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Abstract

We study the max-plus equation

P þ cðxÞ ¼ max
xpspM

ðHðsÞ þ cðgðsÞÞÞ; xA½0;M�; ð*Þ

where H : ½0;M�-ð�N;NÞ and g : ½0;M�-½0;M� are given functions. The function

c : ½0;M�-½�N;NÞ and the quantity P are unknown, and are, respectively, an eigenfunction

and additive eigenvalue. Eigensolutions c are known to describe the asymptotics of certain

solutions of singularly perturbed differential equations with state dependent time lags. Under

general conditions we prove the existence of a finite set (a basis) of eigensolutions ji; for
1pipq; with the same eigenvalue P; such that the general solution c to ð*Þ is given by

cðxÞ ¼ ðc1 þ j1ðxÞÞ3ðc2 þ j2ðxÞÞ3?3ðcq þ jqðxÞÞ:

Here ciA½�N;NÞ are arbitrary quantities and 3 denotes the maximum operator. In many

cases q ¼ 1 so the solution c is unique up to an additive constant.

r 2002 Elsevier Science (USA). All rights reserved.

Keywords: Max-plus operator; Additive eigenvalue; Differential-delay equation

*Corresponding author.

E-mail addresses: jmp@cfm.brown.edu (J. Mallet-Paret), nussbaum@math.rutgers.edu

(R.D. Nussbaum).

0022-0396/02/$ - see front matter r 2002 Elsevier Science (USA). All rights reserved.

PII: S 0 0 2 2 - 0 3 9 6 ( 0 2 ) 0 0 0 8 7 - 6



1. Introduction

This paper is concerned with a class of so-called max-plus equations, specifically
with equations of the form

P þ cðxÞ ¼ max
xpspM

ðHðsÞ þ cðgðsÞÞÞ; xA½0;M�; ð1:1Þ

where H and g are given functions satisfying appropriate conditions. We seek an
unknown function c and an unknown quantity PAR; which we regard as an
eigenfunction and an additive eigenvalue, respectively. Eq. (1.1) arises naturally in
the study of the singularly perturbed differential-delay equation

e ’xðtÞ ¼ f ðxðtÞ; xðt � rÞÞ; r ¼ rðxðtÞÞ;

with a state-dependent time lag r as indicated, as described in [16]. Indeed, the
present paper is a companion to [16], playing an essential role in the analysis there.
On the other hand, we believe the results on Eq. (1.1) contained herein are of
sufficient independent interest to warrant a separate exposition, and to this end the
present paper is completely self-contained.

We also mention here the paper [15] in which a more general class of max-plus
eigenproblems of the form

P þ cðxÞ ¼ max
aðxÞpspbðxÞ

ðHðx; sÞ þ cðsÞÞ ð1:2Þ

are considered, although from the somewhat different perspective of topological
fixed point theory. Here a; b : ½0;M�-½0;M� are given continuous functions
satisfying aðsÞpbðsÞ in ½0;M�: (Note that Eq. (1.1) can be put in the form (1.2) by
making the change of variables s̃ ¼ gðsÞ:) Quite generally, one observes for Eq. (1.2)
that adding a constant to a solution c yields another solution with the same P; just
as multiplying the solution of a linear homogeneous equation by a constant yields
another solution. Also, the maximum of two solutions of Eq. (1.2) with the same P is
again a solution, just as the sum of two solutions of a homogeneous linear equation
is a solution. Thus the max-plus eigenproblem (1.2) is analogous to the linear
Fredholm equation

lxðxÞ ¼
Z bðxÞ

aðxÞ
hðx; sÞxðsÞ ds;

in which multiplication is replaced with addition, and addition (and integration)
replaced with the max operator. Of course the same remarks apply to Eq. (1.1).

Eq. (1.2) has arisen in other contexts [3,4,12,17], at least when the functions a and
b are constant. In this case it is known [3,17], that the right-hand side of (1.2) defines
a compact operator, although this operator generally is not compact [15] for
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nonconstant a and b: The discrete version

p þ zi ¼ max
jAJðiÞ

ðwij þ zjÞ

of (1.2) has arisen in many applications; see, for example, [1,5–7,13], and the
extensive references therein. Here W ¼ ðwijÞ is a given n � n matrix, zARn with pAR;

and JðiÞDf1; 2;y; ng is a nonempty subset for every 1pipn: Max-plus operators
arise quite generally in problems of optimal and stochastic control; see, for example,
[8–11]. We mention the book [14] as a general reference for max-plus analysis.

The quantity M > 0 in Eq. (1.1), as it occurs in the delay equation problem [16], in
fact plays the role of a parameter. That is, the given functions H and g are defined on
an interval ½0;C� for some fixed C > 0 and one considers the problem (1.1) for each
MAð0;C�: In the present paper we also take this point of view. In particular, we
assume throughout, and without further comment, that

H : ½0;C�-R; g : ½0;C�-½0;C�

are both continuous. Additionally, we assume that

gðxÞ is strictly increasing in xA½0;C� and
gðxÞox for every xAð0;CÞ:

ð1:3Þ

Observe that gð0Þ ¼ 0 must hold, although either gðCÞ ¼ C or gðCÞoC may occur.
Our main result is that under additional mild conditions on H and g; for each M

there exist a finite collection of nontrivial ‘‘basis’’ solutions ji; say for 1pipq; from
which the general solution of (1.1) for a particular P may be obtained. More
precisely, c satisfies (1.1) if and only if

cðxÞ ¼ ðc1 þ j1ðxÞÞ3ðc2 þ j2ðxÞÞ3?3ðcq þ jqðxÞÞ ð1:4Þ

in ½0;M� for some constants ciA½�N;NÞ: We denote here x3y ¼ maxfx; yg: It is
easy to see that every such choice of ci gives a solution to Eq. (1.1). Thus the thrust of
our result is that (1.4) describes the general solution to (1.1).

The basis solutions ji and their number q in general depend on M: Remarkably,
for any given M the eigenvalue P is the same for all nontrivial solutions to (1.1) and
is given explicitly by

P ¼ max
0pxpM

HðxÞ: ð1:5Þ

Clearly P ¼ PðMÞ depends on M; in general. Our results show that under mild
conditions nontrivial solutions always exist with this P; that is, q ¼ qðMÞX1:
Further, a constructive and in some sense explicit description of the basis solutions

ji can be given, and as well there is an explicit characterization of the quantity q:
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Once the relation (1.5) has been established we may subtract P ¼ PðMÞ from both
sides of Eq. (1.1) to obtain

cðxÞ ¼ max
xpspM

ðAðs;MÞ þ cðgðsÞÞÞ; ð1:6Þ

where we denote

Aðx;MÞ ¼ HðxÞ � PðMÞ: ð1:7Þ

Observe that the right-hand sides of (1.1) and (1.6) involve the values of c in the
interval ½gðxÞ; gðMÞ�; which may contain x in its interior. This fact highlights the
difficulty in obtaining solutions directly from (1.6) using any sort of evolutionary
approach, that is, an approach which treats x as ‘‘time’’ and attempts to solve an
initial value problem. On the other hand such an evolutionary approach is feasible
for the equation

cðxÞ ¼ max
xpspg�1

M
ðxÞ

ðAðs;MÞ þ cðgðsÞÞÞ; ð1:8Þ

which is related to but different from (1.6). Here

g�1
M ðxÞ ¼

zA½0;M� such that gðzÞ ¼ x if such z exists;

M otherwise;

(

which is the inverse of g in the range of ½0; gðMÞ�; and M outside this range. Recalling

(1.3), we see that g�1
M : ½0;M�-½0;M� is well defined and continuous. Note that the

right-hand side of (1.8) involves values of c only in the interval

½gðxÞ; gðg�1
M ðxÞÞ�D½gðxÞ; x�; which lies to the left of x: (We caution the reader that

gðg�1
M ðxÞÞ ¼ gðMÞax when x > gðMÞ:) Our analysis will show that certain solutions

of (1.8) also satisfy (1.6), and that solutions to (1.8) can be constructed by an
evolutionary approach, in some sense solving an initial value problem. In particular,

the basis solutions ji will be constructed in this fashion.
Our main result, the Basis Theorem, provides the representation (1.4) for the

general solution of (1.1) and (1.6). It is stated in Section 2 and its proof given in
Section 3. Theorem 2.3, whose statement precedes that of the Basis Theorem, is an
essential component of this result as it gives a precise characterization of the

canonically defined basis functions ji appearing in (1.4). The proof of Theorem 2.3 is
also given in Section 3. All the results in these two sections are stated in terms of a
given but arbitrary MAð0;C�:

