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Introduction

This paper may be regarded as a sequel to our earlier paper [19], where we give an
elementary and self-contained proof of a very general form of the Hopf theorem on
order-preserving linear operators in partially ordered vector spaces (reproduced here
as Theorem 11).

Versions of this theorem and related ideas have been used by various authors to
study both linear and nonlinear integral equations (Thompson [41], Bushell[9, 11],
Potter [38, 39], Eveson[16, 17], Bushell and Okrasiriski[12, 13]); the convergence
properties of nonlinear maps (Nussbaum [32, 33]); so-called DAD theorems (Borwein,
Lewis and Nussbaum [8]) and in the proof of weak ergodic theorems (Fujimoto and
Krause[20], Nussbaum [34]).

The original motivation for this theorem was, however, its application to the study
of the spectral properties of a class of order-preserving linear maps. This class
includes matrices with strictly positive entries and integral operators with strictly
positive, continuous kernels (Birkhoff[5, 6, 7], Hopf[22, 23]).

These applications were further developed by a number of authors (Ostrowski [36],
Bauer[l], Bushell[10], Eveson[18]). Similar ideas were developed by Pokornyi[37],
Zabreiko, Krasnosel'skii and Pokornyi [42] and Krasnosel'skii and Sobolev[28]; an
exposition can be found in the recent book [27] by Krasnosel'skii, Lifshits and
Sobolev. These authors were apparently unaware of the earlier, directly relevant
work of Hopf, Birkhoff, Bauer and Ostrowski.

We shall show that these results follow by elementary arguments from a
sufficiently general version of the Birkhoff-Hopf theorem, such as that proved in
[19]. If L is a suitable operator, then L has a unique normalized positive eigenvector
v, the corresponding eigenvalue is algebraically simple and is equal to the spectral
radius r(L) of L and for any positive vector x, Lnx/\\Lnx\\ converges at a geometric
rate to v. We shall also give an exact formula for the so-called spectral clearance q(L)
of L defined by

q(L) = sup\-i-f-: Aea(L),A * r(L)\
\.r(L) J

which for these operators is always less than 1. The same formula gives an estimate
for the radius of the essential spectrum of L, re(L); in fact re(L) ^ q(L)r(L).
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Related results in evolving degrees of precision were obtained in [37], [42], [28]
and [27], but we believe that our methods, using the Birkhoff-Hopf theorem, provide
a more natural approach to sharper theorems.

1. Preliminary definitions and results

We begin with some definitions. These ideas are discussed at greater length in [19].

Definition 11. A non-empty subset 0 of a real vector space V is called a wedge if it
is closed under addition and non-negative scalar multiplication; that is, if for all x,
yeC and real numbers A, fi ^ 0, Ax+fiye C. If a wedge C has the additional property
that the only vector x for which both xeC and —xeC is the zero vector, then C is
called a cone (with vertex at 0). A cone C induces an order relation on V by the rule

x ^ y if y — xeC.

IfxeC and y e V, x is said to dominate y if there exist real numbers a and /? such that

ax ^ y ^ fix.

If x dominates y and y dominates x (equivalently, if ax ^ y ^ /?# for some a, /? > 0)
then x and y are called comparable, written x ~ y or, if we wish to emphasise the cone
inducing the order relation, x ~ c y.

If x dominates y and x 4= 0, define

m(y/x) = sup {a e U: ax ^ y),

(o(y/x) =M(y/x)-m(y/x),

and if x is comparable to y, let

M(x/y)
d(x, y) = log

m(x/y)'

The quantity w(y/x) is called the oscillation of y over x; d is called the Hilbert
projective metric. We make the additional convention that rf(0,0) = 0andw(0/0) = 0.

The cone C is called almost Archimedean if whenever xeC and yeV are such that
for all e > 0,

— ex ^ y ^ ex

it follows that y = 0. This is equivalent (see Jameson[25]) to the property that C
intersects every two-dimensional subspace F of V in a set whose relative closure in
F is a cone.

