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ABSTRACT 

If D is a subset of Ba” and f : D + D is an ei -norm nonexpansive map, then it is known that every 
bounded orbit off approaches a periodic orbit. Moreover, the minimal period of each periodic 
point off is boun&d by n! 2”, where m = 2”- I. In this paper we shall describe two different pro- 
cedures to construct periodic orbits of &norm nonexpansive maps. These constructions yield that 
a lower bound for the largest possible minimal period of a periodic point of an &-norm non- 
expansive map is given by 3.2”-i, n > 3. If n 5 5, we shall also improve the upper bound for the 
largest possible minimal period. 

1. INTRODUCTION 

If D is a set andf : D + D is a map, thenfk will denote the k-fold composition 
off with itself. A point x E D is called aperiodicpoint off of minimalperiodp if 
fJ’(x)=xandfi(x)#xforl<j<p.Weshallcallamapf :D+V,whereD 
is a subset of a Banach space (V, 1) . II), nonexpansive (with respect to 1) . 11) if 

IV’(x) -f MII 5 lb -YII for all x,y E D. 

As usual we define the k’l-norm II . I(, on R” by 

IlxlIl = $, lxil) where x = (x1, x2,. . . , xn). 

The metric induced by the Cl-norm will be denoted by dl. SO dl (x, Y) = JIx - ~111. 

*Supported by an N.W.O. grant under 613-02-210. 
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Let D be a closed subset of 5X”. Iff : D ---) D is a nonexpansive map with re- 
spect to )( . I(, and there exists a x0 E D such that the sequence cfi(x~))~ is 
bounded, then Akcoglu and Krengel [I] showed that for every x E D, there exist 
a positive integerp, = p and a point tX = < E D such that 5 is a periodic point of 
f of minimal period p and 

(1) ,I&ttfk"(x) = <. 

Furthermore, the number p is bounded by n! 2m, where m = 2”. The proof of (1) 
by Akcoglu and Krengel did not provide an upper bound for the integer px, 
x E D, and the upper bound given here was established by Misiurewicz in [9]. 

It is known that property (1) actually holds for nonexpansive maps with re- 
spect to a given polyhedral norm, see Weller [18], Martus [8] and Nussbaum 
[lo]. An important example of a polyhedral norm on R”, aside from the .(?I- 
norm, is the sup norm 

lI4l, = max{(xil : 1 < i 5 n}, where x = (XI, x2,. . . , xn). 

In case of the sup norm, the second author conjectured that the optimal upper 
bound for the integer px equals 2”. The conjecture has been proved in dimen- 
sion n = 1,2 and 3, see Lyons and Nussbaum [7]. 

In general, however, sharp bounds for the largest possible minimal period of 
nonexpansive maps with respect to a polyhedral norm are unknown. In this 
paper we shall improve the a priori bounds for the largest possible minimal 
period of general nonexpansive maps with respect to the &-norm. Sharp 
bounds for the largest possible minimal period of an Cl-norm nonexpansive 
map f : DJ -+ Df, Df c R” do seem difficult to obtain. One of the reasons is 
that the map f, in general, does not have an et-norm nonexpansive extension 
F : R” --f IF!” (a fact, however, which is true for nonexpansive maps with re- 
spect to the sup-norm). Therefore the problem depends nontrivially on the set 
Df. For arbitrary sets Df not much is known. In special cases, for example if 
Df = i-6”, the positive cone in R”, much more is known and a complete char- 
acterization of the set of possible minimal periods has been obtained by Nuss- 
baum, Scheutzow and Verduyn Lunel [ll, 13,14,15]. 

The study of the behaviour of orbits of II-norm nonexpansive maps naturally 
leads to a detailed analysis of the structure of @limit sets of nonexpansive 
maps. The main idea in the proof of (1) is to show that if f : Df + Df is Cl-norm 
nonexpansive and there exists a x0 E D such that the sequence cfi(x~))~ is 
bounded, then there exists an a’priori upper bound on the cardinality of -limit 
sets which only depends on the number of independent variables. 

The organisation of this paper is as follows. In Section 2 we shall discuss the 
procedure to obtain a priori upper bounds on the cardinality of ulimit of Cl- 
norm nonexpansive maps, based on the approach introduced by Misiurewicz 
[9]. We shall give a sharper upper bound for the cardinality of wlimit sets of & 
norm nonexpansive maps, if the dimension is less than six. In Section 3 we shall 
describe two different procedures to construct periodic orbits of Cl-norm non- 
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expansive maps. These constructions yield that a lower bound for the largest 
possible minimal period of a periodic point of an el-norm nonexpansive map is 
given by 3 4 2”-‘, n 2 3. Finally, in Section 4 we shall discuss some con- 
sequences of our approach for sup norm nonexpansive maps. 

2. UPPER BOUNDS ON THE CARDINALITY OF W-LIMIT SETS 

Let (X, d) be a complete metric space and Df a closed subset of X. Iff : Df + 
Df a map, then for each x E Df the w-limit set, w(x) = w(x;f), is defined by 

w(x) = {y E Df ( y = lim fki(x) for some sequence of integers ki --) co}, 
l--t CO 

or, eqUiValently, w(x) = I&lc/( Uj>kfj(X)), w h ere cl(S) denotes the closure of 
the set S. 

It is clear that w(x) is closed and invariant underf, i.e.,f[u(x)l C w(x). Fur- 
thermore, iff is continuous and Df is compact, thenf maps w(x) onto itself. 