Section 4 is devoted to understanding how the basis solutions vary with M; which
we regard here as a parameter. This approach is very much motivated by the role our
theory plays in the companion paper [16]. In this section we study the situation in
which for every MAð0;C� there is a unique basis element, that is, qðMÞ ¼ 1: In this
case the function H (or more precisely the pair ðH; gÞ) is said to be quasimodal. The
quasimodal case includes both the case in which H is monotone increasing in ½0;C�;
and also the case in which H is monotone increasing in ½0;M0� to a maximum at
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some M0Að0;CÞ and then satisfies HðxÞoHðM0Þ to the right of M0; where in both
cases we need HðxÞ > Hð0Þ for x near 0: Theorem 4.1, the main result of Section 4,

describes how the unique basis solution j1ð�;MÞ for each MAð0;C� is related to the

basis solution j1ð�;CÞ at M ¼ C:
Throughout this paper we say a function f is strictly increasing if f ðx1Þof ðx2Þ

whenever x1ox2: If the monotonicity is not strict, and so f ðx1Þpf ðx2Þ whenever
x1ox2; then we say that f is monotone increasing. The terms strictly decreasing and
monotone decreasing are defined correspondingly.

2. The basis theorem

We shall allow solutions of Eqs. (1.1), (1.6), and (1.8) to take the value �N (but
not þN) as well as taking values in R; that is

c : ½0;M�-½�N;NÞ:

(Note however that the kernel functions H and A and the additive eigenvalue P are
always finite.) We consider only continuous solutions c; where by continuity we
mean that ½�N;NÞ is endowed with the standard topology in which the sets
½�N; xÞ form a neighborhood basis for �N: By the trivial solution to any of these
equations we mean the solution cðxÞ ¼ �N identically in ½0;M�; all other solutions
being termed nontrivial. We note that every solution c to (1.1) and (1.6) is monotone
decreasing in ½0;M�; and in particular cðxÞpcðgðxÞÞ in ½0;M� by (1.3).

Let us now define PðMÞ to be the quantity P given by Eq. (1.5) (the fact that the
additive eigenvalue in (1.1) necessarily equals this quantity for any nontrivial
solution will be established later, in Proposition 2.2). Next let the function A be
defined by (1.7). Then clearly Aðx;MÞp0 in ½0;M�; with Aðx0;MÞ ¼ 0 for at least
one x0A½0;M� which in general depends on M: A central role in our analysis will be
played by the set ZðMÞD½0;M� defined as

ZðMÞ ¼ fzA½0;M� j Aðz;MÞ ¼ 0 and Aðx;MÞo0 for every xAðz; g�1
M ðzÞ�g;

which we observe is nonempty as it contains the right-most zero of Að�;MÞ: Indeed,
we shall see that the cardinality of ZðMÞ equals the number q of basis solutions and
that there is a canonical one-to-one correspondence between elements of ZðMÞ and
basis solutions. This correspondence is described precisely in Theorem 2.3 below.

Note that 0AZðMÞ if and only if Að0;MÞ ¼ 0 and that MAZðMÞ if and only if
AðM;MÞ ¼ 0: Also, it is easy to see using (1.3) that the only possible cluster points
of the set ZðMÞ are 0 and M and that in any case ZðMÞ is closed. Furthermore, M

cannot be a cluster point of ZðMÞ if gðMÞoM; which is always the case if MoC:
The condition

Hð0Þo max
0pxpe

HðxÞ for every small e > 0; ð2:1Þ
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which holds in particular if H 0ð0Þ > 0; is necessary and sufficient for 0eZðMÞ; that is
Að0;MÞo0; for every MAð0;C�: This condition thus precludes, for every M; the
clustering of ZðMÞ at 0: It also ensures that ZðMÞ is a finite set for every MoC:

It is not hard to give conditions which preclude clustering of ZðMÞ at M when
M ¼ C: As noted, one such condition is that gðCÞoC: Another condition is that

HðxÞo max
0pspC

HðsÞ for every xA½C � e;CÞ ð2:2Þ

for some e > 0; as this ensures that either AðC;CÞo0 or else that x ¼ C is an isolated
zero of Að�;CÞ: Thus if either gðCÞoC or condition (2.2) holds, and if also (2.1)
holds, then the finiteness of ZðMÞ for every MAð0;C� is assured.

Clustering at either x ¼ 0 or at x ¼ C can also be precluded by assuming a

nondegenerate derivative, HðkÞðxÞa0 for some kX1; at this point, where H is
smooth enough.

Let us now state two key propositions which provide fundamental properties of
solutions. We then state Theorem 2.3 which provides the existence of the basis
solutions. In particular, Theorem 2.3 associates to each nonzero element of ZðMÞ a
solution of Eq. (1.6) in a canonical fashion. It also provides a link between Eqs. (1.6)
and (1.8). Lastly, we state our main result, the Basis Theorem, which gives a
representation of the general solution of (1.6), and hence of (1.1), in terms of basis
solutions.

Proposition 2.1. If c is a nontrivial solution of (1.1) for some PAR then cðxÞ > �N

for every xA½0;MÞ: If gðMÞoM; which in particular is the case if MoC; then

cðMÞ > �N also holds. On the other hand if gðMÞ ¼ M ¼ C and if also HðCÞaP

(necessarily HðCÞpP with P ¼ PðCÞ as in (1.5)), then cðCÞ ¼ �N:

Proposition 2.2. If c is a nontrivial solution of (1.1) then P is given by Eq. (1.5).

Theorem 2.3. Fix MAð0;C� and take any zAZðMÞ: Assume that z > 0: Then there

exists a solution j : ½0;M�-½�N;NÞ to Eq. (1.6) such that

jðxÞ ¼ 0 for every xA½0; z�; and

jðxÞ satisfies Eq: ð1:8Þ for every xA½z;M�:
ð2:3Þ

Moreover, the two conditions (2.3) uniquely characterize j from among all continuous

functions c : ½0;M�-½�N;NÞ which are monotone decreasing. It is furthermore the

case that if zoM then

jðxÞo0 for every xAðz;M�: ð2:4Þ

Also, for every x0A½z;MÞ we have that

jðxÞ ¼ max
xpspg�1

M
ðx0Þ

ðAðs;MÞ þ jðgðsÞÞÞ for every xA½x0; x0 þ e� ð2:5Þ
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for some e ¼ eðx0Þ > 0: Finally, if *zAZðMÞ with *z > z and *j is the solution of (1.6),

(2.3) with *z in place of z; then

jðxÞ ¼ jð*zÞ þ *jðxÞ for every xA½gð*zÞ;M�: ð2:6Þ

In particular jðxÞ ¼ jð*zÞ is constant in ½gð*zÞ; *z�:

Main Theorem (The Basis Theorem). Fix MAð0;C� and assume that ZðMÞ
is a finite set with 0eZðMÞ; say ZðMÞ ¼ fzigq

i¼1 with qX1 elements.

Let ji : ½0;M�-½�N;NÞ denote the solution associated to zi by Theorem 2.3,

namely the solution to Eq. (1.6) satisfying (2.3) with z ¼ zi: Then c : ½0;M�-½�N;NÞ
is a solution to (1.6) if and only if c is given by (1.4) for some constants

ciA½�N;NÞ:

It is clear from the first line in (2.3) and from (2.4) that different points
of ZðMÞ yield different solutions in Theorem 2.3. Thus the q basis solutions

ji in the statement of the Basis Theorem are distinct. In general these solutions,
and their number q; depend on M: Also note that for any 1pjpq in the

Basis Theorem we may take ci ¼ �N for every iaj and cj ¼ 0: This recovers

the basis solution c ¼ jj in (1.4). Taking ci ¼ �N for every i yields the trivial
solution.

