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1. INTRODUCTION 

IN A RECENT paper Krause and Ranft [l] explored conditions on self-mappings T of the positive 
orthant LPT in IR” which ensure that the following trichotomy holds. 
Either: 

(i) for every nonzero x in I?‘J the orbit y’(x) = Ujm= 0 Tjx is an unbounded set; or 
(ii) for every x E !?:, lim TJx = 0; or 

j-m 

(iii) there exists a unique fixed point x0 of T in the interior of I?: such that ml Tjx = x0 

for all nonzero x E L?“, . 
If we write K” and 8” for I?“, and the interior of LRT respectively, it has been shown in 

particular (see [l, corollary l]), that the above trichotomy is valid for continuous maps 
T: K” --) K” such that 

T(Ax) > AT(x) for all 0 < A < 1 and all x > 0, and 
Tx>Oforallx~O,x#O,andTx~Tyforallx,ywithx~y. 

(Here, we use the notation x > y and x 2 y to mean, respectively, x - y E k” and 
x - y E K”.) This result extends an earlier theorem of Smith [2] concerning “discrete dynamics 
of monotone, concave maps”; some interesting applications to differential equations can be 
found in [l, 21. Another extension of Smith’s theorem has been given by TakaE in [3]. 

In this paper we shall extend the above trichotomy in two directions. First, we shall allow 
general normal cones K with nonempty interior in a Banach space. Second, we shall allow a 
class of maps which is considerably more general than classes allowed in earlier results, even for 
K, the positive orthant in I?“. The key observation which we shall exploit centers about a metric 
p, called the part metric or Thompson’s metric (see [l, 4-61 and the references given there; and 
Section 2 below) which is defined on the interior I? of a cone. The proper class of maps to 
study seems to be those maps T: I? + k such that T”‘, the mth iterate of T, satisfies 

p(T”k T’W 5 P(X, Y) forallx,yEIZor (1.1) 

p(T”X T’W < P(X, Y) forallx,yEg,xfy, (1.2) 
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and some further mild assumptions. For example, if K is a normal cone with nonempty interior 
R in a Banach space and T: K + K is a compact, continuous map such that T(K - (01) c I? 
and T satisfies (1.2), then it is a special case of our later results that the trichotomy holds. If 
we only know that (1.1) holds, the situation is much more subtle. By using recent results from 
[lo] (see, also, related work in [8, 1 l-16]), we obtain analogues of the trichotomy property for 
maps T: I? -+ k, where T satisfies (1.1) and K is a “polyhedral cone” in a finite-dimensional 
Banach space. (The cone K” in IR” is a simple example of a polyhedral cone; the general 
definition is given in Section 2.) In work in progress Nussbaum has shown that the above kinds 
of results can be used to generalize theorems of Hirsch [17, 181 Krasnosel’skii [19] and Smith 
[2] concerning concave, cooperative differential equations. See, also, Krause and Ranft [l]. In 
order to apply our results, we need to determine whether the map in question satisfies (1.1) or 
(1.2). Here we shall be content to study the case that T: k” -+ k” and T is locally Lipschitz, 
so T has a Frechet derivative T’x for almost all x in l?“. We shall give simple conditions on 
T’x which insure that T satisfies (1.1) or (1.2). 

2. METRIC PRELIMINARIES 

Let (X, d) be a complete metric space. A mapping T: X 4 X will be called nonexpansive 
(with respect to d) if d(Tx, Ty) 5 d(x, y) for all x, y E X, and T will be called contractive if 

d( TX, TY) < d(x, Y> for all x, y E X, x # y. 

If A is a bounded subset of (X, d), Kuratowski [20] has defined the measure of noncompactness 
of A, a(A), by the formula 

r>O:A= fiA,,niao,diameter(A,)sr . 

i=l 

Basic properties of the measure of noncompactness and references to the literature can be 
found in [21, Section I]. Recall that a continuous map T: X --f X is called condensing if 

47’(A)) < a(A) for all bounded A C X with u(A) > 0. 

Recall that a(A) = 0 if and only if cl(A), the closure of A in (X, d), is compact; and from this 
one concludes that compact operators are condensing. Given T: X + X, the forward orbit 
y’(x; T) of x E X (with respect to T) is 

y+(x;T) = fi Tjx. 
j=O 

The omega limit set w(x; T) of x E X (with respect to T) is 

It is well known that o(x; T) is the set of z E X such that there exists a sequence m, + 00 with 

z = lim T”‘lx. 
i-m 

If T is obvious, we shall write y’(x) or w(x) instead of y+(x; T) and w(x; T). Recall that if 
(X, d) is a complete metric space and T: X -+ X is a map such that T’” is condensing for some 
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m, then y’(x) has compact closure in X if an only if y+(x) is bounded. This result is known, but 
we sketch the proof. If y+(x) is not bounded (so cl@+(x)) is not bounded), it is easy to see that 
cl@+(x)) is not compact (the open covering by balls of radius j about a specified point x0 E X 
has no finite subcovering). Conversely, if v’(x) = A is bounded, 