For nonexpansive maps w-limit sets have additional properties (cf. [3]). In 
particular, f restricted to W(X) is an isometry and w(y) = w(x), for each y E 
w(x). From this last property it follows that, for each y, z E w(x) there exists a 
sequence of integers ki -P 00 such that 

(2) /&i&fkyy) = z. 

Since f is nonexpansive the set of iterates off is equicontinuous. Therefore, if 
Df is compact the Arzela-Ascoli Theorem implies that the sequence cfki)i, 1 

has a uniform convergent subsequence. If we let Fv,z denote the pointwise limit, 
one can verify that the restriction of FY,z to w(x) is an isometry of w(x) onto it- 
self and I;yJy) = z. Furthermore, since all the iterates off commute we have 
that 

F u,z) 0 Fy,z = Fy,z 0 Fu)u for all u, V, y, z E w(x). 

This property motivates the following definition. A subset S of (X,d) has a 
transitive and commutative family of isometries, if there exists a commutative 
family I’ of isometries (with respect to 6) of S onto itself, such that for each 
y, z E S, there exists Fy,r E r with F,,,(y) = z. 

The key idea to obtain a priori bounds for omega limit sets is to analyse 
compact sets S that have a transitive and commutative family of isometries. 
First we need some preparations. Throughout the paper we shall work in the 
metric space (R”, dl) and therefore suppress the metric. 

2.1. Preliminary results 

A sequence u’ , a2 , _ . . , a” in R” is called an additive chain with respect to the ei- 
metric, if 

d&z’,a”) $ d&‘,a’+‘). 
i=l 
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A sequence a * , a2, . . . , urn in IR” is called monotone, if for each j E { 1,. . . , n} ei- 
ther 

a; 5 a; 5 . . . _< a,? or a; 2 a; 2 . . . 1 a]?. 

By definition, it follows that a sequence a’, u2, . . . , am E 17’4” is monotone if and 
only if it is an additive chain. We will call the length of a sequence the number of 
distinct points in the sequence. 

Definition 2.1. For each a, b E 08” we define the set 

U(a, 6) = {c E R” 1 (a, b, c) is a monotone sequence}. 

Moreover, we let U’(u, 6) denote the interior of U(a, b) with respect to the Eu- 
clidean norm. 

The assertions in the following two lemmas are in essence contained in the 
work of Misiurewicz [9]. 

Lemma 2.1. For each a, b E 02” one has that 

U”(U, b) = {C E U(a, b) ( (aj - bj)(bj - c,) > 0 whenever aj - bj # 0). 

Proof. Suppose that c E U’(u, b) and that there exists j E { 1,. . . , n} such that 
(ai - bj)(bj - ci) = 0 and aj - bj # 0. For every 6 > 0 with E 5 laj - bj[ define 
the vector 2 = 2; by 

where ej denotes thej-th unit vector. 
Since (aj - bj)(bj - cj) = 0 and aj - bj # 0, it follows that bj = cj. This im- 

plies that either 

aj<e<bj or bj<Q<aj. 

Therefore (a, b, 2) is not a monotone sequence, and hence Z 4 U(a, b). 
By construction Z is an element of the Euclidean ball B,(c) around c with ra- 

dius e. So, we can conclude that for every e sufEciently small B,(c) is not con- 
tained in U(a, b). This, however, contradicts the fact that c E U’(u, b), and 
therefore we have proved 

U’(a, b) 2 {C E U(U, b) 1 (aj - bj)(bj - c,) > 0 whenever aj - bj # 0). 

To show equality we consider c E U(a, b> with (aj - bj)(bj - cj) > 0 whenever 
aj - bj # 0. Select c > 0 such that Ibj - cjl > E whenever aj - bj # 0. If we take z 
in B,(c) arbitrary, then it is clear that for each 1 5 j 5 n we have that (aj, bj, 4) 
is a monotone sequence in IR. Therefore (a, 6, C) is a monotone sequence, and 
hence z E U(a, b). This proves that c E V’(a, b). Cl 

Lemma 2.2. If S is a compact set in R” and S has a transitive and commutative 
family of isometrics, then U’(a, b) n S = 0 for each a, b E S with a # b. 
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Proof. Let S be a compact set in R” and suppose there exists a commutative 
family r of isometries of S such that for each y, z E S there exists FY,z E r with 
F,,,(y) = z. We shall argue by contradiction. 

So, assume that a, b, c E S such that a # b and c E U’(u, b). Since a # 6 and 
b # c we can take E > 0 such that dr (a, b) 2 c and dt (b, c) 2 E. Define 7 to be 
the collection of monotone sequences in S, which start with (a, b, c) and are 
such that the dr-distance between two consecutive elements is at least e. Since S 
is a compact subset of R” there exists an a priori bound on the length of the 
sequences in r. Therefore there exists a unique maximal length of the se- 
quences in T, which will be denoted by r. Suppose that 

x1 =a, x2 =b, x3 = c, x4, . . . . x’ 

is a sequence in 3 of maximal length r. For integers 1 5 k, 15 r we select an 
isometry Fk,l E I’ with Fk,,(xk) = x’. We define x’+l = FQ(x’) and claim that 
the sequence 

(3) X2&, x3=c, x4, . ..) x’, x’+l 

is a monotone sequence in S with dl-distance between two consecutive ele- 
ments at least E. (These facts are special cases of more general results in [7]. For 
sake of completeness, we provide the elementary proofs.) To prove the claim, 
we first verify that the distance between two consecutive elements is at least E. 
By construction, it suffices to verify that C&(X’, x’+l) 2 E. Since xr = Fl,,(xl), it 
follows that 

so that 

(4) dr(x’,x’+‘) = d,(X1,X2), 

and this shows dt(x’,x’+‘) > 6. 
To prove the monotonicity of the sequence, it suffices to prove that the se- 

quence is an additive chain. Using (4) we derive 

d,(x2,xr+l) = dt(xl,x’) = ;$I d,(Xi,Xifl) 

= (2 d,(xi,xi+‘)) +d1(x’,x2) 

= (;<dl(x’,x’+‘)) +d,(x’,x’f’) = 2 dl(xi,xi+l). 
i=2 

This proves that the sequence (3) is monotone. 
Since c E U’(u,b) it follows from Lemma 2.1 that if cj = bj, then aj = bj. 