Remark. Our earlier comment that a constructive description of the basis solutions
can be given is embodied in Eq. (2.5) and the surrounding claim. This formula allows
for a direct construction of the solution j by moving x forward from z to M by steps
of (albeit variable) size e:

Remark. As ZðMÞ is closed it contains a leftmost (minimum) point, namely
z
*
AZðMÞ satisfying z

*
pz for every zAZðMÞ: Denote by j

*
the solution given by

Theorem 2.3 corresponding to the point z
*
; where we assume that z

*
> 0: Then the

solution corresponding to any other point zAZðMÞ for which zoM can be given in
terms of j

*
by the formula

jðxÞ ¼
0; xA½0; z�;
j

*
ðxÞ � j

*
ðzÞ; xA½z;M�;

(

from (2.6). (If z ¼ M this formula is still valid, namely jðxÞ ¼ 0 identically in ½0;M�;
although it requires proper interpretation in the event that j

*
ðMÞ ¼ �N:) In the

Basis Theorem, where ZðMÞ is a finite set, the basis solutions ji and hence also the
general solution of Eq. (1.1) or (1.6) can thus be obtained from j

*
alone (we have

j
*
¼ j1 in the notation of the proof of this theorem). One can thereby regard j1 as

a ‘‘generating solution’’ for this equation.
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Remark. An explicit formula for j in Theorem 2.3 can be given in the case that

z ¼ zn is the rightmost (maximum) point of ZðMÞ if the function H is monotone

decreasing in ½zn;M�: Let us assume that znoM otherwise the desired solution is just

the zero function (of course zn > 0 by assumption).

Denoting j ¼ jn for this solution and defining

AnðxÞ ¼
0; xA½0; zn�;
HðxÞ � HðznÞ; xA½zn;M�;

(
ð2:7Þ

we claim that

jnðxÞ ¼
XN
n¼0

AnðgnðxÞÞ for every xA½0;M�: ð2:8Þ

To establish this claim note first that as znAZðMÞ we have Aðzn;MÞ ¼ 0 and hence

Aðx;MÞ ¼ HðxÞ � HðznÞ in ½0;M�: Thus AnðxÞ ¼ Aðx;MÞ in ½zn;M�: Also, An is

monotone decreasing in ½0;M� and AnðxÞo0 in ðzn;M� otherwise zn would not be the

rightmost point of ZðMÞ: As AnðxÞ ¼ 0 in an interval to the right of the origin, we
see that the sum (2.8) has only finitely many nonzero terms unless both x ¼ M ¼ C

and gðCÞ ¼ C hold, in which case jnðCÞ ¼ �N: In any case jn is a continuous

monotone decreasing function and it vanishes in ½0; zn�: Thus by the uniqueness

claim in Theorem 2.3 it suffices to verify that jn satisfies Eq. (1.8) in ½zn;M�: In this

range the maximum in (1.8) is achieved at s ¼ x; so there (1.8) for the function jn

becomes

jnðxÞ ¼ AnðxÞ þ jnðgðxÞÞ: ð2:9Þ

One now easily verifies (2.9) using formula (2.8).

Remark. The condition z > 0 in Theorem 2.3 is necessary as the following example
shows. Suppose that H is monotone decreasing with HðxÞoHð0Þ throughout ð0;M�:
Then ZðMÞ ¼ f0g: Arguing as in the above remark, one sees that a monotone
decreasing solution of Eq. (1.8) as in Theorem 2.3 with z ¼ 0; or in fact any
nontrivial solution of Eq. (1.6) in ½0;M�; would satisfy Eq. (2.9) in that interval with

(2.7) and zn ¼ 0: Such a solution, normalized to vanish at x ¼ 0; would then again
be given by (2.8). However for certain H and g sum (2.8) diverges to �N for every

xAð0;MÞ and so no such solution exists. For example, if gðxÞXx� Kx2 holds in a
neighborhood of x ¼ 0 for some K > 0 then the iterates xn ¼ gnðxÞ of every x ¼
x0Að0;MÞ satisfy lim infn-Nnxn > 0 (see [15, Proposition 4.20] for this estimate,
where a related example is given). If also H 0ð0Þo0 then one sees further that

lim supn-N
nAnðgnðxÞÞo0; and so (2.8) diverges.

Remark. The generic situation is exemplified by the class of functions GDC2
þ½0;C�

defined as follows. First let C2
þ½0;C� ¼ fHAC2½0;C� j H 0ð0Þ > 0g; which is an open
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subset of C2½0;C�:We consider only HAC2
þ½0;C� in order to ensure that 0eZðMÞ; as

in the statement of the Basis Theorem. Now let G denote the set of all HAC2
þ½0;C�

which enjoy the following two properties: (1) whenever H 0ðxÞ ¼ 0 for some 0oxpC

then H 00ðxÞa0; and (2) whenever H 0ðxiÞ ¼ 0 and H 00ðxiÞo0 for 0ox1ox2oC then

Hðx1ÞaHðx2Þ: Then GDC2
þ½0;C� is an open dense subset. We claim that if HAG

then qðMÞ ¼ 1 for all but finitely many MAð0;C�; for which qðMÞ ¼ 2: This claim
follows directly from the following straightforward observations. First, if HAG then
for every MAð0;C� the function H achieves its maximum in ½0;M� at most twice in
this interval, never at x ¼ 0; and if twice then one of the points where the maximum
is achieved is M: Second, there are only finitely many M for which the maximum of
H in ½0;M� is achieved twice in that interval.

Remark. As stated at the beginning of this section, we do not consider solutions c
which take the value þN: This is a genuine restriction as the following example
shows. Let HðxÞ ¼ 0 and gðxÞ ¼ x=2 identically in ½0;M� ¼ ½0; 1�: Then for every
P > 0 one has that cðxÞ ¼ �K log x satisfies (1.1) where K ¼ P=log 2 and where
cð0Þ ¼ N: Thus c is not a solution as considered above. Certainly, the existence of
such c is not covered by either Proposition 2.2 or by the Basis Theorem. Of course,

one can give a parallel theory in which one seeks solutions *c : ½0;M�-ð�N;N� to
the equation

P̃ þ *cðxÞ ¼ min
xpspM

ðH̃ðsÞ þ *cðgðsÞÞÞ; xA½0;M�; ð2:10Þ

where here *cðxÞ ¼ �cðxÞ; and also P̃ ¼ �P and H̃ðxÞ ¼ �HðxÞ: One obtains
analogs of Theorem 2.3 and the Basis Theorem for Eq. (2.10).

Remark. The requirement that solutions c be continuous is significant. If a function
c satisfying (1.1) possessed a discontinuity (necessarily a jump of size cðx0þÞ �
cðx0�Þ ¼ �ko0; by monotonicity) at some x0Að0;MÞ then Eq. (1.1) implies that c
would possess a jump of size at least �k; that is of size � *kp� k; at x1 ¼ gðx0Þ: Thus
at each iterate xn ¼ gnðx0Þ we would have cðxnþÞ � cðxn�Þp� k: But this would
force cðxÞ-N as x-0 and so cð0Þ ¼ N:

Remark. Eqs. (1.1) and (2.10), and in particular the example above with HðxÞ ¼ 0
and gðxÞ ¼ x=2; are closely related to the theory of linear Perron–Frobenius

operators. To see a simple case of this connection define yðxÞ ¼ e�cðxÞ; and also

l ¼ e�P and GðxÞ ¼ e�HðxÞ; and observe that (1.1) becomes

lyðxÞ ¼ min
xpspM

GðsÞyðgðsÞÞ:

Note that y is monotone increasing, and that if G is also monotone increasing then
the above equation becomes

ly ¼ FðyÞ; FðyÞðxÞ ¼ GðxÞyðgðxÞÞ; ð2:11Þ
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where the second equation in (2.11) defines the transformation F; which is an
example of a Perron–Frobenius operator. The special case GðxÞ ¼ 1 and gðxÞ ¼ x=2
treated above was studied long ago by Bonsall [2]. For further remarks and
references to Perron–Frobenius operators see [18], and particularly Remark 3.7 and
Section 5 in that paper.

We close this section with the proofs of Propositions 2.1 and 2.2. We leave the
proofs of Theorem 2.3 and the Basis Theorem to the next section.