4Cl(YC(X))) = @(Y’(X)) = Q 
( i 

i, Tjx = ci(T”(z4)). 
j=m 

If cr(A) > 0, the assumption that T” is condensing implies that 

cG’-“(A)) < a(A), 

which would contradict the above equation. Thus cw(A) = 0 and cl(y+(x)) is compact. 
Our first lemma is related to work of Edelstein [22]. 

LEMMA 2.1. Let (X, d) be a complete metric space and T a continuous self-mapping of X such 
that T” is contractive for some integer m 2 1. Assume that for every x E X, cl(y+(x; T)) is 
compact if y’(x; T) is bounded. (Recall that this condition will be satisfied if TP is condensing 
for somep 2 1.) If, for at least one point r E X, w(<; T”) is nonempty (in particular if y+(<; T) 

is bounded) then T has a unique fixed point x0 and 

lim Tkx = x0 
k-m 

for all x E X. (2.1) 

Proof, In the case where y+({; T) is bounded, cl(y+(<; T)) is compact by assumption and the 
subset v’(<; T”) contains a converging sequence, showing that o(c; T”) # 0. Hence let 
o(<; T”) # @ for some r E X. If we take S = T”‘, then lim Sk8{ = x0 E X for some sequence 

;-CC 
ki + 00. Contractivity of S implies that the sequence defined by ak = d(Sk<, Sk+‘c) is decreasing 
and converges to some a 1 0. It follows that 

a = lim gk, = d(x,, Sx,), 
i-cc 

and also 

a = lima i_m k,+l = !h; d(S(Sk9), S2(Sk’t)) = d(Sx,, S2x,). 

Hence d(x,, Sx,,) = d(Sx,, S2x0), and Sx,, = x0 by contractivity of S. Therefore 

S(Tx,) = T”‘+l x0 = T( Sx,) = TX,, 

and we must have TX, = x0, since a contractive map has at most one fixed point. 
It remains to establish (2.1). Because we can write 

d(Tjx, x0) = d(Tk”(Trx), x0), Orrcm 

it suffices to prove that for S = T” 

lim d(Sku, x0) = 0 for all 2.4 E X. 
k-m 

We have that the sequence defined for fixed u by 

ak = d(Sku,xO) = d(Sku, Skx,) 
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is decreasing and converges to some a L 0. Because by contractivity of S 

d(Tju,x,) = d(P(T’u),x,) 5 max(d(T’u,x,): 0 5 r < m) for all j I 0, 

y+(u; T) is bounded and has compact closure. Since y+(u; S) C y+(u; 7’) we can take a sub- 
sequence Skfti such that lim Skfu = u E X and d(v, x,,) = lim ski = a. If CI > 0, we have that 

i+a, i-a, 

d(Su, x0) = d(Su, Sx,) < d(u, x,) = a, 

and by contractivity we obtain 

d(Sk~+%4, xg) < (I for i large. 

This contradicts the choice of a, so a = 0. n 

Remark 2.1. By a result in [23], which is stated for Banach spaces but with a proof valid for 
complete metric spaces, if S: X + X is nonexpansive and o(<; S) is nonempty for some r E X, 
then S 1 o(t; S) is an isometry of o(r; S) onto itself. This result, if applied to the situation of 
lemma 2.1, provides an alternative way of deriving Sx, = x0 from x0 E o(<; S). 

Our next lemma is a slight variant of lemma 2.1, but it has proved quite useful for the kinds 
of examples studied in [6, 71. It follows easily from [6, lemma 2.3, p. 661. 

LEMMA 2.2. Let (X, d) be a connected metric space and T a continuous self-mapping of X. 
Assume that T has a fixed point x0 and that there exists an open neighborhood I/ of x0 such that 

lim Tkx = x0 
k-m 

for all x E CT. (2.2) 

Assume further that there exists an integer m such that T’” is nonexpansive. Then it follows that 

lim Tkx = x0 
k+s, 

for all x E X. 

Proof. By assumption, S = T”’ is nonexpansive and lim Skx = x0 for all x E U. Lemma 2.3 
k-m 

in [6] implies that lim Skx = x0 for all x E X, and one can see that this implies lim Tkx = x0 
k-m k-m 

for all x E X. n 

Remark 2.2. Note that lemma 2.1 implies that (2.2) will be satisfied if there exists an open 
neighborhood I/ of x,, and an integer m L 1 such that Tm 1 I/ is contractive and such that 
y’(x; T) has compact closure for all x E V. 

