rightmost element of Z(M), soj = q.
Observing in this case that ¢7(&) = 0 identically in [0, M], we thus have that /(&) =
@?(¢) in [0, M]. This gives (1.4) with ¢/ = —oo for 1<i<g—1 and ¢ = 0.

Now suppose that U#¢. Then by Proposition 3.4 there is a leftmost maximal
connected component (&;,&,) of U where & = y({) for some {eZ(M) satisfying
(e(&1,&) asin (3.16). Tt is clear from the definition of U and from Proposition 3.4
that { = ¢ with j the index of i as above. Also, y satisfies Eq. (1.8) throughout
[£1, &), again by Proposition 3.4. Note additionally that ¥ satisfies Eq. (1.8) in the
interval [y(M), M] since in this range y;/(¢) = M and so Egs. (1.6) and (1.8) have
the same form. Thus if & >y(M) then y satisfies Eq.(1.8) throughout
[, M]<[&),E]Ulp(M), M]. As  vanishes identically in [0, ] it therefore satisfies
the conditions (2.3) with { = ¢ which characterize the basis solution ¢/. In this case
(&) = ¢/ (&) in [0, M], and (1.4) holds with ¢/ = — oo for 1<i<gq for which i#/ and
with ¢ = 0.

There remains to consider the case when U# ¢ and &, <y(M). As & ¢ U we have
that ¥(&,) = ¥ (y3/ (&2)) and so we have (3.22) of Corollary 3.5 for some (e Z(M),
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where we take £, = &, in that result. Denoting by { = Cf the quantity in that result,
we have that y is constant throughout [¢,, ] but not in [&,, ¢ + ¢] for any & > 0, so

necessarily Cf> 734 (&2), and therefore
&< (&) = U <& <y (&)<, (323)

Thus j + 1 <j<g. Let us define a function  : [0, M]—[—o00, 0) by

(@Z{wwﬁ,éd&éL

VO=1p0, celenml. 3:24)

Then /(&) = (&) is constant throughout [0,] and this is the maximal interval
containing 0 for which this is true. We claim that y satisfies Eq. (1.6) throughout
[0, M] and also that

W(E) = @ (E)vip(é) for every €0, M]. (3.25)

If we prove these two claims we are done. In particular, the solution i has index j > j
so by the induction hypothesis it has the form (1.4), but with coefficients which we
may denote by &. With (3.25) this gives the desired form (1.4) for i, with coefficients
c=¢fori#jand ¢ =0v .

Let us first show that  is a solution of (1.6) in [0, M]. Clearly (1.6) holds for i in
the interval [y;/}(¢,), M], as in this range the right-hand side of (1.6) involves only
values of ¥ to the right of &, where y and y agree (the fact that y(y;/ (&) = &,
which holds because & <y(M), is used here). If £€[0,7;,(&,)] then
Y& =00 (&) = max_ (A(s, M) +(3(s))) < max (A(s, M)+ (7(s)))

73t (E2) Ss<M E<ssM

= max_ M@J@+$@®D>v” max M@J@+¢@®D>

. ( max ¢<y<s>>) VEORE) = BOE)VEORE) = B0 E),

E<s<yy (&)
(3.26)
where the constancy of ¥ in [0, Q’f] is used and we note (3.23). All inequalities in (3.26)
are thus equalities, so (1.6) also holds for ¥ in [0,737 (&,)] and therefore throughout
[0, M].

We now prove (3.25). We have that (&) = ¢/(£) =0 in [0,¢]. Also  satisfies
(1.8)in [, &) <&, &) = U, as does ¢/ by definition. Thus (&) = ¢/(¢) in [0, &] by
the uniqueness result Proposition 3.2, and since also /(&) = (&) <y/(¢) there we
obtain Eq. (3.25) in that interval. To obtain (3.25) in [{,, M] it is enough, by (3.24),

to prove that ¢/(&) <i(&) there. This inequality holds throughout [¢,, '] since for ¢
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in this interval we have that ¢/(&)<¢/(&) = (&) =y (E), where we use,
respectively, the monotonicity of ¢/, an equality noted immediately above, and the

fact that /(&) = y(&,) is constant in [0, ], noted earlier in this proof. Let &, =

sup{fe[{f: M]| ¢/ (£)<y(&)} and suppose that ¢, <M. We seek a contradiction.
Applying Theorem 2.3 to ¢/, in particular using (2.5) with ¢, in place of & in that
equation, we have that