Furthermore, sgn(aj - bj) = sgn(bj - cj) for allj with aj # bj. This implies that 
the extended sequence 
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x1 = a, x2 = b, x3 = c, . . . , X’, xr+l 

also belongs to F, which contradicts that r is maximal. Therefore the intersec- 
tion of U’(CI, b) with S is empty and the lemma follows. Cl 

Motivated by Lemma 2.2 we make the following definition. 

Deli&ion 2.2. A set 5 in IR”’ is called &-separated if U’(a, b) n S = 0 for each 
a,bESwitha#b. 

For a, b E UP we let Q(a, b) denote the minimal closed box containing both a 
and b, with sides parallel to the axes, so 

Q(a,b) = {XE R” ) min{aj, bj} 5 xj < max{aj, bj} for 1 <j 5 n}. 

Theorem 2.1. Q”S c R” is l.l-separated, then the following assertions hold 
(i) The length of any monotone sequence contained in S, is bounded by n + 1. 

(ii) If S contains a monotone sequence of length n + 1, say a’, a*, . . . , an+‘, 
then S is contained in the boundary of the box Q(a’, a”+‘). 

Proof. Suppose S is an .!?I-separated set in R” and ai, a*, . . . , a”’ is a monotone 
sequence of length m in S. Define for 1 I k < 15 m the set 

Zk,l={jE{l,..., n}Ia~=aj}. 

Since a’, a*, , am is a monotone sequence, we obtain the following inclusions 

(5) 42 2 43 > . * * > &I. 

We shall show, by contradiction, that 

Zi,k # It,k+i for 2 2 k 5 m - 1. 

If Zi,k = Zl,k+l for some k E (2,. . . , m - l}, then it follows that Zi,k c Zk,k+i, and 
therefore 

(a;+’ -a$(at-a;) >O for j #&+I. 

By definition, this implies that a1 E U’(a k+ l, ak), which contradicts the as- 
sumption that S is Cl-separated. This shows that the inclusions in (5) are all 
strict inclusions. Since 11~1 I n - 1, the strict inclusions imply m < n + 1 and 
this proves (i). 

To show (ii), we shall first prove by induction that for a monotone sequence 
a1 a* a”+’ with length n + 1 in an Cl-separated set S in R” and corre- 
sponding iets &+I, as defined above, the following equalities hold: 

(6) Jlk,k+ 11 = n - 1 for 1 5 k 5 n, 

and 

(7) ij (1727.. .,rz}\h,k+l = {1~2,-.-~~1~ 
k=l 
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Since the equalities (6) and (7) are trivial for n = 1, it St&es to prove the in- 
duction step. 

Assume that (6) and (7) hold for n - 1. Since S is et-separated, we know that 
the points u2,u3,. . . ,a”+’ are contained in the boundary dU(a’, u2) of 
U(a’,u2). Since the inclusions in (5) are strict it follows that [ZI,J\ = n - 1. 
Therefore dU(u’ , a’) satisfies 

dU(U*,U2) = {X E R” ( Xj, = Ui}, 

where jl is the unique element in { 1,2, . . . , n} \ 11,~. 
Consequently, the sequence u2,u3,. . . ,a”+’ is a monotone sequence of 

length n in an n - 1 dimensional affine space in 08”. Therefore, the induction 
hypothesis yields that IZk,k+ 1 I = (n - 2) + 1 = n - 1 for 2 5 k 5 n. This proves 
(6). Furthermore, it follows that 

6 1172,. -,n}\zk,k+l ={1,2,...,n}\{jl}. 
k=2 

Sincejl E {1,2,..., n} \ 11,~ we also obtain (7). 
For 1 2 k 5 n, we define jk to be the unique element in ( 1,2, . . . , n} \ zk,k + 1, 

and 

Observe that if y $! v,, then either y E U”(uk,uk+‘) or y E U”(uk+‘,uk). 
Therefore it follows from the assumption that S is .!I -separated that 

SC fi vk. 
k=l 

Set Q = nL=, vk. From (7) it follows that Q is a closed box, with sides parallel 
to the axes, containing both u1 and a” + ‘. Since the sequence a’, u2, . . . , un+ ’ is 
monotone, we conclude that Q = Q(u’, un+ ‘). 

To complete the proof of (ii), it suffices to note that, if y E IL!” is contained in 
the interior of Q(u’,u”+‘), then a”+’ E U”(u’,y). As S is Cl-separated we 
conclude that S is contained in the boundary of Q(u’, a”+‘). 0 

2.2. Large sets have long monotone sequences 

From combinatorial geometry, it is known that a set in R” of large cardinality 
contains a long monotone sequence (see [2,4,5]). Moreover, given the dimen- 
sion n one can give precise expressions for ‘large’ and ‘long’ in the previous 
statement. We will state the precise results and give references for proofs. 
Hidden in a paper by Erdos and Szekeres [4], it is proved that every sequence of 
length k2 + 1 in R contains a monotone subsequence of length k + 1. From the 
sequence: 

k,k-l,..., 1,2k,2k-l,..., k+l,..., k2,k2-1 ,..., (k-l)k+l, 

it is clear that the number k2 + 1 is the best possible bound. Several proofs for 
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this result are known, see [5] and [9]. In unpublished work, N.G. de Bruijn 
showed the following generalization of the result by Erdos and Szekeres. For a 
proof of this theorem we refer to [2, Lemma 2.11. 