Recall that a cone K in a Banach space (E, I(. (I) . is a closed, convex set such that tK c K for 
all t L 0 and K n (-K) = (0). A cone K induces a partial ordering by x 5 y iffy - x E K. If 
k, the interior of K, is nonempty, we shall write x < y iffy - x E Z? (note that sometimes the 
notation x 4 y is used instead of x < y). K - (0) denotes K without 0, 

A cone K is called a normal cone if there exists a constant A4 such that 

o<x<y implies lixll 5 M(I yll. 
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If K is normal, it is known (see [24]) that E can be given an equivalent norm ( * 1 such that 

olxly implies 1x1 5 (y(. 

A mapping T: K + K, K a cone, we shall call monotone or order-preserving if 

OlXlY implies TX 5 Ty. (2.3) 

Thus, the above norm 1.1 is monotone. 
One can define an equivalence relation on a cone K by x - y iff there exists cv > 0 such that 

CY-~X 5 y 5 01x. The equivalence classes under this equivalence relation are called the parts of 
K. If K has a nonempty interior, I? is a part of K. If J is any subset (possibly empty) of 
(j: 1 I j I n) and KJ” denotes the set of vectors x E K” such that Xi = 0 for allj E J and Xj > 0 
for all j $ J, then KJ” is a part of K”. If C is a part of a cone K and x, y E C, the part metric 
on C is defined by 

p(x, y) = infllog cy: K’x % y 5 ox]. 

p can be extended to K by setting p(x, y) = co for x and y not lying in the same equivalence 
class. 

It is easy to verify that p is a metric on C, and it is proved [6, proposition 1.12, p. 341, that 
(C,p) is metrically convex (see [6, pp. 24-371 for definitions and further references). Thompson 
[8] proved that (C, p) is a complete metric space if K is normal (see [4, 5, 91 for further results 
in this respect). 

One verifies easily that for K” the part metric on the part 8” = KG becomes 

p(X,y) = ITlaX(llOgyj - lOgXj/: 1 5j I t?). 

Hence Q(x) = log x = (log x1 , . . . , logx,) defines an isometry of (k”,p) onto (IR”, )I - II_,). For 
later work we shall need some simple relationships between the part metric and the distance 
defined by the norm on the cone. Related results are given in [6, Section 11. See also [4, 51, 
where the relationship between the part metric and the topology on a locally convex vector 
space is considered. 

LEMMA 2.3. (i) Let K be a cone with nonempty interior in a Banach space E. If x,y E g and 
r > 0 is a number such that the closed norm ball of radius r and center x and y, respectively, 
is contained in K, then 

p(x,y) 5 log(l + V). (2.4) 

(ii) If K is a normal cone in a Banach space E and the norm II* I( is monotone on K, then for 
X,Y E K - (01, 

IIx - y/I 5 (2ep(x,y) - e-p(x~Y’ - 1) min( I(xJI, Ilylj). (2.5) 

Proof. (i) For x = y, (2.4) is trivial, so assume x # y. From the equation 
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it follows that 

YC (I +~)x~ax. 
Interchanging the roles of x and y gives x I oly, and we obtain (2.4) by using the definition of 
the part metric. 

(ii) If x is not equivalent to y, p(x, y) = CO and (2.5) is trivial. If x - y, write CY = ep(x’Y), so 
(l/ol)x 5 y s 01. It follows that 

-(a - 1)x 5x-y i x and osx-y+(cY-1)x< 

Using the monotonicity of the norm, we obtain 

Ilx - Yll - (a - l>llxll 5 Ilk - Y) + (a - l)xll (: a - k Ilxll 
( ) 

or 

ll~-Yll~(2u-~-I)oll. 

Interchanging the roles of x and y gives 

Ix-Yll 5 (2ff -;- l)llYll, 

and we obtain (2.5). n 

3. LIMIT SET BEHAVIOR FOR NONEXPANSIVE AND CONTRACTIVE MAPPINGS 

The next lemma presents our first variant of a limit set trichotomy. It holds under rather 
weak assumptions, in that the cone is admitted to be infinite-dimensional, the self-mapping is 
only required to be nonexpansive and no assumptions about the mapping’s behavior on the 
boundary of the cone are made. 