The reader may easily verify the following elementary properties of w and d, or
refer to [19] for the proofs of these and other results:

PROPOSITION 1 • 1. Let V be a real vector space partially ordered by a cone C.IfxeC,y,
zeV are such that x dominates both y and z, and A,/i,veU with v > 0, then

1. w(y/x)^0;
2. (o(Ax + /iy/i>x) = \fi\v-1w(y/x);
3. oj(y + z/x) ^ a)(y/x) + u)(z/x).

Comparability is an equivalence relation on C;ifx,y,z are comparable elements of G and
A,/ieU, A,/i > 0 then
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1. d(x,y)>0:
2. d(x,y) = d(y,x);
3. d(x,y)^d(x,z)+d(z,y);
4. d(Ax,/iy) =d(x,y).

If, in addition, C is almost Archimedean then
1. if x dominates y and o)(y/x) = 0 then x = Ay for some A e U;
2. if x is comparable to y and d(x, y) = 0 then x = Ay for some AeU, A > 0.

Definition 1*2. Let C be a cone in a real vector space V. For ueC, let Pu, the
component of G containing u, be defined by

Pu = {xe V: x is comparable to u}.

Clearly, Ku ••= Pu U {0} is a cone in F; if G is a closed cone in a Banach space, then Ku

is not in general closed. We leave to the reader the proof of the following simple
lemma:

LEMMA 1-1. Let G be a cone in a real vector space V. If ueC\{0}, let Pu be as in
Definition 1-2 and let Ku= PU(J {0}. Then for all x,yePu,x and y are comparable in both
Ku and C and

M(y/x;Ku) =M(y/x;G); m(y/x;Ku) = m(y/x;C).

In particular, we have

d(x,y;Ku) =d(x,y;C); w(y/x;Ku) = w(y/x;C).

If G is a cone in a real normed linear space E and ueC, we shall call the component
Pu normal if

sup{||a;||: 0 ̂  x ̂  u} < oo.

This is easily seen to be independent of the choice of u; that is, if Pu = Pv

(equivalently, if u ~ cv) then the sets {||a;||: 0 ̂  x ̂  u} and {||x||: 0 < x ̂  v} are either
both bounded or both unbounded.

The cone C is called normal if there exists a constant y such that for all x,yeC with
0 ^ x ̂  y we have \\x\\ ̂  y ||y \\. It may be shown that if C is a closed cone in a Banach
space and all its components are normal, then C itself is normal. These concepts are
discussed for general topological vector spaces in Schaefer[40, chapter 3, section 5].

A wedge C in E is called reproducing if

E={x-y:x,yeC}

or total if E is the closure of {x — y: x,yeG'}.

As usual, E* denotes the Banach space of continuous, real-valued linear maps
from E to IR. If C is a cone or wedge, its dual C* is defined by

C* = {heE*:h(x) ^ 0 for all xeC}.

It is known (see Krasnosel'skii [26, chapter 1] or Deimling[14, chapter 19]) that if C
is a closed cone in a Banach space then C is normal if and only if C* is reproducing,
and C is reproducing if and only if C* is normal.

Definition 1-3. If ueC, where C is a closed cone in a Banach space E, we define a
normed linear space Eu by

Eu = {xeE: there exists a ^ 0 with — au ^ x ̂  aw}.
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The norm on Eu is defined by

\x\u = inf {a ^ 0: —au^x^ era}.

If the component Pu is normal, it is not hard to see that there exists a constant M such
that for all xeEu, \\x\\ ^ M\x\u; thus, the inclusion map of Eu into E is continuous if
Pu is normal.