¢'(&) = max (A(s, M)+ ¢ (;(5))

E<s<yy(€)L)

< max (Al M) +PO) < max (Als, M)+ () =¥ (&) (3.27)

for every (e, , &

. 1 €. In particular, the first inequality in (3.27) follows from the
fact that ¢/ () <y/({) i

n the interval

(0.0 €€ (L), ][ 8.] (3.28)

where the second inclusion in (3.28) holds because & = y(y3; (&) <p(&) <y(&,), as

& <y(M) and y;3} (&) <d by (3.23). But now the inequalities in (3.27) contradict the
definition of £, , and completes the proof. [

4. Varying the parameter M

Our object in this section is to understand how the solutions of Eq. (1.1) vary with
M € (0, C)]. In particular, from the way that Eq. (1.1) arises in [16] it is very natural to
consider the case in which it has a unique solution for every M, that is where
g =q(M) =1 for every M in the statement of the Basis Theorem. This motivates the
following definition.

Definition. The pair (H,7y) is said to be quasimodal if the set Z(M) is a singleton
Z(M) = {{(M)}, with {(M) > 0, for every M €(0, C].

If H is monotone increasing throughout [0, C] with H(£) > H(0) in (0, C], then
for any y the pair (H,y) is quasimodal with Z(M) = {M} and P(M) = H(M) for
every M€ (0, C]. Also, a function is sometimes called unimodal if it is monotone
increasing to the left of a maximum and monotone decreasing to the right. One easily
sees that if A is unimodal with H(£) > H(0) for every ¢ near 0, then (H,y) is
quasimodal for any y. Indeed, if M(e(0,C) denotes the location of the rightmost
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maximum of a unimodal function H then

P(M

Z(M) = { My, Me(0, M, 4.1)

| [Hon, e, )
B {MO}; ME[MOaC]v

| H(My), Me[My, ().

More generally, if H is monotone increasing in [0, M) with H(&) > H(0) for £ near
0, and satisfies H(¢)<H(My) in (Mo, C], for some Mye(0,C], then (H,y) is
quasimodal with (4.1) holding.

Remark. If (H,7) is quasimodal then the unique element {(M) of Z(M) need not
vary continuously with M. For example, suppose that H achieves its maximum in
[0,C] at exactly two points M|, <M,, with y(M,)<M; and with H monotone
increasing in [0, M,]. Then (H,y) is quasimodal. One first sees that Z(M) = {M} for
M e (0, M,] and that Z(M) = {M,} for M e[M,, M,). However, Z(M) = {M,} for
M e[M,, C] and so {(M) undergoes a jump at M = M.

We see from the above remark that the function H in a quasimodal pair (H,7)
need not have a unique maximum. Although it is somewhat awkward to write down
a succinct set of necessary and sufficient conditions for (H,7) to be quasimodal, it is
straightforward to check whether a given (H,y) satisfies the definition of a
quasimodal pair.

A principal result about Eq. (1.1), or (1.6), when (H,y) is quasimodal, is the
following theorem. It describes the solutions for various M in terms of the canonical
solution when M = C.

Theorem 4.1. Assume the pair (H,v) is quasimodal. For every M e (0, C] let ¢(-, M)
denote the solution to (1.6) given by Theorem 2.3 corresponding to the unique element
(M) of Z(M). Then

0(&.C) £el0.7(M))
PEMIZ max (A M)+ 0(5(5). O)<0(e.O). cean,m], )
holds.

The following results are needed before we prove Theorem 4.1.

Proposition 4.2. Assume that (H,7y) is quasimodal and suppose for some M€ (0, C]
that  {(My)<y(My). Then P(M)=P(My) and {((M)={(My) for every
Me[{(My),C].

Corollary 4.3. Assume that (H,y) is quasimodal. Then if {(My)<y(My) for some
Mye (0, C] we have that {(M)<y(M) for every Me(My,C). If on the other hand
{(My) =y(My) for some Mye (0, C] then {(M) > y(M) for every M (0, My).



J. Mallet-Paret, R.D. Nussbaum | J. Differential Equations 189 (2003) 616-639 637
Proof of Proposition 4.2. We first observe that
7 (((M0)) <73, ({(Mo))  for every M e[((Mo), C. (4.3)

Certainly (4.3) is immediate when M < Mj. On the other hand when M > M, then
the inequality {(Mo)<y(M,) ensures that in fact y;/({(Mo)) = yy; ({(Mo)). Thus
(4.3) holds.