LEMMA 3.1. Let K be a normal cone with interior R # 0 in a Banach space (E, I(. II). Let T be 
a continuous self-mapping of the space (K, ()*]I) with T(k) c k and such that for some 
integer r 2 1, T' is nonexpansive for the part metric on g. Then at least one of the following 
cases holds. 
Either: 

(i) for every x E K, y'(x; T) does not have compact closure in the norm topology; 
(ii) for every x E I?, /im_ 11 Tkxl\ = 0; 

(iii) there exists some x E K such that for every s 2 1, o(x; T"), the omega limit set in the 
norm topology, contains a point of K - (0). 
If case (i) holds, but not case (iii), for s = 1, and if T maps norm-bounded subsets of J? to sets 
which have compact closure in K for the norm topology, then 

for all x E R. (3.1) 



Limit set trichotomy 861 

Proof. Since K is normal, we can assume the norm is monotone on K. Assume that neither 
(i) nor (ii) hold, then there exists x0 E I? such that y+(xO; T) has compact closure. Further- 
more, for s 2 1 there exists < E 8, 6 > 0 and a sequence k; --f 00 such that 

Otherwise, 

and hence 

6 I II T%jl for all i. 

lim jIT”“rll = 0 for all y E 8, 
k*w 

lim )( T”“(rjx)() = 0 for all x E I?, all 0 5 j < s, 
k-tm 

which contradicts the assumption that (ii) does not hold. 
If we define Q by 

then because T’ is nonexpansive for the part metric p, we find that 

p(Tjx,, , TJl) I a for all j 2 0. 

Lemma 2.3 now implies that 

)( Tjx,, - Tjrll I (2ea - eCa - l)(( Tjx,,ll for allj 2 0. 

Taking the construction of < into account we obtain, for some E > 0, 

E I ~~TSklx,,~( for all i. 

Because we know that yf(xO; T), and hence also y+(x,; T”), has compact closure, we may, by 
taking a subsequence, assume as well that there exists ys E K, llysll 2 E, such that 

Thus, case (iii) holds. 

lim ((Tskix, - ysII = 0. 
i-m 

It remains to prove (3.1) under the additional assumptions made. If not, there exists x0 E R, 
a real number M > 0 and an increasing sequence kj -+ a3 such that 

/TklxO(( I A4 for all i 2 0. 

From (i) it follows that v’(xO; T) is unbounded. Otherwise, T(yf(xO; T)) has compact closure 
and because of 

Y+(XO; 7’) c 1x01 U T(Y+(~,; T)) 

y’(x,,; T) has compact closure which contradicts (i). Because y+(x; T) is unbounded, there 
exists for each ki a smallest integer ji > ki such that 1) Tjix,jI > M. We obtain that 

IITic-‘x,(( I A4 and Tjlx, = T( Tj’-lx,). 

It follows by the additional assumption for T that (by taking a further subsequence) we can 
assume that lim Tj’x, exists in K - (0). This contradicts the assumption that (iii) does not hold 

i-m 

fors=l. n 
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In the next theorem we continue to work in a general Banach space, but we obtain a stronger 
limit set trichotomy by strengthening the assumptions on the self-mapping. 

THEOREM 3.1. Let K be a normal cone with nonempty interior in a Banach space (E, 11. I(). Let 
T be a continuous self-mapping of the space (K, )( * 11) with T(g) C k. Assume further that for 
some integer m r 1, T”’ is contractive for the part metric on J? and that Tm(K - {O)) c k. 

For all bounded orbits y’(x; T), x E K, assume that the closure is compact in the norm 
topology. Then the following trichotomy holds. 
Either: 

(i) y+(x; T) is unbounded in norm for all x E K - (0); or 
(ii) ,lilir )I Tkx(l = 0 for all x E K; or 

(iii) there exists x0 E k such that TxO = x,, and ~~_IITkx - x,11 = 0 for all x E K - (0). 

If case (i) holds and if T is compact in the norm topology, then in fact we have 

lim I)Tkx\l = co for all x E K - 10). (3.1) 
k-m 

Proof. Under our given assumptions, we can apply lemma 3.1 with r = s = m. It follows 
easily that cases (i) and (ii) of theorem 3.1 are implied by the corresponding cases of lemma 3.1. 
Thus, if we assume that cases (i) and (ii) of theorem 3.1 do not hold, then case (iii) of lemma 
3.1 holds, and there exists < E 8, q E K - {Ol and a sequence k; --* co such that, writing 
S = Tm, 

lim llskic - rJ( = 0. 
;-CC 

Since S(K - (0)) c R, we have x,, = Sy E k and 

lim 11 S kl +’ r - XJ = 0. 
i-m 

It is known, or one can easily derive from lemma 2.3, that the norm topology on R and the 
topology induced by the part metric p on R are the same. (Recall, we can assume the norm is 
monotone on K.) Thus we conclude that 

lim p(Ski+‘<, x0) = 0. 
i-m 

This shows that w(l; T”), taken in the metric space (k,p), is nonempty. We want to apply 
lemma 2.1 to (X, d) = (x,p). By using lemma 2.3 one can see that if A C J? is bounded in 
(J?,p), then A is bounded in the norm and the norm closure of A is contained in &; and if 
A C K and A is compact in (&, 11. (0, then A is compact in (Z?, p). It follows that if x E R and 
y+(x; T) is bounded in (&, p), then y+(x; T) bounded in the norm, has a compact norm closure 
contained in g and therefore has compact closure in (K,p). Thus all assumptions of lemma 
2.1 are satisfied. If we recall that Tm(K - (0)) c k and switch to the norm topology, (2.1) 
yields case (iii) of theorem 3.1. 