If C is a closed cone in a Banach space E,ueC and Pu is the component of u in C,
define

If d(x, y; C) = d(x,y) denotes Hilbert's projective metric, we know from Proposition
1-1 that (2M,rf) is a metric space. If Cis the cone in a Banach lattice, Birkhoff proved
that (E,u,d) is a complete metric space. More generally, if Pu is normal, it follows
easily from the work of A. C. Thompson [41] that (2<u,d) is complete. Furthermore,
the topology induced by d is the same as that induced by | • \u. (Thompson actually
used a closely related metric d. The reader should consult section 2 of [32] for more
details on this point.)

Closely related results were obtained by Bauer and Bear [3, 4], who seem to have
been unaware of Thompson's work. Finally, the following theorem (see lemma 1 in
[42]) was obtained by Zabreiko, Krasnosel'skii and Pokornyi, who apparently were
unaware of the work of Birkhoff, Thompson, Bauer and Bear.

LEMMA 1-2. Let C be a closed cone in a Banach space E and let d denote Hilbert's
projective metric on C. For us C\{0}, Id Pu and Eu be as in Definitions 12 and 13. Let

Then the following conditions are equivalent:
1. (£u,d) is a complete metric space.
2. (Eu, | • \u) is a Banach space.
3. Pu is normal, that is sup{||z||: 0 ^ z < u} < oo.

I t follows from this that if C is normal, then | • \u dominates || • || in the subspace Eu,
and |-|K induces the same topology as d on the component Pu<=zEu. Thus, d
dominates || • || on Pu. I t is useful to have an explicit estimate for || • || in terms of d,
since we shall be proving d convergence of a sequence of iterates and wish to interpret
this in terms of || • || convergence. There are a number of estimates in the literature;
the following is from [35].

LEMMA 1-3. Let C be a normal cone in a normed linear space X, so there exists a
constant y > 0 such that for all x,yeX with 0 ^ x ^ y,

\\x\\^y\\y\\.

Then for any two comparable vectors x,yeC with \\x\\ = \\y\\ = 1,

\\x-y\\ sj 2ymin{m(x/y),m(y/x)}(ex.Tp(d(x,y))-l) ^ 2y(exp(d(x,y))-l).

We now give some preparatory definitions and the statement of the Birkhoff-Hopf
Theorem itself. This result is proved in [19], which also includes some notes on the
history of the theorem and many further references to the literature.

Definition 1-4. Let C be a cone in a real vector space V, D be a cone in a real vector
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space W and L: V-> W be a linear map with L(C) sZ). Define non-negative real
numbers N(L;G,D), lc(L;C,D), A(L;C,D) and x(L;C,D) by

N(L;C,D) = inf{/i ^ 0: w(Ly/Lx;D) ^ fuu(y/x;C)

for all xe C, ye V such that x dominates y]

k(L;C,D) = inf{A ^ 0 : d(Lx,Ly;D) < Ad(x,?/;<7) for all x ^ e C such that x ~ c 2 / } ;

A(L;C,D) = sup{d(Lx,Ly;D): x,yeC andLx ~ DLy);

In the definition of #, we adopt the convention that M{Ly/Lx)/m{Ly/Lx) = 1 if both
M(Ly/Lx) and m(Ly/Lx) are zero.

N(L;C,D) is called the Hopf oscillation ratio, k(L;C,D) is called the Birkhoff
contraction ratio and A(L;C,D) is called the projective diameter.

THEOREM 1-1 (The Birkhoff-Hopf Theorem). With the notation and hypotheses of
Definition 1-4, suppose that A(L) < oo. T%e?& we

//, in addition, C is almost Archimedean then there is a component Pu of D such that
(C)£PuU{0}.
//, on the other hand, A(L) = oo, then

k(L;C,D)=N(L;C,D) = 1; ^(i;C,D) = oo.

Definition 1-5. If C is a closed cone in a Banach space X and S £ C*, then <S is called
sufficient for C (see [42]) if

C = {xeX: h(x) ^ 0 for all heS}.

The Hahn-Banach theorem implies that C* is sufficient for C. Obviously, viewing C
as a subset of X** by the usual embedding, C is a sufficient set for C*.