We now conclude from (4.3) that whenever M e€[{(M,), C] is such that P(M) =
P(M,), then {(My)eZ(M) and hence {(M) = {(M,). This follows directly from the
relations

A(C(MO)v M) = A(((M()%MO) - O;
A(E, M) = A(E, My) <0 for every e ({(Mo), 7y, (((Mo))],

for such M, from the fact that ({(Mo),7,/ ({(Mo))] = ({(My), 734 (((Mo))], and from
the definition of Z(M).

We thus need only prove that P(M) = P(M,) for every Me[((M,),C]. As H
achieves its maximum in [0, My] at {(M,) then P(M)= P(M,) for every
M e[{(My), My], where we recall the definition of P(M). Also, as the rightmost
zero of A(-, Mp) in [0, My] must belong to Z(M,) we have that A(&, M,)<O0,
equivalently H(&)<P(M,y), throughout ({(My), My]. It is sufficient therefore to
prove that H(¢) < P(M,) in (M, C], and to this end we assume to the contrary that
there exists M, € (M), C] such that H(&)<P(My) in (Mo, M;) but H(M,) = P(M,).
Then P(M,) = P(M,), with the maximum of H in [0, M] being achieved both at
& ={(M)) and at £ = M;. From the paragraph above we have that {(M) = {(M).
Also, A(M, M) =0 and so M,eZ(M,). But then Z(M,) contains more than one
point, contradicting the fact that (H,y) is quasimodal. This proves the proposi-
tion. [

Proof of Corollary 4.3. The first conclusion follows directly from Proposition 4.2
and the fact that y is strictly increasing. The second conclusion follows from the first,
as the contrapositive. [

We now prove the main result of this section.

Proof of Theorem 4.1. Let us establish the first line of (4.2). Several cases are
considered. First, if {(C)>=y(C) then {(M) > y(M) for every M (0, C) by Corollary
4.3. Then for every £€[0,y(M)] we have that E<y(M)<{(M), hence ¢(&, M) =0,
and also that £<y(M)<y(C)<{(C), hence ¢(&, C) =0. Thus ¢(&, M) = ¢(&,C) as
desired.

Next suppose that {(C)<y(C). Then Proposition 4.2 implies that P(M) = P(C)
and {(M) = {(C) for every Me[{(C), C]. Note in particular that {({(C)) = {(C).
Denoting My = {(C), we have that y(My) <My = {(M,) and thus y(M)<{(M) for
every M e (0, My) by Corollary 4.3. For this range of M we again have, for every



638 J. Mallet-Paret, R.D. Nussbaum | J. Differential Equations 189 (2003) 616-639

gel0,y(M)], that E<y(M)<((M) hence @(&,M)=0, and that E<y(M)
<M <My ={(C) hence ¢(&, C) =0. Again ¢(&, M) = ¢(&, C) to give the first line
of (4.2).

There remains to consider the case when {(C)<y(C) and M €[M,, C]. As noted,
P(M) = P(C) and so A(s, M) = A(s, C), and also {(M) = {(C). Both ¢(-, M) and
¢(-, C) vanish in [0,{(M)] and they both satisfy the same Eq. (1.8) in [{(M), y(M)],
in particular because y;; (¢) = yc!(€) for ¢ in that interval. Thus the uniqueness
result Proposition 3.2 with [¢), &) = [((M), y(M)] implies that ¢(-, M) and ¢(:,C)
agree in that interval. Again we have the first line of (4.2).

The equality in the second line of (4.2) is obtained from Eq. (1.6) for ¢ (-, M) upon
replacing ¢(y(s), M) with ¢(y(s), C) in the right-hand side of that equation. This
replacement is justified as these two terms agree by virtue of the first line of (4.2).

To obtain the inequality in the second line of (4.2) we consider two cases. First, if
{(C)=M then ¢(&, C) =0 throughout [0, M] while ¢(&, M)<0 there, to give the
inequality. Now suppose that {(C)<M. Then H achieves its maximum P(C) in
[0,C] at {(C)e[0, M), and so P(C) is also the maximum of H in [0, M], that is
P(M) = P(C). Thus A(s, M) = A(s, C) and we have that

@(&, M) = max (A(s, M)+ ¢(y(s), C))

E<s<M

< max (A(s,C)+o(y(s),C)) = ¢(¢, C)

E<s<C

upon making this replacement in the equality in the second line of (4.2). This
establishes (4.2), as desired. [
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