Note that in theorem 3.1, cases (i)-(iii) are mutually exclusive. Therefore, in theorem 3.1, the 
statement regarding (3.1) is implied by the corresponding statement of lemma 3.1. n 

Remark 3.1. In [22] Edelstein has given an example of an affine linear map T: f, 4 I2 such 
that T is an isometry with respect to the /,-norm and such that y+(O; T) is unbounded and 
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~(0; T) # 0. Thus the fact that y’(x; T) is unbounded and T is nonexpansive by no means 
insures, in general, that (3.1) is satisfied. 

Simple sufficient conditions for nonexpansiveness of a mapping T: k -+ k, for any cone K 
in a Banach space E with Z? # 0, are given by the following properties of monotonicity and 
subhomogeneity (sublinearity), respectively: 

(a) 

(b) 

x,y~kandx5yimplyTxrTy; 

x E k and 0 < t < 1 imply tTx I T(tx). 
(3.2) 

It is not hard to see that (a) and (b) imply that T is nonexpansive on I? with respect to the 
part metric and that, moreover, T is contractive if in addition (b) holds with strict inequality. 
A similar statement holds with respect to properties obtained from (a) and (b) by order-reversal, 
i.e.thatTx>Tyforx,yE&,xxyandthatt-’ TX 2 T(tx) for x E k, 0 < 6 < 1, respectively 
(cf. the argument given in corollary 2.2 of [6] with respect to Hilbert’s projective metric). With 
K instead of &, mappings T satisfying (a) as above and (b) with strict inequality are con- 
sidered in [l]. Mappings T satisfying (b) as above and (a) with strict inequality, i.e. x, y E K, 
x 5 y, x # y imply TX < Ty, are considered in [3]. There [3, theorem l] a convergence result 
for the iterates of T is obtained which is related to theorem 3.1 in some way, but employs rather 
different assumptions. In [5] so-called ascending operators are considered, which satisfy a 
stronger condition than (3.2) in that tx I y implies p(t)Tx 5 Ty for some continuous self- 
mapping v, of the unit interval with t < p(t) for all 0 < t < 1. There [5, theorem 41 a conver- 
gence result for the iterates of an ascending operator is obtained which is also related to 
theorem 3.1, without assuming, however, that bounded orbits have compact closure. From the 
above discussion it follows in particular that any bounded linear map L on a Banach space 
containing a normal cone K with k # 0 such that L(K) c K and L(k) c k is nonexpansive 
with respect to the part metric. Hence lemma 3.1 applies to such a mapping L. It can be seen 
from simple examples that all three cases in the lemma can occur. (For linear mappings see also 
remark 3.2 below.) Neither property (a) nor property (b), however, is necessary for a mapping 
to be nonexpansive for the part metric, as can be seen from simple examples. 

We now want to go more deeply into the case in which the map T’” is only nonexpansive with 
respect to the part metric p. Since the situation here is far more subtle than in the case of 
contractivity, we now suppose that the underlying Banach space E is finite-dimensional. 
Assume that K is a cone in E with k # 0, that T: k + k is nonexpansive for p and that T 
has no fixed point in k. Then it is proved [6, theorem 4.4, p. 1171 that for every x E k, Tkx 
approaches aK in the sense that, given any closed bounded set C C k and any x E k, there 
exists an integer m = m(x, C) such that Tkx $ C for k > m. It follows that w(x; T), the omega 
limit set in (k, p), is empty for all x E J?. (Of course, the omega limit set G(x; T) in (K, 11. /() 
may very well be nonempty for x E g.) 

If K is a cone in a finite-dimensional Banach space E, K is called polyhedral, if there exist 
continuous linear functionals ~j E E*, 1 5 j I m, such that 

K = {x E E: qj(x) 2 0 for 1 5 j I m). (3.3) 

Obviously K” c R" is polyhedral with m = n. If K is a polyhedral cone with nonempty interior 
&, it follows, as for &” in Section 2 (see [lo] for a proof), that there is an isometry 

v/: (R, P) + (fR", 11. I(,) of (k, p) into Rm with the sup normI/ * I(_,, where m is as in (3.3). If D 
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is a compact subset of R and T: D --t D is nonexpansive with respect to the part metric p, then 
it is proved in [IO] that for each x E D, there exists a minimal integer v = v(x) such that 

lim Tk”x = c, where TV5 = 5. 
k-m 

It is also proved that there exists an integer N = N(m) such that v(x) 5 N(m) for all x E D. An 
upper bound for N(m) is given in [lo] and a different argument in [ 131 implies a somewhat 
better result, namely, 

N(m) 5 2”(m!). 