Theorem 2.2. Every sequence of vectors in IR” of length k2” + 1 contains a mono- 
tone subsequence of length k + 1. Furthermore, the length k2” + 1 is the smallest 
length with thisproperty. 

In particular, we have the following corollary. 

Corollary 2.1. If S is a subset of R” with cardinality at least k2”-’ + 1, then S 
contains a monotone sequence of length k + 1. Moreover, the number k2”-’ + 1 is 
the smallest cardinality with this property. 

Proof. For a given set S c R”, the elements can be labelled such that the re- 
sulting sequence is monotone in the first coordinate. Therefore, if we apply 
Theorem 2.2 with respect to the last n - 1 coordinates the result follows. Cl 

2.3. A priori upper bounds 

There are several ways to proceed in order to obtain upper bounds for the car- 
dinality of ei-separated sets. The first approach is based on the following idea. 
If S in R” is a set of large cardinality, then either there exists a large subset B of 
SandacoordinateiE{I,..., n) such that $ = xi’ for all xk,xl E B, or there 
exists a large subset C of S such that for each xk # x’ in C we have x~! # x/ for 
alliE{l,..., n}. In the first case we can use a projection to reduce the dimen- 
sion. In the second case the upper bound from Corollary 2.1 with k = 2 can be 
applied. This approach was followed by Misiurewicz in [9] who showed that the 
size of an Ci -separated sets is bounded by 

(8) < n! 22”, 

In this section, we shall proceed a different way and start with an observation. 
A combination of Theorem 2.1 and Corollary 2.2 yields an upper bound for the 
cardinality of compact sets in 03” with a transitive and commutative family of 
isometries. We state the result as a lemma. 

Lemma 2.3. If S is an .!?I-separated set in R”, then the number of elements in S is 
bounded by (n + I)‘“-‘. 

Proof. Since S is an &-separated set in IR”, it follows from Theorem 2.1 that the 
length of the longest monotone sequence in S is bounded by n + 1. Therefore 
Corollary 2.1 implies that the cardinality of S is bounded by (n + l)“, where 
m=2”-i. I7 

The second part of Theorem 2.1 gives additional information about the struc- 
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ture of [i-separated sets in R” that contain a monotone sequence of length 
n + 1. We shall consider this situation in detail for compact sets in W” that have 
a transitive and commutative family of isometries. 

Theorem 2.3. Let S be a compact subset of R” with a transitive and commutative 
family of isometries. If S contains a monotone sequence of length n + 1, then the 
number of elements in S is bounded by 2”. 

Proof . Let a' a* , a”+ 1 be a monotone sequence of length n + 1 in S. From 
Lemma 2.2 and Theorem 2.1, it follows that S is contained in the boundary of 
Q(a’,a”+‘). 

We claim that S is a subset of the set of vertices of the box Q(a’,a”+‘). To 
prove the claim, suppose that x E S is an element of the boundary of the box 
Q(a’,a”+’ ), but not a vertex. Let F : S + S be an isometry in r that maps a1 
to x. Since F is an isometry, the sequence 

x = F(a’), F(a*), . . . , F(a”+‘), 

is monotone and of length n + 1. If we apply Theorem 2.1 to this sequence, we 
obtain that S is contained in the boundary of Q(x, F(a”+‘)). 

On the other hand, the element x is (by assumption) not a vertex of 
Q(a’,a”+’ ), so that there exists a coordinatej E { 1,2,. . . , n} such that either 

a! < x, < a?+’ I J J 
or a?+l < Xj <U;. J 

This implies that a’ or un+ 1 is not contained in the boundary of Q(x, F(a”+‘)), 
which is a contradiction and this proves the claim. 

From the claim it immediately follows that the number of elements in S is at 
most 2”. 0 

Corollary 2.2. Zf n 2 2 and S is a compact set in R” with a transitive and com- 
mutative family of isometries, then the number of elements of S is bounded by 
n2”-l 

Proof. Suppose n 2 2 and assume, to the contrary, that the cardinality of S is at 
leastnm+1,wherem=2”-1.FromC orollary 2.1, it follows that S contains a 
monotone sequence of length n + 1. Theorem 2.3 implies that the number of 
elements in S is bounded by ,2”. So, for n 2 2, we obtain 2” 2 nm + 1, where 
m = 2”-’ and this is a contradiction. Cl 

Corollary 2.2 improves the upper bound (14) by Misiurewicz in dimension less 
than six as can be seen from the following table. 
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We conclude this section with two remarks. 

Remark 2.1. Let us consider the case n = 3 more closely. Suppose that S is a 
compact set in R3 with a transitive and commutative family of isometries. Fur- 
thermore, let r denote the length of longest monotone sequence in S. From 
Theorem 2.1 it follows that r 5 4. Moreover, if r = 4, then Theorem 2.3 implies 
that [SJ I 8. If r = 2, then it follows from Corollary 2.1 that ISI 5 16. Thus, to 
present a better estimate for the cardinality of S in case n = 3, we have to ana- 
lyse the following problem. Does there exist a compact set S in R3 with a tran- 
sitive and commutative family of isometries such that r = 3 and (SI > 16? 