Proof of Proposition 2.1. If cðxÞ ¼ �N for some x then (1.1) implies that cðgðxÞÞ ¼
�N; and hence that cðgnðxÞÞ ¼ �N for every nX1: If either gðxÞox or x ¼ 0 then
gnðxÞ-0 as n-N; so cð0Þ ¼ �N: This, with the monotonicity of c; forces c to be
the trivial solution, a contradiction. Thus gðxÞ ¼ x > 0 and so x ¼ M; to establish
the first two sentences of the proposition. To prove the final claim set x ¼ M ¼ C in
Eq. (1.1) to obtain

P þ cðCÞ ¼ HðCÞ þ cðCÞ:

The inequality HðCÞaP now forces cðCÞ ¼ �N: &

Proof of Proposition 2.2. For any xA½0;MÞ we have, taking s ¼ x in (1.1), that

P þ cðxÞXHðxÞ þ cðgðxÞÞXHðxÞ þ cðxÞ:

As cðxÞ > �N by Proposition 2.1 it follows that PXHðxÞ and so

PX max
0pxpM

HðxÞ: ð2:12Þ

Now let x0A½0;M� be any point at which H achieves its maximum in that interval.
Then again from (1.1) with x ¼ 0 and from the monotonicity of c

P þ cð0ÞpHðx0Þ þ max
0pspM

cðgðsÞÞ ¼ Hðx0Þ þ cð0Þ:

Canceling cð0Þ > �N gives the opposite inequality to (2.12). This establishes
(1.5). &

3. The proofs of Theorem 2.3 and the Basis Theorem

We maintain the notation and conventions of the previous section. We begin with
a technical lemma, which is followed by a result which establishes a uniqueness
property for monotone solutions of Eq. (1.8).
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Lemma 3.1. Let a; b : ½x1; x2�-R and Q : ½aðx1Þ; bðx2Þ�-½�N;NÞ be continuous,
with both a and b monotone increasing and aðxÞpbðxÞ holding in ½x1; x2�: Let

jðxÞ ¼ max
aðxÞpspbðxÞ

QðsÞ: ð3:1Þ

Suppose x0A½x1; x2Þ is such that

jðxÞpjðx0Þ ð3:2Þ

for every xA½x0; x0 þ d� for some d > 0; and that aðx0Þobðx0Þ: Then the following two

properties hold. First, there exists e > 0 such that

jðxÞ ¼ max
aðxÞpspbðx0Þ

QðsÞ ð3:3Þ

for every xA½x0; x0 þ e�: Second, if additionally inequality (3.2) is strict for every

xAðx0; x0 þ d� then

QðsÞojðx0Þ ¼ Qðaðx0ÞÞ ð3:4Þ

for every sAðaðx0Þ; bðx0Þ�:

Proof. We have from (3.1) that

Qðbðx0ÞÞpjðx0Þ ð3:5Þ

and to prove (3.3) we consider two cases depending on whether or not this inequality
is strict. Assume first that (3.5) is an equality and let 0oepd be small enough that
aðxÞpbðx0Þ for every xA½x0; x0 þ e�D½x1; x2�: Then for such x

jðx0Þ ¼ Qðbðx0ÞÞp max
aðxÞpspbðx0Þ

QðsÞp max
aðxÞpspbðxÞ

QðsÞ ¼ jðxÞpjðx0Þ; ð3:6Þ

where we have used (3.2). The inequalities in (3.6) are all equalities and so we have
(3.3). Assume now that inequality (3.5) is strict and choose e so that both

max
bðx0ÞpspbðxÞ

QðsÞojðxÞ ð3:7Þ

and aðxÞpbðx0Þ hold for every xA½x0; x0 þ e�D½x1; x2�: For such x let us write (3.1) as

jðxÞ ¼ max
aðxÞpspbðx0Þ

QðsÞ
� �

3 max
bðx0ÞpspbðxÞ

QðsÞ
� �

: ð3:8Þ

It follows from (3.7) that the first of the two terms in the right-hand side of (3.8)
achieves the maximum there, again giving (3.3).

We now prove (3.4). Fixing any sAðaðx0Þ; bðx0Þ�; we have that sA½aðxÞ; bðxÞ� for
every x > x0 sufficiently near x0; and for such x we have from (3.1) that jðxÞXQðsÞ:
Combining this with (3.2), which is assumed strict, gives us the strict inequality in
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(3.4). The equality in (3.4) now holds because the maximum in (3.1), when x ¼ x0; is
achieved only at the point aðx0Þ: &

Proposition 3.2. Let c; *c : ½gðx1Þ; x2�-½�N;NÞ be continuous in ½gðx1Þ; x2�; where

½x1; x2�D½0;M� and x1 > 0: Also suppose that cðxÞ ¼ *cðxÞ for every xA½gðx1Þ; x1�; and

that both c and *c satisfy Eq. (1.8) and are monotone decreasing in ½x1; x2�: Then

cðxÞ ¼ *cðxÞ for every xA½gðx1Þ; x2�:

Proof. Let x0 ¼ supfxA½x1; x2� j cðxÞ ¼ *cðxÞg: If x0 ¼ x2 we are done, so suppose

that x0A½x1; x2Þ: We use Lemma 3.1, taking aðxÞ ¼ x and bðxÞ ¼ g�1
M ðxÞ; with QðsÞ ¼

Aðs;MÞ þ cðgðsÞÞ: Thus the function j in (3.1) satisfies jðxÞ ¼ cðxÞ in ½x1; x2�:
Noting that aðx0Þ ¼ x0og�1

M ðx0Þ ¼ bðx0Þ as x0Að0;MÞ; we have the first conclusion

(3.3) of Lemma 3.1, namely that

cðxÞ ¼ max
xpspg�1

M
ðx0Þ

ðAðs;MÞ þ cðgðsÞÞÞ ð3:9Þ

for every xA½x0; x0 þ e� for some e > 0: In a similar fashion we obtain again (3.9) in

such an interval but with *c replacing c: However, the right-hand sides of both

equations involve only the values of c and *c to the left of x0; where they agree, so it

follows that cðxÞ ¼ *cðxÞ throughout ½x0; x0 þ e�: But this contradicts the definition
of x0: &

The next result establishes a basic property of solutions of Eq. (1.6). It is followed
by the proof of Theorem 2.3.

Proposition 3.3. Let c be a solution of (1.6) in ½0;M�: Suppose that Aðz;MÞ ¼ 0 for

some zA½0;M�: Then cðgðzÞÞ ¼ cðzÞ and hence c is constant in ½gðzÞ; z�:

Proof. With z as in the statement of the proposition we have that

cðgðzÞÞp max
zpspM

ðAðs;MÞ þ cðgðsÞÞÞ ¼ cðzÞpcðgðzÞÞ;

where the monotonicity of c gives the final inequality above. This proves the
result. &

Proof of Theorem 2.3. With z as in the statement of the theorem consider the set

P ¼fðc; z0Þ j z0A½z;M� and c : ½0; z0�-½�N;NÞ is continuous

and monotone decreasing; with cðxÞ ¼ 0 for every xA½0; z�

and with Eq: ð1:8Þ holding in ½z; z0�g:
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We seek a unique element of P for which z0 ¼ M; as this will provide a solution to
the problem (2.3). We begin by observing that P is nonempty as it contains the pair
ðc; z0Þ with c the zero function in ½0; z� and z0 ¼ z: This is the case because
Aðz;MÞ ¼ 0 and so (1.8) holds at x ¼ z:

Next suppose we have two elements ðc; z0Þ; ð *c; *z0ÞAP with z0p*z0: Let #c ¼ *cj½0;z0�
denote the restriction of *c to ½0; z0�: Then ð #c; z0ÞAP; and in particular #c satisfies
Eq. (1.8) in ½z; z0�; where in making this observation we use the fact that the right-

hand side of (1.8) depends only on values of the solution to the left of x: Thus #c ¼ c
by the uniqueness result Proposition 3.2, wherein we take x1 ¼ z and x2 ¼ z0; and so
*c is an extension of c from ½0; z0� to the larger interval ½0; *z0�: We conclude that the
set P is totally ordered with respect to the order given by extension of a function,
and that for every z0 there is at most one element ðc; z0ÞAP:

Now let

x0 ¼ supfz0A½z;M� j there exists ðc; z0ÞAPg:

We claim there exists an element ðc; x0ÞAP; that is, there exists a maximal element of
P: From the total ordering we have immediately the existence of some
c : ½0; x0Þ-½�N;NÞ with cðxÞ ¼ 0 in ½0; z�; with (1.8) holding in ½z; x0Þ; and with
c continuous and monotone decreasing. Indeed, c is just the common extension of
all the elements of P with z0ox0: Now set cðx0Þ ¼ limx-x0� cðxÞ; thereby extending

c continuously to the closed interval ½0; x0�: By continuity c satisfies Eq. (1.8) at
x ¼ x0 and hence throughout ½z; x0�; and so ðc; x0ÞAP; as desired.