However, this estimate is far from the best possible. It is known (see [lo, 141) that simple 
examples force N(m) r 2”, and it is conjectured in [IO] that N(m) = 2”. Unpublished joint 
work of Lyons and Nussbaum has proved the conjecture for m = 1,2 and 3. The case m = 3 
already seems nontrivial; the result for m = 2 has also been obtained in [ 121. 

With the aid of the above theorems we can now easily give the following limit set dichotomy. 

THEOREM 3.2. Let K be a polyhedral cone with nonempty interior in a finite-dimensional 
Banach space E. Assume that T: J? --f k is a continuous map and that there is an integer r 1 1 
such that T’ is nonexpansive with respect to the part metric p. Then exactly one of the following 
two possibilities holds: 

(i) T’ has a fixed point in R. For every x E k, there exists a minimal integer v = v(x) 2 1 
such that 

lim Tk”x = 5 E k and TV5 = 5. 
k-tm 

Furthermore, if K is defined by m continuous linear functionals as in (3.3), then 

v = v(x) 5 r2”(m!) for all x E k and 

v = v(x) 5 r2” forallxEiifm= 1,2and3; 

(ii) T’ does not have a fixed point in R. For every x E k and every closed, bounded set 
C c l? (in the norm topology) there exists an integer n(x, C) such that Tkx $ C for all 
k > n(x, C). 

Proof. By assumption, the map T’ is nonexpansive with respect to the part metric p, so 
theorem 3.2 follows in a straightforward way from the previously cited results (see theorem 4.4 
in [6, lo]). Details are left to the reader. n 

Remark 3.2. If A is a nonnegative matrix which has no zero rows, then for the induced linear 
mapping Lx = A * x (considering elements of R” as column vectors) it holds that L(K”) C K” 
and L(&“) C k”. It has been pointed out, that such a bounded linear map L, which possesses 
the properties of monotonicity (a) and subhomogeneity (b), is nonexpansive for the part metric 
on k. Thus mappings induced by permutation matrices provide an illustration of case (i) of 
theorem 3.2. If K = K2 c F?’ and TX = (x , , ix,) for x = (xi, x2) E R, we obtain an illustration 
of case (ii): for every x E R, lim Tkx = (x, , 0) $ J?. A slightly more sophisticated example for 

k-m 

K = K3 C R3 is provided by TX = (x2, x, , &x3), x = (x1, x2, x,) E K. For x E R one sees that 

lim TZkx = (x, , x2, 0) and lim TZk+’ x = (x2, Xl, 0). 
k+m k-m 
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In these examples it is not true that, for some m z 0, Tm(K - (0)) c k. For a more natural 
example which arises in the study of so-called DAD-theorems see [7, Section 41. As these 
examples suggest, the assumption in theorem 3.1 that Tm(K - (01) c k is not always a 
reasonable one. For polyhedral cones, theorem 3.2 provides a more flexible tool. 

Our next corollary follows immediately from theorem 3.2. 

COROLLARY 3.1. Let assumptions and notation be as in theorem 3.2. In addition assume that if 
Tkx = x for any k 2 1 and any x E k, then TX = x. Then either 

(i) T has a fixed point in K and for every x E k, 

lim Tkx = < exists 
k-+m 

and T< = r, or 

(ii) T has no fixed point in k and for every x E R and every closed, bounded set C c k 
there exists an integer n = n(x, C) such that 

Tkxe C for k > n(x, C). 

Our next theorem presents a limit set trichotomy in a situation where the self-mapping is only 
known to be nonexpansive for the part metric but the cone is polyhedral in finite dimensions. 

THEOREM 3.3. Let notation and assumptions be as in theorem 3.2. In addition assume that T 
extends continuously to a map of K to K and that T’(K - (0)) C k for some r 2 1. Then the 
following trichotomy holds. 
Either: 

(i) ,Jimr 11 Tkxj] = 00 for all x E K - (0); or 

(ii) ,lly I( Tkx(/ = 0 for all x E K; or 

(iii) T’ has a fixed point in & and the properties of case (i) of theorem 3.2 are satisfied. 