Remark 2.2. Since compact sets S in R” with a transitive and commutative fa- 
mily of isometries, are Cr -separated, one could try to improve the upper bound 
in Corollary 2.2 by looking at &-separated sets. However, one has to realize 
that there exists (by Corollary 2.1) a lower bound for the cardinality of ei-se- 
parated sets in R” of 2m, where m = 2”-‘. 

3. TWO PROCEDURES TO CONSTRUCT LOWER BOUNDS 

Iff : Df -+ Df is an &-norm nonexpansive map and Df is compact subset of 
R”, then we have proved in the previous section that there exists an a priori 
upper bound on the cardinality of w(x) which only depends on the dimension of 
the ambient space. Consequently, we can reformulate the problem of de- 
termining the set @rz), which consists of possible minimal periods of periodic 
points of Ll-norm nonexpansive mapsf : Df -+ Df where Df is a subset of R”, 
in the following way. Find the integers p for which there exists a sequence of 
distinct points x0, xi, . . . , xp- 1 in W” such that the map 

F(x~)=x~+‘~~~~ fori=O,...,p-1 

is an Ci- norm isometry. To simplify the analysis we introduce the following 
definition. 

Definition 3.1. A jinite sequence of distinct points x0,x’, . . . , xp- ’ in a Banach 
space ( V, (I 1 11) is called a regular polygon of sizep or simply a regularp-gon if 

IIX k+’ - xklJ = 11x’ - x011 for all k,‘l = 0,. . . ,p - 1. 

Here the indices are counted modulo p. 
Remark that a sequence x0, x *, . . . , xp- ’ is a regular polygon in (V, I( . 11) if 

and only if the map F(x’) = xiflmodp is an isometry. In this section we shall 
give two procedures to construct regular polygons in R” with the .&-norm. 

3.1. Doubling via the simplex 

Before we can start with the first construction some definitions are required. 



Let K” = {x E I%” ] xj > 0 for 1 < i 5 n} be the positive cone in R”, and let 
A,={xEW)C;= 1 xj = 1) be the unit simplex in R”. 

Lemma 3.1. If there exists a regular p-gon in A,,, then there exists a regular 2p- 
goninA,+l. 

Proof. Let the sequence so, sl, . . . , sJ’- 1 be a regular pgon in A,. Consider the 
sequence to, t’, . . . , t2p-’ in Rnfl given by 

t’ = 
{ 

(s”2,o) if i is even 
(-~(‘-l)/~,2) if i is odd. 

We claim that to t’ 

have to show that 
> * * * , t2p-’ is a regular 2pgon in R”+ ‘. To prove the claim’we 

IIt m+l - tq, = II+ - toll* for each m,l=O,l,..., 2p-1. 

So, take m, 1 E (0, 1 . . . ,2p - 1) arbitrary. If 1 is odd, then the following equal- 
ities hold 

Ilt m+l - P]ll = (2 (tm+‘j - ti”]) + 2 
j=l 

= (],Km+M +s[~‘~l(]l +2 

= ]]s[(m+~)‘21]), + ]]s[~/21]]l + 2 

= 4. 

Here [x] denotes the largest integer m 5 x. 
On the other hand, if 1 is even, then we have that 

IIt m+’ - q, = 5 \,m+‘j - ti”l 
j=l 

= Il,l(m+wl - ,im/Y ]I1 

= ]]&21 - SO/l1 

= IV - to1117 
where we have used the fact that so, sl, . . . , sJ’ - 1 is a regular pgon in the second 
last equality. This shows the claim. 

To prove the lemma let e E IR ’ + ’ be the vector with all coordinates equal to 1. 
Define the sequence u”, ul, . . . , u2p-’ by 

IJ = tj + e for O<j<2p-1. 

Observe that this sequence is again a regular 2p-gon in KY+ ‘. Since the se- 
quencesO,...,sP-l is contained in A,,, it follows that u”, . . . , u2P- * is contained 
inK”+‘andforeveryOIj<2p-1 
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Now put (Y = (n + 2)-l and define the sequence w”, wl, . . . , wzp- 1 by 

Wj = ad forOIj<2p-1. 

From equation (9) and the fact that the sequence u”, . . . , u*J’-’ is a regular 
polygon in K” it follows that w”, . . . , w*p- 1 is a regular 2pgon in A,+ 1. Cl 

Theorem 3.1. If there exists a regularp-gon in Ak, then for each n 2 k there exists 
a regular polygon of size p .2”- k + ’ in R”. 