Let us denote by ðj; x0Þ the maximal element of P obtained above. We now claim
that x0 ¼ M: Assume to the contrary that x0oM and define

*j : ½0; g�1
M ðx0Þ�-½�N;NÞ by

*jðxÞ ¼
jðxÞ; xA½0; x0�;

max
xpspg�1

M
ðx0Þ

ðAðs;MÞ þ jðgðsÞÞÞ; xA½x0; g�1
M ðx0Þ�;

8<
: ð3:10Þ

observing that *j is continuous and monotone decreasing in ½0; g�1
M ðx0Þ�: Next extend

j to the right of x0 by setting

jðxÞ ¼ max
xpspg�1

M
ðxÞ

ðAðs;MÞ þ *jðgðsÞÞÞ for every xA½x0; g�1
M ðx0Þ�: ð3:11Þ

Note the different formulas for the upper limits of the maxima in (3.10) and (3.11).
In particular note that the right-hand side of (3.10) depends only on values of j to
the left of x0; while the right-hand side of (3.11) depends only on values of *j to the

left of g�1
M ðx0Þ: Also observe that the extension (3.11) of j is continuous at x0 since at

that point Eq. (3.11) reduces to (1.8).
We now consider two cases, in each case seeking a contradiction. First, if

x0XgðMÞ then in fact the two upper limits in the maxima in (3.10) and (3.11) are the

same, g�1
M ðx0Þ ¼ g�1

M ðxÞ ¼ M: Also, both maxima are taken over a region where j
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and *j agree, lying to the left of gðMÞ; so it follows that jðxÞ ¼ *jðxÞ everywhere in
½0;M�: One also sees by replacing *j with j in (3.11) that the extension of j given
there is monotone decreasing and satisfies Eq. (1.8) in ½x0;M� and hence throughout
½z;M�: Thus ðj;MÞAP and this implies that x0 ¼ M; a contradiction.

For the second case we assume that x0ogðMÞ: Here we wish to apply Lemma 3.1

to Eq. (3.11), taking aðxÞ ¼ x and bðxÞ ¼ g�1
M ðxÞ; and QðsÞ ¼ Aðs;MÞ þ *jðgðsÞÞ:

Note first that Eq. (3.11) in fact holds for every xA½z; g�1
M ðx0Þ�; as j and *j agree in

½0; x0� and j satisfies (1.8) in ½z; x0�: We therefore take x1 ¼ z and x2 ¼ g�1
M ðx0Þ in

Lemma 3.1. Also note that zpx0og�1
M ðx0Þ; in particular because z > 0: Thus all that

remains to be checked for the lemma to apply is inequality (3.2) in some interval to
the right of x0: To this end we observe that

max
g�1

M
ðx0Þpspg�1

M
ðxÞ

ðAðs;MÞ þ *jðgðsÞÞÞp max
g�1

M
ðx0Þpspg�1

M
ðxÞ

*jðgðsÞÞ ¼ *jðx0Þ ¼ jðx0Þ ð3:12Þ

for xA½x0; g�1
M ðx0Þ�; as Aðs;MÞp0 and *j is monotone decreasing. Note that in the

penultimate equality in (3.12) we have used the fact that gðg�1
M ðx0ÞÞ ¼ x0; which holds

because x0ogðMÞ: From (3.11) and (3.12) we have for such x that

jðxÞ ¼ max
xpspg�1

M
ðxÞ

ðAðs;MÞ þ *jðgðsÞÞÞp max
x0pspg�1

M
ðxÞ

ðAðs;MÞ þ *jðgðsÞÞÞ

¼ max
x0pspg�1

M
ðx0Þ

ðAðs;MÞ þ *jðgðsÞÞÞ
 !

3 max
g�1

M
ðx0Þpspg�1

M
ðxÞ

ðAðs;MÞ þ *jðgðsÞÞÞ
 !

pjðx0Þ3jðx0Þ ¼ jðx0Þ;

to give (3.2) as desired. We now conclude from Lemma 3.1 that (3.3) holds for
xA½x0; x0 þ e� for some e: However, the right-hand side of (3.3) for such x is the same
as the right-hand side of (3.10), in particular because we are taking a maximum over
a range where j and *j agree. We thus have that jðxÞ ¼ *jðxÞ in ½x0; x0 þ e�: Now
having shown that j and *j agree in this interval, we may replace *j with j in (3.11)
for this range of x and conclude that j satisfies Eq. (1.8) there. We conclude that j
satisfies (1.8) in ½z; x0 þ e� and so ðj; x0 þ eÞAP; which contradicts the definition
of x0:

Our original assumption that x0oM is therefore false, and thus x0 ¼ M and we
have that j satisfies (2.3), as desired. Also, formula (2.5) with e ¼ eðx0Þ holds by
Lemma 3.1, and we have seen it play a central role in the above construction of j:

We next show that j constructed above satisfies Eq. (1.6) in ½0;M�: Taking any
x0A½z;M�; let us first show that j satisfies (1.6) at this point. With c ¼ j in Eq. (1.8),
we maximize both sides of this equation over the range xA½x0;M�: For the left-hand
side of (1.8) we obtain jðx0Þ for the maximum as j is monotone decreasing. For the
right-hand side of (1.8) we obtain the maximum of Aðs;MÞ þ jðgðsÞÞ over the union
of the intervals ½x; g�1

M ðxÞ� for such x; namely over the interval ½x0;M�: However, this

gives precisely Eq. (1.6) at the point x0; as desired.
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To show that (1.6) also holds in ½0; z� we have for every x in that interval that

0 ¼jðxÞ ¼ jðzÞ ¼ max
zpspM

ðAðs;MÞ þ jðgðsÞÞÞp max
xpspM

ðAðs;MÞ þ jðgðsÞÞÞ

¼ max
xpspz

ðAðs;MÞ þ jðgðsÞÞÞ
� �

3 max
zpspM

ðAðs;MÞ þ jðgðsÞÞÞ
� �

p max
xpspz

jðgðsÞÞ
� �

3jðzÞ ¼ jðgðxÞÞ3jðzÞ ¼ 030 ¼ 0: ð3:13Þ

All the inequalities in (3.13) are equalities, to give (1.6). Note that we have used in
(3.13) the fact that (1.6) holds at the point z; which we established in the paragraph
above.

We now prove (2.4), and by monotonicity it is enough to establish this inequality
in ðz; zþ e� for some e: Taking x0 ¼ z in (2.5) and e as in the surrounding statement,
we have for every xAðz; zþ e� that

jðxÞ ¼ max
xpspg�1

M
ðzÞ

ðAðs;MÞ þ jðgðsÞÞÞ ¼ max
xpspg�1

M
ðzÞ

Aðs;MÞo0: ð3:14Þ

In particular jðgðsÞÞ ¼ 0 throughout the range in (3.14) as gðsÞpz; and the strict
inequality in (3.14) holds by virtue of the fact that zAZðMÞ:

Finally, let us establish (2.6). With *z as given, we have that Að*z;MÞ ¼ 0 as
*zAZðMÞ and so both j and *j are constant in ½gð*zÞ; *z� by Proposition 3.3. This gives

the equation in (2.6) in that interval, as *jð*zÞ ¼ 0: Denoting #jðxÞ ¼ jðxÞ � jð*zÞ; we
have that both #j and *j satisfy Eq. (1.8) in ½*z;M� and agree in ½gð*zÞ; *z� and so

Proposition 3.2 implies that they agree throughout ½gð*zÞ;M�: Thus (2.6) holds as
stated. &

The next result shows that solutions of Eq. (1.6) also satisfy Eq. (1.8) for certain
ranges of x: This will allow us to make the connection between general solutions of
(1.6) and the basis solutions, which satisfy (1.8) in certain intervals.

Proposition 3.4. Let c satisfy Eq. (1.6) in ½0;M� and set

U ¼ fxA½0;M� j cðxÞ > cðg�1
M ðxÞÞg: ð3:15Þ

Then UDð0;MÞ is an open set and Eq. (1.8) holds at every xA %U: If ðx1; x2ÞDU is a

maximal connected component of U then x1 ¼ gðzÞ for some zAZðMÞ which satisfies

either zAðx1; x2Þ or else z ¼ 0 ð3:16Þ

and also

cðxÞocðzÞ for every xAðz;M�: ð3:17Þ
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If we have an interval ½x1; x2�D½0;M�\U in the complement of U then cðxÞ ¼ cðx1Þ is

constant for xA½x1; g�1
M ðx2Þ�:

Proof. Without loss c is a nontrivial solution. Clearly U is a relatively open subset

of ½0;M�; and as g�1
M ð0Þ ¼ 0 and g�1

M ðMÞ ¼ M we have that 0;MeU : Thus U is

open. Now fix any xAU : Then breaking the interval ½x;M� into two pieces at the

point g�1
M ðxÞ; we may write Eq. (1.6) as

cðxÞ ¼ max
xpspg�1

M
ðxÞ

ðAðs;MÞ þ cðgðsÞÞÞ
 !