Proof. The theorem follows easily from theorem 3.2 and lemma 3.1. Assuming that T’ has 
no fixed point in & we show cases (i) and (ii) above. Because of T’(K - (0)) C k it suffices to 
show these cases for all x E k. If < E o(x; T) (where the limit set is taken in (K, I(. II)), then by 
case (ii) of theorem 3.2 and T’(K - (0)) C R, [ cannot be different from zero. Therefore in 
lemma 3.1 case (iii) is impossible. Since the map T is automatically compact, lemma 3.1 implies 
cases (i), (ii) of theorem 3.3. n 

4. CONDITIONS WHICH INSURE NONEXPANSIVENESS OR CONTRACTIVENESS 

The results of Section 3 are only useful if one has verifiable conditions which insure that a 
map T: K --t K is nonexpansive or contractive with respect to the part metric p, Some such 
conditions have been given already by (3.2). If S: R + R and T: l? --t k are both nonexpansive 
with respect to p, it is not hard to check that T 0 S and T + S are both contractive if T is 
contractive and S is nonexpansive. Thus one obtains further examples of nonexpansive and 
contractive maps. 
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If one restricts attention to K” c I?“, more structure is available. If x and y are vectors in R”, 
we can take x A y E R”, the minimum of x and y: 

xr\y=z, Zi = X; A Yi = IIliIl(Xi, yi), 15isn. 

Similarly, one can define x v Y E IR”, the maximum of x and y. If K = K” and T: I? --t I? and 
S: J? -+ R are nonexpansive with respect to p (contractive with respect to p), then one can 
easily see that 

f(x) = T(x) A S(x) and g(x) = T(x) v S(x) 

are both nonexpansive (contractive) with respect top. Interesting examples (see [6, p. 131; 10, 
remarks 8, 111) can be obtained by using this observation. 

In this section we wish to give necessary and sufficient conditions which insure that a locally 
Lipschitz map f: k” + k” is nonexpansive or contractive with respect to the part metric. We 
remind the reader that any locally Lipschitzian map g from an open subset D of R” to R” is 
Frechet differentiable almost everywhere. Conditions involving properties of differentiability 
have been used in [l, 21 to obtain order-theoretic properties of the mapping T (as, e.g. (3.2)). 
With the criteria given below, one can easily see that the theorems of Section 3 generalize results 
in 11, 21. 

LEMMA 4.1. Let D be an open, convex subset of R” and g: D -+ R” a locally Lipschitzian map 
such that 

(4.1) 

for almost all x E D. Then for all x, y E D we have 

II&) - g(r)/lcn 5 cllx - Yllm, (4.2) 

where /I * /(oo denotes the sup norm. If g is C’ and strict inequality holds in (4.1) for all x, then 
strict inequality holds in (4.2) for all x,y with x # y. 

Proof. If we consider elements of R” as column vectors, an n x n matrix A = (ati) induces 
a linear map L: R” + R” by 

L(x) = Ax. 

It is well known that the norm of L, IlLI\_, as a map from (R”, I( * 11-j into itself is given by 

If g: D --t R” is C’ and x, y E D and we write x, = (1 - t)x + tY for 0 5 t 5 1, we have 

-1 

k?(Y) - g(X) = ! -dg(x,) dt = 
‘1 

~ o dr ! 
g’(x,)(Y - x) dt. 

0 

This gives (using (4.1)) 

I&Y) - g(& 5 ^lIlg’(x,)ll~llY - &dt 5 ~11~ - ~11,. 
J 

(4.3) 
0 

If x # y and strict inequality holds in (4.1) for all x, we obtain strict inequality in (4.3). 
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It remains to consider the case that g is only locally Lipschitz. To prove (4.2) for a given 
x, y E D we can assume that x = 0. Let I/ = (z E R”: y * z = O], where y * z denotes the usual 
scalar product on R”. For 6 > 0, let U, = (Z E V: I(zj( < 6) and choose 6 > 0 so small that 
(z + ty: z E U,, 0 5 t I 1) = O6 is contained in D. We know that for almost all points w E OS, 
g’(w) exists. Since O6 is diffeomorphic to ((z, t): z E U,, 0 I t s 1) = W6, it follows that for 
almost all (z, t) E W, , g’(z + ty) exists. An application of Fubini’s theorem now implies that for 
almost all z E Ua, g’(z + ty) exists for almost all t E [0, 11. Select a sequence zj E V such that 
zi --t 0 and g’(zj + ty) exists for almost all t E [0, 11. Because g is Lipschitz, the map 
t + g’(zj + ty) is absolutely continuous and 

g(z’ + y) - g(zj) = 
1 

‘d 
-g(zj + ty) dt = 

o dt .i 

1 
g’(zj + ty)(y) dt. 