Proof. Suppose n 2 k and let so, s’ , . . . , sP_ ’ be a regular pgon in A k. We 
can apply Lemma 3.1 repeatedly until we obtain a regular polygon, say 
w0 21’ 7 ,*a*, vq-l, in A,, with q =p. 2”-k. Now we define the sequence 
d,W$.. , d4-l in BB” by 

~~~~~,~~~-~~,~~~‘,~~~-_v’,...,~~-~~~~-~,~~-~~-2)~-~. 

We claim that this is a regular polygon of sizep - 2n-k+1 in W”. 
Indeed take m, 1 E (0, 1, . . . ,2r - 1) arbitrary, and consider 

IIW m+l - wml)r. 

If I is odd, then the following identities hold 

IIW m+‘_ fl[li = II,Km+4/21 + ,b1211~l 

= Il,[(m+Qq)* + Il,[mql 

= 2. 

If 1 is even, then we have that 

lb m+l _ Wmll, = ~l,b+Wl _ &d*llll 

= lb [/I21 - 2rol11 

= I(w’ - WOlli. 

This implies that w”, . . . , w2q-’ is a regular polygon of size p + 2n-k+ ’ Cl 

To use Theorem 3.1 we have to search for regular polygons on the unit simplex. 
Let us start with a simple one. 

Corollary 3.1. There exists a regular 2”-gon in R” for n 2 1. 

Proof. Remark that the sequence x0 = 1 is a regular polygon in Al. Thus The- 
orem 3.1 yields the result. 0 

For a candidate regular pgon x0, x1, . . . , xp- * we have to verify that 

lb k+’ - Xklll = 1(x’ - XOlll for 0 < k < p and 0 < I < [p/2]. 

This can be done quickly by a computer. The major difficulty in finding regular 
polygons is caused by the fact that given a set of p points we need to find a sui- 
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table ordering on the elements. The following example in R3 was found by 
hand. 

Example 3.1. The sequence x0, x1, . . . , x5 in R3, defined by 

x0 = (0,1,2), x1 = (0,2, l), 

x2 = (1,2,0), x3 = (2,1,0), 

x4 = (2 0 1) ,> 7 x5 = (1 0 2) 7 7 

is a regular polygon of size 6. Notice that we can rescale each element xi by l/3 
to obtain a regular polygon on the unit simplex in R3. 

If we useTheorem 3.1 with respect to the polygon in Example 3.1, we obtain the 
following result. 

Corollary 3.2. There exists a regular polygon of size 3 .2”- ’ in R” for n > 3. 

Another interesting example occurs in dimension 5. This example was found 
using a computer. 

Example 3.2. The sequence y”,yl, . . . ,y19 in R5, defined by 

y” = (0,1,2,3,4), Y’ = (0,3,4,2, l), 

3 = (0,2,1,4,3), y3 = (0,4,3,1,2), 

v4 = (1,3,0,4,2), Y’ = (1,4,2,0,3), 

Y6 = (2,4,0,3, I>, Y7 = (2,3,1,0,4), 

Y* = (3,4,1,2,0), ~9 = (3,2,0, ~4)~ 

y”=(4,3,2,1,0), y”=(4,1,0,2,3), 

y’2 = (4 2 3 0 1) 7 777 I y’3 = (4 0 1 3 2) 

y14 = (3,1,4,0,2), y” = (3:0:2:4: 1): 

y16=(2,0,4,1,3), ~‘~=(2,1,3,4,0), 

y’*=(1,0,3,2,4), y19=(1,2,4,3,0) 

is a regular polygon. Remark that we can rescale each vector 9 by l/10 to ob- 
tain a regular polygon of size 20 on AS. 

The reader may wonder what happens in dimension 4. So far we do not know 
of any regular polygon of size bigger than 8 on & except for size 12. 

If we use Theorem 3.1 with respect to the polygon in Example 3.2, we obtain 
the following result. 

Corollary 3.3. There exists a regular polygon of size 5 . 2n-2 in R” for n 2 5. 

Remark 3.1. We have seen in Corollary 3.2 that the regular 6gon in Example 
3.1 yields a regular polygon of size 3 .2”- ’ in R” for n 2 3. This is the largest 
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regular polygon we know so far. If we compare this result with the best known 
upper bound in Corollary 2.2, it follows that there exists a wide gap to bridge 
between the best known lower and upper bound. 

3.2. Using the increment sequence 

The regular polygons that are obtained by the procedure described in the proof 
of Theorem 3.1, are all contained in the boundary of an &-norm sphere. This 
nice geometric property does not hold for every regular polygon, as can be seen 
from the following example. Consider the regular polygon z”, zi , . . . , z7 in R3 
given by 

z” = ( 1, 1, l), zi = (0, 2,2), 

z2 = (-1, 1,3), z3 = (0, 0,4), 

z4 = ( l,-1,3), z5 = (O,-2,2), 

z6 = (-1 -1 1) 7 , 7 z7 = (0 0 0) > 3 . 

For this polygon, one can show that no x E R3 exists such that 

]]x - zi]ll = /Ix - zi]]i for each 1 5 i <j 5 7. 

This remark is related to the fact that an &-norm nonexpansive map may not 
have an nonexpansive extension to the whole space. To be precise: any periodic 
orbit of an ei-norm nonexpansive map f : R" + R", is contained in the 
boundary of a sphere (see [12, page 187]), and therefore the isometry F : 
{z”, . . . ,z7} + {z”, . . . ,z7} given by 

F(zi) = zi+1mod8 for 1 5 j 5 7, 

can not be extended in an Cl-norm nonexpansive way to the whole of R3. Instead 
of the geometric argument, one can also use results by Scheutzow [16,17]. From 
his work it follows that if f : R" -+ IR" is an &-norm nonexpansive map and 
x E IV’ is a periodic point off of minimal period p, then p I Icm (1,2, . . . ,2n). 

Since 8 does not divide lcm( 1,2, . . . ,6), it follows that F cannot be extended. 
It turns out that the polygon z”, z 1 , . . . , z7 belongs to a family of regular 2”- 