The following simple lemma is a more careful statement of formulae in [42]. where
equations (13) and (18) as stated involve possible division by zero.

LEMMA 1-4. Let C be a closed cone in a Banach space X and let S £ C* be a sufficient
set for C.

Given xeC\{0} and yeX, let

R(y/x) = -©4: he Sand h(x) 4= ol.
[h(x) J

Then x dominates y if and only if R(y/x) is bounded and for all heS, h(x) = 0 implies
h(y) = 0, in which case

M(y/x;C) = sup R(y/x); m(y/x;C) = intR(y/x).

IfyeC, then y is comparable to x if and only ifR(y/x) is bounded above and is bounded
away from zero, that is that
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for some a, /? > 0, and for all heS, h(x) = 0 if and only if h(y) = 0, in which case

exp (d(x, y)) = sup{ •—-: g,heS,g(y) h(x) =4= 0 J-
[g(y) n(x) J

Proof. Suppose first that xeC\{0} dominates yeX, so m(y/x) and M(y/x) are
defined and for any e > 0,

(m(y/x)-e)x^y^ (M(y/x) + e)x.

Then, for any positive linear functional /,

(m(y/x)-e)f(x) ^f(y) ^ (M(y/x) + e)f(x).

It follows that if f(x) = 0 then f(y) = 0 and that if f(x) =j= 0 then m(y/x) — e <
f(y)/f(x)^M(y/x) + e. Thus,

m(y/x) ^ inf R(y/x) ^ supR(y/x) ^M(y/x).

Now suppose that for all feS, f(x) = 0 implies that f(y) = 0 and that R(y/x) is
bounded. Let a = inf R(y/x) and /? = swpR(y/x). We shall show that ax ^ y ^ fix.
L e t / e $ ; we have that either f(x) —f(y) = 0 or f(x) #= 0 and a ^f(y)/f(x). In either
case, f(y — ax) ^ 0. Since <S is sufficient for C, this implies that y — ax ^ 0. A similar
argument shows that fix — y^0. Thus, a; dominates y and

infR(y/x) ^ m(y/x) ^M(y/x) ^ supi?(?//z).

Combining these results shows that x dominates y if and only if for all fe S, f(x) =
0 implies f(y) = 0, and the set R(y/x) is bounded, and that in this case m(y/x) and
M{y/x) are respectively the infimum and supremum of R{y/x). The remaining
assertions in the lemma are simple consequences of this.

If X and Y are Banach spaces and A : X^> Y, recall that the adjoint A*: Y*^-X*
of A is defined by A *h = ho A. It is immediate that if C and D are cones in X and Y,
respectively, and A(C) ^ D then A*(D*) £ C*.

With the aid of Lemma 1-4, it is easy to show that A(A ; C,D) is equal to A(A*;D*,
C*); this is a simple corollary of the following representation of the projective
diameter of a bounded linear operator.

LEMMA 1-5. Let X and Y be Banach spaces, C and D be closed, total cones in X and Y
respectively and Sbea sufficient subset ofD*. Assume that A : C^>D is a bounded linear
operator, not identically zero, with A(C) £Z>, and A(A) < oo. Then

&(A;C,D) = inf {M>0:f(Ax) g(Ay) ^ eMf(Ay)g(Ax)for all x,yeC,f,geS}.