3 max
g�1

M
ðxÞpspM

ðAðs;MÞ þ cðgðsÞÞÞ
 !

¼ max
xpspg�1

M
ðxÞ

ðAðs;MÞ þ cðgðsÞÞÞ
 !

3cðg�1
M ðxÞÞ: ð3:18Þ

As cðxÞ > cðg�1
M ðxÞÞ holds we have that the first of the two terms to the right of the

final equality in (3.18) achieves the maximum, which gives Eq. (1.8). With (1.8) thus

holding in U ; it follows by continuity that (1.8) holds throughout %U:
Let ðx1; x2ÞDU be a maximal connected component of U : Suppose first that

x1 > 0; hence x1og�1
M ðx1Þ; and so xAðx1; g�1

M ðx1ÞÞ for every x > x1 sufficiently near

x1: For such x we have that

cðx1Þ ¼ cðxÞ ¼ cðg�1
M ðx1ÞÞ > cðg�1

M ðxÞÞ ð3:19Þ

as x1eU but xAU ; where the fact that c is monotone decreasing is used. In fact,

monotonicity implies that (3.19) holds for every xAðx1; g�1
M ðx1Þ� so it follows that

ðx1; g�1
M ðx1Þ�DU ; hence ðx1; g�1

M ðx1Þ�Dðx1; x2Þ and so

g�1
M ðx1ÞAðx1; x2Þ: ð3:20Þ

Also observe from (3.19) that g�1
M ðx1Þog�1

M ðxÞpM and thus x1 ¼ gðzÞ for some

zAð0;MÞ: Thus the inclusion in (3.16) holds, which is just (3.20). Writing *x ¼ g�1
M ðxÞ

in (3.19) gives cð*xÞocðzÞ for every *x > z near z; and hence for every *xAðz;M� by
monotonicity. This directly gives (3.17).

We now show that zAZðMÞ: We apply Lemma 3.1 at the point x0 ¼ z with x1 and
x2 as above, and taking aðxÞ ¼ x and bðxÞ ¼ g�1

M ðxÞ with QðsÞ ¼ Aðs;MÞ þ cðgðsÞÞ:
With these choices we have jðxÞ ¼ cðxÞ for the function j given by (3.1) for every

xA½x1; x2�D %U; as Eq. (1.8) holds in that interval. Note that aðx0Þobðx0Þ as
x0Aðx1; x2ÞDð0;MÞ: Also, the inequality in (3.17) gives inequality (3.2), which is
strict. Thus the second conclusion (3.4) of Lemma 3.1 holds and so

Aðs;MÞ þ cðgðsÞÞocðx0Þ ¼ Aðx0;MÞ þ cðgðx0ÞÞ ð3:21Þ

for every sAðx0; g�1
M ðx0Þ�: Now x1 ¼ gðx0ÞogðsÞpx0 ¼ g�1

M ðx1Þ for such s; and so

cðgðx0ÞÞ ¼ cðgðsÞÞ ¼ cðx0Þ in light of the equalities in (3.19) and again from the
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monotonicity of c: Subtracting this quantity from (3.21) gives

Aðs;MÞo0 ¼ Aðx0;MÞ

for every sAðx0; g�1
M ðx0Þ�; and we have from this that z ¼ x0AZðMÞ; as desired.

Now suppose that ðx1; x2ÞDU is a maximal connected component of U with
x1 ¼ 0: Then taking z ¼ 0 we have that cðxÞocðgðxÞÞp0 for every x > 0 near 0; as

gðxÞAU ; and this gives (3.17). Setting x ¼ 0 in Eq. (1.8), which holds there as 0A %U;
gives Að0;MÞ ¼ 0 which directly implies that z ¼ 0AZðMÞ:

Finally, suppose that ½x1; x2�D½0;M�\U : For every xA½x1; x2� we have that cðxÞ ¼
cðg�1

M ðxÞÞ and hence that c is constant in ½x; g�1
M ðxÞ� by monotonicity. As xog�1

M ðxÞ;
at least for xax1; x2; we see that c is constant in the union of these intervals, namely

in the set ½x1; g�1
M ðx2Þ�: This is as claimed. &

Corollary 3.5. Let c be a nontrivial solution of (1.6) in ½0;M�: Suppose that cðx0Þ ¼
cðg�1

M ðx0ÞÞ for some x0A½0; gðMÞ�: Then either there exists zAZðMÞ-½x0;M� such

that

cðxÞ
¼ cðx0Þ; xA½x0; z�;
ocðx0Þ; xAðz;M�;

(
ð3:22Þ

or else cðx0Þ ¼ �N in which case x0 ¼ M ¼ C and gðCÞ ¼ C:

Proof. Let U be as in (3.15) and note that x0eU : Suppose first that U-½x0;M�af
and observe that the point x1 ¼ infðU-½x0;M�Þ is either the left-hand endpoint of a
maximal connected component ðx1; x2ÞDU of U of else the decreasing limit of such

points. By Proposition 3.4 it is the case that x1 ¼ gðzÞ for some zAZðMÞ ¼ ZðMÞ:
Also, as ½x0; x1�D½0;M�\U we have by this result that c is constant in ½x0; g�1

M ðx1Þ� ¼
½x0; z� to give the equality in (3.22). Finally, the inequality in (3.17) implies the
inequality in (3.22).

Now suppose that U-½x0;M� ¼ f: Again by Proposition 3.4 we have that c is

constant in ½x0; g�1
M ðMÞ� ¼ ½x0;M�; with a value which we may assume to be finite

otherwise x0 ¼ M ¼ C and gðCÞ ¼ C by Proposition 2.1. Also by assumption
gðMÞA½x0;M�; and so cðMÞ ¼ cðgðMÞÞ: This equation implies, upon setting x ¼ M

in Eq. (1.6), that AðM;MÞ ¼ 0; from which it follows immediately that MAZðMÞ:
Thus (3.22) holds with z ¼ M; as desired. &

Remark. If Aðz;MÞ ¼ 0 with z > 0 but zeZðMÞ then the construction in the proof
of Theorem 2.3 still yields a solution j of (1.6) which satisfies (2.3). However, (2.4)

can no longer be true by Corollary 3.5. In fact if we let *zAZðMÞ with *z > z denote
the first point of ZðMÞ to the right of z and let *j denote the solution of (1.6), (2.3)

with *z in place of z; then in fact it is the case that the solutions j and *j are the same.

Indeed, jðxÞ ¼ 0 holds for xA½0; z� and hence at least for xA½0; *z� by Corollary 3.5,
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where we take x0 ¼ 0 in that result. Of course *jðxÞ ¼ 0 in ½0; *z� as well. Both j and *j
are monotone decreasing and satisfy Eq. (1.8) in ½*z;M�; so these functions are
identical by the uniqueness claim of Theorem 2.3.

With the above results we are ready to prove our main theorem.

Proof of the Basis Theorem. With ji as in the statement of the theorem, as noted

earlier we have that for any choice of ciA½�N;NÞ the right-hand side of (1.4) is a
solution of (1.6). Thus we must show that every solution c of (1.6) has the form (1.4)

for some ci: We label the q elements of ZðMÞ corresponding to the order

z1oz2o?ozq

and we let c be any nontrivial solution of (1.6). By Corollary 3.5 with x0 ¼ 0 this

solution satisfies (3.22) for z ¼ zjAZðMÞ; for some unique 1pjpq: Let us call the
integer j the index of the solution c:

Our proof that every nontrivial solution of Eq. (1.6) has the form (1.4) will
proceed by reverse induction on the index, that is, we assume the result holds for
solutions with indices k satisfying j þ 1pkpq and we prove it for solutions with
index j: The case j ¼ q begins the induction. The reader will observe that our
argument below applies both to the case where 1pjoq; for which the induction
hypothesis is assumed, and also to the initial case j ¼ q:

We keep our solution c of index j fixed from now on, where 1pjpq; and with the
induction assumption holding if joq: Also, without loss we may assume that cð0Þ ¼
0; as adding a constant to a solution preserves the form of representation (1.4).