gons in R” which are not contained on the boundary of an .&-norm sphere. 
The increment sequence y”, y’ , . . . , yP_ ’ of a polygon x0, x I, . . . , xJ’- 1 is given 

by 

yi=xi_xi-l for O<j<p-I, 

where the indices are considered modulop. We present a procedure to construct 
a regular polygon starting from an increment sequence. In order to simplify the 
construction, we introduce the following definition. 

Definition 3.2. A p x n matrix B, with successive rows b”, . . . , bp- ’ is called a 
regular block of sizep in (LTV’, 11 - 11) if 
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(4 

(ii) 

P-1 
lljEO bill = 0 and 

k+l 

‘\&jk b 
~modp~~=~~,~~b~/~>OforO~k~~-landOjI<p-l 

It is a simple observation that if u”, ul, . . . , up-’ is a regular pgon, then the 
pxnblockBwithrowsbi=aj-aj-’ is a regular block of size p. However, 
the converse is also true. A regular polygon can be constructed from a regular 
block. 

Lemma 3.2. Zf B-is a regular block of size p in R”, then the sequence u”, 
a’,... , up- 1 defined by ai = xj = o bj, is a regular p-ga in R”. 

Proof. To show that the points in the sequence u”, a’, . . . , up- 1 are all distinct, 
we remark that for each 0 5 I < k 5 p - 1 the following equalities hold 

llak - a’ll = l\Iko bi - j.$o bill = I,=$+, @II = II”;-&; ’ bjll > 0. 

Now to show that the sequence a’, a’, . . . , up- ’ is a regular polygon we take 
k, 1 E (0,. . . , p - 1) arbitrary. The following equalities hold 

lb k+’ _ &ll = 

= 

I’;$; bjmodp - 5 bill 
j=O 

I$, bill = lb’ - aoIl. 

k+l 

= l\=F+, birndPll 

Therefore we conclude that u”, al, . . . , up- 1 is a regular polygon of size p in 
R”. 0 

The next step in the construction of the family of regular 2”-gons in R” is to 
define inductively, for n 2 1, an 2” x n block B,, and to show that this block B,, is 
regular of size 2” in Iw”. 

Before we can state the definition of the blocks B,, we need some more no- 
tation. If B is block with rows b”, b1 . . . , bP_ l, then we let B denote the block 
with rows 

60 &P-l , 5’ =bP-2, . . . . z;P-’ =b”. 

Remark that B is a regular block if and only if B is a regular block. 

Definition 3.3. The 2” x n block B, is inductively defined by 
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B2 B3 . . . B II+1 

Before we shall prove that B,, is a regular block, we shall prove a useful lemma. 
Let C#J and $J be permutations on (0, 1, . . . ,p - 1) and { 1,2, . . . , n}, respectively. 
We define a transformation Rg on a p x n block B by permuting the rows of B 
according to 4. Likewise we let T+ denote the transformation on B which per- 
mutes the columns of B according to $J. Furthermore, for 1 < i 5 n we let Si 
denote the transformation on B which changes the sign of each element in the 
i-th column of B. If T is a transformation on the block B, then we let (T(B)) j 

denote thej-th row of the transformed block T(B). We are now ready to prove 
the following lemma. 

Lemma 3.3. Let n 2 3 and B,, be the block as defined in Dejinition 3.3. Suppose 
that thepermutations C#J = q& and p= p,, on (0, 1, . . . ,2” - 1) are given by 

+(i) = i-2”-‘mod2” and p(i) = i + 2”-’ mod 2”, 

and that II, = $J,, denotes the two-cycle (n - 1 n) on { 1,2,. . . , n}. If we define 

~,,=S,,-2oS,,oT~oR~ and A,=S,,_~oS,,oR,, 

then we have that I’,,(B”) = B,, and A,,(B,J = Bn. 

Proof. To prove the lemma we simply follow the transformations on the block. 
If n 2 3, we see that 
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43 
1 1 

B,_, i i 

1 1 

-1 1 

Bn_z i i 

-1 1 

-1 -1 

Bn_2 i i 

-1 -1 

1 -1 

Bn_* i i 

1 -1 

1 

L 

B”-2 

B n-2 

4%) 
-1 1 

. . . . . . 

-1 1 

-1 -1 
. . . . . . 

-1 -1 

1 -1 
. . . . . . 

1 -1 

1 1 
. . . . . . 

1 1 

www 
1 -1 

En_2 i i 

1 -1 

-1 -1 

B,_, i i 

-1 -1 

-1 1 

Bn_z i i 

-1 1 

1 1 

Bn_2 i i 

1 1 

Remark that Sk(&) = Bk and &(Bk) = & for each k 2 1. Therefore, if we ap- 

ply G-2 0 & on ~~U$(&)) we obtain r,,(B,J = B, for n 2 3. To derive the 
other identity remark that 

R,(j 

&z-l 

B n-l 

I) 
-1 

-1 

Mw%x 
1 

En_, i 

1 3 -1 

ip,_, i 

-1 

Since &.-1(&-l) = B,_I and &_I(B~_I) = &,_I, we obtain that A,,(B,J = 
B,, n 2 3. This completes the proof of the lemma. Cl 

We are now ready to prove the main result of this section. 

Theorem 3.2. The block B,, is a regular block of size 2” in R” for n 2 1. 

Proof. The first property of Definition 3.2 follows from the fact that each ver- 
tex of the n dimensional unit cube appears exactly once as a row of the block B,,. 

To prove the second property of Definition 3.2, It suffices to show that 
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We shall first prove the equality in (10) by induction. A direct computation 
shows that equality holds for the blocks Bi and 82. Now assume that n 1 3 and 
that equality in (32) holds for all blocks Bm with 1 5 m < n. To prove the in- 
duction step we have to show equality for B,,. 

For 4 = 0, 1,2,3 define the set of integers A, by 