0 

It follows as in the C’ case that 

II&j + Y) - &NW 5 CllYllm. 
Taking the limit as j --t co gives the desired result. n 

If x, y E k” and 0 < t < 1, we use the notation x1-‘y’ to denote the vector whose ith com- 
ponent, 1 I i 5 n, is xi-‘yf. If G is a subset of K”, we say that G is logarithmically convex if, 
whenever x, y E G, it follows that x1-‘y’ E G for 0 < t < 1. 

THEOREM 4.1. Let G be an open, logarithmically convex subset of k” C fR” and T: G --t Z?” a 
locally Lipschitzian map. If 

(4.4) 

for almost all u E G and for 1 I i I n, then 

P(Tu, TV) 5 CP(U, u) for all U, v E G, (4.5) 

wherep denotes the part metric. If T is C’ and the strict inequality holds in (4.4) for all u E G, 
then the strict inequality holds in (4.5) for all u # u. 

Proof. As noted in Section 2, Q(x) = logx is an isometry of (Z?“, p) onto (R”, 11. (I) and 
@-l(y) = eY. (Here logx and e” are interpreted coordinate-wise.) It follows that if we define 

g(y) = log(T(eY)), g: log(G) = G + R”, 

theorem 4.1 will follow if we can prove that 

II&) - g(Y)Ilco 5 41x - Yllm for all x, y E 6 (4.6) 

with strict inequality holding under appropriate further assumptions. By lemma 4.1, it suffices 
to prove that 

(4.7) 
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However, writing u = ey, a calculation gives 

(4.8) 

so (4.7) follows from (4.4). The case of strict inequality also follows immediately. H 

Remark 4.1. If T: G --t I?” is order-preserving and locally Lipschitzian on an open set G C k” 

(so (a7;/hj)(u) 2 0 almost everywhere on G), (4.4) is satisfied for 1 5 i 5 n and almost all 
u E G iff 

T’(u)(u) I CTU for almost all u E G. (4.9) 

If, for almost all u E G, there exists 6 = 6, > 0 such that 

T(h) 2 tTu for 1 - 6, 5 t 5 1, (4.10) 

(4.9) is satisfied almost everywhere for c = 1. To see this, note that if T’u exists and 
1 - 6, s t < 1 we have 

l im  TM - T(m) Tu - tTu 

1-t 
= T’(u)(u) 5 lim 

1-t 
= Tu. 

t-1- t-+1- 

(See also lemma 1 in [ 11.) 

If A = (aij) is an n x n matrix, we shall write IA\ for the n x n matrix whose i, j entry is (aijl. 
It is known (see [25, Chapter 11) that the spectral radius of A is less than or equal to the spectral 
radius of IA I. Also, (4.4) is equivalent to 

1 T’(u)1 < CTU for almost all u E G. 

An n x n matrix B with nonnegative entries is called primitive if there exists an integer m 2 1 
such that Bm has all positive entries. If B is primitive, Bu 5 u for some u E K - (0) and 
Bu # U, it is known [25, Chapter l] that the spectral radius of B, r(B), is less than one. 

COROLLARY 4.1. Let T: k” + J?’ be a locally Lipschitzian map. Assume that for almost all 
u E l?” and for 1 5 i 5 n, 

(4.11) 

Then T is nonexpansive with respect to the part metric p. Furthermore, exactly one of the 
following two possibilities holds: 

(i) T has a fixed point in Z?“. For every x E Z?” there exists a minimal integer v = v(x) such 
that 

lim Tkvx = r exists and T”r = <. 
k-m 

Moreover, v = v(x) satisfies 

v(x) i 2”n! for all n and v(x) I 2” for 1 5 n I 3. 
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(ii) T has no fixed point in K”. For every closed bounded set C c K” and every x E I?“, 
there exists n(x, C) such that Tkx $ C for k > n(x, C). 

Proof. This is immediate from theorems 3.2 and 4.1. n 

COROLLARY 4.2. Let notation and assumptions be as in corollary 4.1. In addition, assume that 
if TM = u for some u E Z?‘, then T is C’ near U, 1 T’ul is primitive and the strict inequality 
holds in (4.11) for some i, 1 5 i 5 n. Then T has at most one fixed point in &“, and if T has 
a fixed point u E &“, 

lim Tkx = u for all x E K”. 
k-m 

Proof. If T has a fixed point u E k”, we know that 

[T’u[u I u, 

and inequality does not hold in (4.12). It follows from our earlier remark 4.1 that 

r(T’u) I r(jT’u() < 1, 

(4.12) 

where r(A) denotes the spectral radius of a matrix A. Thus there is an open neighborhood U 
of u such that 

lim Tkx = u for all x E U. 
k+m 

Since T is nonexpansive with respect top, lemma 2.2 implies lim Tkx = u for all x E g”. n 
k-m 

Corollary 4.2 is closely related to theorem 3.2 of [6]. 
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