Consider the set U in (3.15) associated to c: If U ¼ f then cðxÞ ¼ 0 identically in
½0;M� from the final statement of Proposition 3.4, and so MAZðMÞ by Corollary 3.5
where we take x0 ¼ 0: In this case M ¼ zq; the rightmost element of ZðMÞ; so j ¼ q:
Observing in this case that jqðxÞ ¼ 0 identically in ½0;M�; we thus have that cðxÞ ¼
jqðxÞ in ½0;M�: This gives (1.4) with ci ¼ �N for 1pipq � 1 and cq ¼ 0:

Now suppose that Uaf: Then by Proposition 3.4 there is a leftmost maximal
connected component ðx1; x2Þ of U where x1 ¼ gðzÞ for some zAZðMÞ satisfying
zAðx1; x2Þ as in (3.16). It is clear from the definition of U and from Proposition 3.4

that z ¼ zj with j the index of c as above. Also, c satisfies Eq. (1.8) throughout
½x1; x2�; again by Proposition 3.4. Note additionally that c satisfies Eq. (1.8) in the

interval ½gðMÞ;M� since in this range g�1
M ðxÞ ¼ M and so Eqs. (1.6) and (1.8) have

the same form. Thus if x2XgðMÞ then c satisfies Eq. (1.8) throughout

½zj;M�D½x1; x2�,½gðMÞ;M�: As c vanishes identically in ½0; zj � it therefore satisfies

the conditions (2.3) with z ¼ zj which characterize the basis solution jj: In this case

cðxÞ ¼ jjðxÞ in ½0;M�; and (1.4) holds with ci ¼ �N for 1pipq for which iaj and

with cj ¼ 0:
There remains to consider the case when Uaf and x2ogðMÞ: As x2eU we have

that cðx2Þ ¼ cðg�1
M ðx2ÞÞ and so we have (3.22) of Corollary 3.5 for some zAZðMÞ;
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where we take x0 ¼ x2 in that result. Denoting by z ¼ zj̃ the quantity in that result,

we have that c is constant throughout ½x2; zj̃� but not in ½x2; zj̃ þ e� for any e > 0; so

necessarily zj̃
Xg�1

M ðx2Þ; and therefore

x1og�1
M ðx1Þ ¼ zjox2og�1

M ðx2Þpzj̃: ð3:23Þ

Thus j þ 1pj̃pq: Let us define a function *c : ½0;M�-½�N;NÞ by

*cðxÞ ¼
cðx2Þ; xA½0; x2�;
cðxÞ; xA½x2;M�:

(
ð3:24Þ

Then *cðxÞ ¼ cðx2Þ is constant throughout ½0; zj̃� and this is the maximal interval

containing 0 for which this is true. We claim that *c satisfies Eq. (1.6) throughout
½0;M� and also that

cðxÞ ¼ jjðxÞ3 *cðxÞ for every xA½0;M�: ð3:25Þ

If we prove these two claims we are done. In particular, the solution *c has index j̃ > j

so by the induction hypothesis it has the form (1.4), but with coefficients which we

may denote by c̃i: With (3.25) this gives the desired form (1.4) for c; with coefficients

ci ¼ c̃i for iaj and cj ¼ 03c̃j:

Let us first show that *c is a solution of (1.6) in ½0;M�: Clearly (1.6) holds for *c in

the interval ½g�1
M ðx2Þ;M�; as in this range the right-hand side of (1.6) involves only

values of *c to the right of x2; where *c and c agree (the fact that gðg�1
M ðx2ÞÞ ¼ x2;

which holds because x2ogðMÞ; is used here). If xA½0; g�1
M ðx2Þ� then

*cðxÞ ¼ *cðg�1
M ðx2ÞÞ ¼ max

g�1
M
ðx2ÞpspM

ðAðs;MÞ þ *cðgðsÞÞÞp max
xpspM

ðAðs;MÞ þ *cðgðsÞÞÞ

¼ max
xpspg�1

M
ðx2Þ

ðAðs;MÞ þ *cðgðsÞÞÞ
 !

3 max
g�1

M
ðx2ÞpspM

ðAðs;MÞ þ *cðgðsÞÞÞ
 !

p max
xpspg�1

M
ðx2Þ

*cðgðsÞÞ
 !

3 *cðg�1
M ðx2ÞÞ ¼ *cðgðxÞÞ3 *cðg�1

M ðx2ÞÞ ¼ *cðg�1
M ðx2ÞÞ;

ð3:26Þ

where the constancy of *c in ½0; zj̃� is used and we note (3.23). All inequalities in (3.26)

are thus equalities, so (1.6) also holds for *c in ½0; g�1
M ðx2Þ� and therefore throughout

½0;M�:
We now prove (3.25). We have that cðxÞ ¼ jjðxÞ ¼ 0 in ½0; zj�: Also c satisfies

(1.8) in ½zj; x2�D½x1; x2�D %U; as does jj by definition. Thus cðxÞ ¼ jjðxÞ in ½0; x2� by
the uniqueness result Proposition 3.2, and since also *cðxÞ ¼ cðx2ÞpcðxÞ there we
obtain Eq. (3.25) in that interval. To obtain (3.25) in ½x2;M� it is enough, by (3.24),

to prove that jjðxÞp *cðxÞ there. This inequality holds throughout ½x2; zj̃� since for x
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in this interval we have that jjðxÞpjjðx2Þ ¼ cðx2Þ ¼ *cðxÞ; where we use,

respectively, the monotonicity of jj; an equality noted immediately above, and the

fact that *cðxÞ ¼ cðx2Þ is constant in ½0; zj̃�; noted earlier in this proof. Let x
*
¼

supfxA½zj̃;M� j jjðxÞp *cðxÞg and suppose that x
*
oM: We seek a contradiction.

Applying Theorem 2.3 to jj; in particular using (2.5) with x
*
in place of x0 in that

equation, we have that

jjðxÞ ¼ max
xpspg�1

M
ðx

*
Þ
ðAðs;MÞ þ jjðgðsÞÞÞ

p max
xpspg�1

M
ðx

*
Þ
ðAðs;MÞ þ *cðgðsÞÞÞp max

xpspM
ðAðs;MÞ þ *cðgðsÞÞÞ ¼ *cðxÞ ð3:27Þ

for every xA½x
*
; x

*
þ e�: In particular, the first inequality in (3.27) follows from the

fact that jjðzÞp *cðzÞ in the interval

½gðxÞ; gðg�1
M ðx

*
ÞÞ�D½gðx

*
Þ; x

*
�D½x2; x*

�; ð3:28Þ

where the second inclusion in (3.28) holds because x2 ¼ gðg�1
M ðx2ÞÞpgðzj̃Þpgðx

*
Þ; as

x2ogðMÞ and g�1
M ðx2Þpzj̃ by (3.23). But now the inequalities in (3.27) contradict the

definition of x
*
; and completes the proof. &

4. Varying the parameter M

Our object in this section is to understand how the solutions of Eq. (1.1) vary with
MAð0;C�: In particular, from the way that Eq. (1.1) arises in [16] it is very natural to
consider the case in which it has a unique solution for every M; that is where
q ¼ qðMÞ ¼ 1 for every M in the statement of the Basis Theorem. This motivates the
following definition.

Definition. The pair ðH; gÞ is said to be quasimodal if the set ZðMÞ is a singleton
ZðMÞ ¼ fzðMÞg; with zðMÞ > 0; for every MAð0;C�:

If H is monotone increasing throughout ½0;C� with HðxÞ > Hð0Þ in ð0;C�; then
for any g the pair ðH; gÞ is quasimodal with ZðMÞ ¼ fMg and PðMÞ ¼ HðMÞ for
every MAð0;C�: Also, a function is sometimes called unimodal if it is monotone
increasing to the left of a maximum and monotone decreasing to the right. One easily
sees that if H is unimodal with HðxÞ > Hð0Þ for every x near 0; then ðH; gÞ is
quasimodal for any g: Indeed, if M0Að0;CÞ denotes the location of the rightmost
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maximum of a unimodal function H then

ZðMÞ ¼
fMg; MAð0;M0�;
fM0g; MA½M0;C�;

(
PðMÞ ¼

HðMÞ; MAð0;M0�;
HðM0Þ; MA½M0;C�:

(
ð4:1Þ

More generally, if H is monotone increasing in ½0;M0� with HðxÞ > Hð0Þ for x near
0; and satisfies HðxÞoHðM0Þ in ðM0;C�; for some M0Að0;C�; then ðH; gÞ is
quasimodal with (4.1) holding.