A, = {j+ q. 2”-2 IO -g < 2”-2). 

According to the definition of B,, see the first figure in the proof of Lemma 3.3, 
we distinguish 6 cases: 

1. kcAoUAl andk+IEAoUAi, 2. kEA2UA3 andk+lEAzUAs, 

3. kEAoandk+lcAZ, 4. kcA1 andk+IEAj, 

5. kcA1 andk+lEAI, 6. kcA:!UAj andk+lEAoUAI. 

In Case 1 and 2 the equality in (10) follows from a direct application of the in- 
duction hypothesis on the block B,, _ 1. 

In Case 3, we have 

k+l . n-2 kfl 

i=n-1 j=k 

Note that since 0 < 1< 2”-‘: 

and hence it suffices to show that 

(11) 
i=n-1 j=k 

2 lk&lbjl =2”-1 n-2 k+l i n-2 I 

and 

To prove the first equality remark that 

5 Ik&{, = 12”-2_k_2”-2_k_I+2”-1 _ 1, 

i=n-1 j=k 

where we have used the fact that 2”-’ < k + 1~ 3. 2”-2 and 0 I: k < 2”-2. 
To verify the second identity in (11) we shall use in each step the induction 

hypothesis on B,, _ 2. 
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n-2 k+l “-2 20-2-1 

n-2 2”-2+1-2”-’ 

= Zl 1 c 
bil 

j=O 

n-2 

= iFl @_* bil 

n-2 2”_2-1 I 

n-2 I 
= C Ix b$. 

i=l j=O 

This prove equality in (10) in Case 3. 
To prove equality in Case 4-6, we let the permutations 4, $J and p, and the 

transformations r,, and A, be as in Lemma 3.3. We remark that 

NotethatifkEA~andk+lEA3,thenk-2”-2EA~andk+l-2n-2EA2. 
Therefore, by using (12) we can conclude from Case 3 that equality in (10) holds 
also in Case 4. Likewise, equality in Case 5 follows from Case 1. 

In Case 6 we use the other transformation and the following identities 

k+l+2”-’ k+1+2”-’ 

(13) /I;$; bimd 2” I! _, b’lll. 

If we look at the last sum in (13), and assume k and I to be as in Case 6, then we 
can conclude from Case 3,4 or 5 that equality in (10) holds. 

To complete the proof of the theorem remark that 

Iliz b-9, ’ 0 for 0 5 15 2”-’ - 1, 

since the last coordinate in each bi in the sum is equal to 1. •J 

Applying Lemma 3.2 to the regular block 83 yields the regular ggon z”, . . . , 2’ 
given at the beginning of this subsection. As another example we give the reg- 
ular polygon of size 16 that arises from the regular block B4. The regular ldgon 
x0,x1,. . . ,x-l5 in R4 is given by 
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x0=( 1, 1, 1, l), x1=(0,2, 2, 2), 

x2 = (-1, 1, 3, 3), x3 = ( 0, 0, 4, 4), 

x4 = ( 1,-l, 3, 5), x5 = ( O,-2, 2, 6), 

x6=(-1,-1, 1, 7), x7=(0, O,O, 8), 

x8 = ( 1, 1,-l, 7), x9 = ( 0, 2,-2, 6), 

xlO=(-1, l,-3, S), x’i=(O, o,-4, 4), 

x12=( l,-I,-3, 3), x13=(0,-2,-2, 2) 

x14=(-1,-1,-1, l), x15=( 0, 0, 0, 0). 

To end this section we note that the question, whether for a givenp there exists 
a regular pgon in R”, can be answered in finite time (see Lemmens [6]). The 
main idea is to show that it suffices to look for all regular pgons in a finite 
subset of Z”. So far, however, no upper bound for the finite subset of h” is 
known that would allow us to do an exhaustive search for regular pgons in 
reasonable time. 

4. RELATIONS WITH THE SUP NORM 

There exists a linear isometric embedding of the (IV, di) into (!P, d,), where 
m=2”-1.1nfact,takethesetv1,...,v2”-’ of vertices of the unit cube in R”- ’ 

and define for each 1 5 i 5 2”- 1 the linear functional Bi : R” + R by @i(x) = 
x.(l,v’).Onecanshowthatthemaph: (Iw”,di) --) (W’,&,),wherem=2”-‘, 
defined by 

h(x) = (h(x), 02(x), * * . , e2”-1 (x)) for each x E W, 

is an isometric embedding. Thus the problem of finding an upper bound on the 
size of a regular polygon in (IV, di) is related the problem of determining the 
maximum size of a regular polygon in R’“, where m = 2”- l, under the sup 
norm. An upper bound on the size of a regular polygon in R2”-’ under the sup 
norm implies an upper bound for the largest regular polygon in W” under the 
Cl-norm. In particular, if the 2’Qonjecture is true, then 22”-’ would be an upper 
bound for the el-norm case. Of course, a further reduction is likely because 
(R”, dl) is an n-dimensional subspace of (BP, d,), where m = 2” - l. However, 
the tempting conjecture that the correct upper bound would be 2” fails, since we 
can conclude from Corollary 3.2 and 3.3 that there exist regular polygons in an 
n-dimensional, n 2 3, linear subspace of R2”-’ under the sup norm, that have a 
size bigger then 3 x 2” - l. 

Finally, we remark that in the proof of the 2R-conjecture in dimension 3, see 
Lyons and Nussbaum [7], the notion of an additive chain plays an important 
role. Moreover, it is shown that the length of an sup norm additive chain in a 
compact set in R” with a transitive and commutative family of sup norm iso- 
metries is bounded by n + 1 ([7, Theorem 2.11). Furthermore, if the set contains 
an additive chain of length n + 1, then it is shown in unpublished work ([7, Re- 
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mark 2.21) that its cardinality is bounded by 2n These results are similar to the 
assertions in Theorem 2.1 and 2.3. 
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