Remark. If ðH; gÞ is quasimodal then the unique element zðMÞ of ZðMÞ need not
vary continuously with M: For example, suppose that H achieves its maximum in
½0;C� at exactly two points M1oM2; with gðM2ÞoM1 and with H monotone
increasing in ½0;M1�: Then ðH; gÞ is quasimodal. One first sees that ZðMÞ ¼ fMg for
MAð0;M1� and that ZðMÞ ¼ fM1g for MA½M1;M2Þ: However, ZðMÞ ¼ fM2g for
MA½M2;C� and so zðMÞ undergoes a jump at M ¼ M2:

We see from the above remark that the function H in a quasimodal pair ðH; gÞ
need not have a unique maximum. Although it is somewhat awkward to write down
a succinct set of necessary and sufficient conditions for ðH; gÞ to be quasimodal, it is
straightforward to check whether a given ðH; gÞ satisfies the definition of a
quasimodal pair.

A principal result about Eq. (1.1), or (1.6), when ðH; gÞ is quasimodal, is the
following theorem. It describes the solutions for various M in terms of the canonical
solution when M ¼ C:

Theorem 4.1. Assume the pair ðH; gÞ is quasimodal. For every MAð0;C� let jð� ;MÞ
denote the solution to (1.6) given by Theorem 2.3 corresponding to the unique element

zðMÞ of ZðMÞ: Then

jðx;MÞ ¼
jðx;CÞ; xA½0; gðMÞ�;
max

xpspM
ðAðs;MÞ þ jðgðsÞ;CÞÞpjðx;CÞ; xA½gðMÞ;M�;

(
ð4:2Þ

holds.

The following results are needed before we prove Theorem 4.1.

Proposition 4.2. Assume that ðH; gÞ is quasimodal and suppose for some M0Að0;C�
that zðM0ÞpgðM0Þ: Then PðMÞ ¼ PðM0Þ and zðMÞ ¼ zðM0Þ for every

MA½zðM0Þ;C�:

Corollary 4.3. Assume that ðH; gÞ is quasimodal. Then if zðM0ÞpgðM0Þ for some

M0Að0;C� we have that zðMÞogðMÞ for every MAðM0;C�: If on the other hand

zðM0ÞXgðM0Þ for some M0Að0;C� then zðMÞ > gðMÞ for every MAð0;M0Þ:
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Proof of Proposition 4.2. We first observe that

g�1
M ðzðM0ÞÞpg�1

M0
ðzðM0ÞÞ for every MA½zðM0Þ;C�: ð4:3Þ

Certainly (4.3) is immediate when MpM0: On the other hand when M > M0 then

the inequality zðM0ÞpgðM0Þ ensures that in fact g�1
M ðzðM0ÞÞ ¼ g�1

M0
ðzðM0ÞÞ: Thus

(4.3) holds.
We now conclude from (4.3) that whenever MA½zðM0Þ;C� is such that PðMÞ ¼

PðM0Þ; then zðM0ÞAZðMÞ and hence zðMÞ ¼ zðM0Þ: This follows directly from the
relations

AðzðM0Þ;MÞ ¼ AðzðM0Þ;M0Þ ¼ 0;

Aðx;MÞ ¼ Aðx;M0Þo0 for every xAðzðM0Þ; g�1
M0

ðzðM0ÞÞ�;

for such M; from the fact that ðzðM0Þ; g�1
M ðzðM0ÞÞ�DðzðM0Þ; g�1

M0
ðzðM0ÞÞ�; and from

the definition of ZðMÞ:
We thus need only prove that PðMÞ ¼ PðM0Þ for every MA½zðM0Þ;C�: As H

achieves its maximum in ½0;M0� at zðM0Þ then PðMÞ ¼ PðM0Þ for every
MA½zðM0Þ;M0�; where we recall the definition of PðMÞ: Also, as the rightmost
zero of Að�;M0Þ in ½0;M0� must belong to ZðM0Þ we have that Aðx;M0Þo0;
equivalently HðxÞoPðM0Þ; throughout ðzðM0Þ;M0�: It is sufficient therefore to
prove that HðxÞoPðM0Þ in ðM0;C�; and to this end we assume to the contrary that
there exists M1AðM0;C� such that HðxÞoPðM0Þ in ðM0;M1Þ but HðM1Þ ¼ PðM0Þ:
Then PðM1Þ ¼ PðM0Þ; with the maximum of H in ½0;M1� being achieved both at
x ¼ zðM0Þ and at x ¼ M1: From the paragraph above we have that zðM1Þ ¼ zðM0Þ:
Also, AðM1;M1Þ ¼ 0 and so M1AZðM1Þ: But then ZðM1Þ contains more than one
point, contradicting the fact that ðH; gÞ is quasimodal. This proves the proposi-
tion. &

Proof of Corollary 4.3. The first conclusion follows directly from Proposition 4.2
and the fact that g is strictly increasing. The second conclusion follows from the first,
as the contrapositive. &

We now prove the main result of this section.

Proof of Theorem 4.1. Let us establish the first line of (4.2). Several cases are
considered. First, if zðCÞXgðCÞ then zðMÞ > gðMÞ for every MAð0;CÞ by Corollary
4.3. Then for every xA½0; gðMÞ� we have that xpgðMÞozðMÞ; hence jðx;MÞ ¼ 0;
and also that xpgðMÞogðCÞpzðCÞ; hence jðx;CÞ ¼ 0: Thus jðx;MÞ ¼ jðx;CÞ as
desired.

Next suppose that zðCÞogðCÞ: Then Proposition 4.2 implies that PðMÞ ¼ PðCÞ
and zðMÞ ¼ zðCÞ for every MA½zðCÞ;C�: Note in particular that zðzðCÞÞ ¼ zðCÞ:
Denoting M0 ¼ zðCÞ; we have that gðM0ÞpM0 ¼ zðM0Þ and thus gðMÞozðMÞ for
every MAð0;M0Þ by Corollary 4.3. For this range of M we again have, for every
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xA½0; gðMÞ�; that xpgðMÞozðMÞ hence jðx;MÞ ¼ 0; and that xpgðMÞ
oMoM0 ¼ zðCÞ hence jðx;CÞ ¼ 0: Again jðx;MÞ ¼ jðx;CÞ to give the first line
of (4.2).

There remains to consider the case when zðCÞogðCÞ and MA½M0;C�: As noted,
PðMÞ ¼ PðCÞ and so Aðs;MÞ ¼ Aðs;CÞ; and also zðMÞ ¼ zðCÞ: Both jð� ;MÞ and
jð� ;CÞ vanish in ½0; zðMÞ� and they both satisfy the same Eq. (1.8) in ½zðMÞ; gðMÞ�;
in particular because g�1

M ðxÞ ¼ g�1
C ðxÞ for x in that interval. Thus the uniqueness

result Proposition 3.2 with ½x1; x2� ¼ ½zðMÞ; gðMÞ� implies that jð�;MÞ and jð�;CÞ
agree in that interval. Again we have the first line of (4.2).

The equality in the second line of (4.2) is obtained from Eq. (1.6) for jð� ;MÞ upon
replacing jðgðsÞ;MÞ with jðgðsÞ;CÞ in the right-hand side of that equation. This
replacement is justified as these two terms agree by virtue of the first line of (4.2).

To obtain the inequality in the second line of (4.2) we consider two cases. First, if
zðCÞXM then jðx;CÞ ¼ 0 throughout ½0;M� while jðx;MÞp0 there, to give the
inequality. Now suppose that zðCÞoM: Then H achieves its maximum PðCÞ in
½0;C� at zðCÞA½0;MÞ; and so PðCÞ is also the maximum of H in ½0;M�; that is
PðMÞ ¼ PðCÞ: Thus Aðs;MÞ ¼ Aðs;CÞ and we have that

jðx;MÞ ¼ max
xpspM

ðAðs;MÞ þ jðgðsÞ;CÞÞ

p max
xpspC

ðAðs;CÞ þ jðgðsÞ;CÞÞ ¼ jðx;CÞ

upon making this replacement in the equality in the second line of (4.2). This
establishes (4.2), as desired. &
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