Proof. We shall show that A.(A ; C,D) ^ M if and only if for all x,yeC and for all

f(Ax)g(Ay)^eMf(Ay)g(Ax). (1)

Suppose A(A) ^M. Then (Theorem 11) for all x,yeC such that Ax, Ay 4= 0, Ax is
comparable to Ay in D and d(Ax,Ay) ^M. By Lemma 1-4, if feS then/(.4a;) = 0 if
and only if f(Ay) = 0 and for all fgeS such that f(Ay) g (Ax) # 0,

f(Ax)g(Ay) <

f(Ay)g(Ax) ^ '
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Thus, (1) is true for all x,yeC with Ax 4= 0 and Ay 4= 0 and for a.l\f,geS such that
f(Ay)g(Ax) 4= 0. We now claim that (1) holds for all x,yeC and for all fgeS. If Ax
and Ay are non-zero but f(Ay) g(Ax) = 0, then either f(Ay) = 0 and hence g(Ax) = 0,
or g(Ay) = 0 and hence f(Ay) = 0; in either case, (1) holds because both sides are zero.
Finally, if Ax = 0 or Ay = 0 then both sides of (1) are identically zero, so it is also true
in this case.

Now suppose that (1) holds for all x,yeC and for all / ,geS, and that Ax, Ay 4= 0.
By symmetry in the roles of x and y, we have

e~Mf(Ay)g(Ax) ^f(Ax)g(Ay) ^ eMf(Ay)g(Ax),

again for all x,yeC and for all f,geS. Choosing geS such that g(Ay) > 0 (this is
possible because 8 is sufficient), we see that \i f(Ay) = 0 then f(Ax) — 0. A similar
argument shows that if/(^4a;) = 0 then f(Ay) = 0, and (1) shows that iff(Ay) g(Ax) 4=
0 then

f(Ax)g(Ay) <cM

f(Ay)g(Ax) ^

It follows from this inequality and Lemma 1-4 that Ax is comparable to Ay and
d(Ax,Ay) ^M.

COROLLARY 1-1. With the same hypotheses and notation as Lemma 15, A(A ; G,D) =
A(A*;D*,D*).

Proof. By Lemma 1-5 applied to the map A: X^-Y and using as the sufficient set
8 the whole cone D*.

A(A ;C,D) = ml{M > 0: f(Ax) g(Ay) < eMf(Ay) g(Ax) for all x,ye CJ, g eD*}.

However, by applying Lemma 1 5 to the map A *: Y* -> X* and using as the sufficient
set S the image of C in X** under the canonical embedding, we see that

A(A*) = inf{ilf > 0: <f>(A*f) ft(A*g) ̂  eM<j)(A*g)ijr(A*f) for a,\\f,geD*,<?>,i/reS}

= mi{M >0: (A*f)(x)(A*g)(y) ^ eM(A*g)(x)(A*f)(y)iov B\\f,geD*,x,ysC)

= inf{M > 0: f(Ax)g(Ay) ^ eMg(Ax)f(Ay) for a,l\f,geD*,x,yeC},

so A(A) = A(̂ 4*), as claimed.

2. Applications to spectral theory

Before stating our first theorem, we recall a variant of the contraction mapping
principle. Suppose that (2,p) is a complete metric space and tha t / : £-»£ is a map.
Assume that there is an integer m ^ 1 and a constant c < 1 with

for all x,ye"L. Then / has a unique fixed point xoe£. Moreover, if x e S and j is a
positive integer with j = pm + r for integers p ^ 0 , 0 < r < m then

so P(x) converges to x0 at a geometric rate.
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THEOREM 2-1. Let G be a closed cone in a Banach space E and letL: E^>E be a linear
map such that L(C) c C. Assume that there exists ueC\{0} such that

1. Pu, the component of C containing u, is normal;
2. Lu is comparable to u in C.

Write Ku = Pu U {0} and assume that there exists an integer m ^ 1 such that

snV{d(Lmx,Lmy;C): x.yePJ = A{Lm;Ku,Ku) < oo.

Then L has a unique eigenvector vePu with \\v\\ = 1 and Lv = Xv for some A > 0, and
for any xePu

limd(Ux,v;C) = 0.

In fact, if we define

so c < 1, and if j = mp + r, where p ^ 0 is an integer and 0 ^ r < m, then

d(U(x), v) < -^—d(Lr(x),Lm+r(x)). (2)
1 —c

If, in addition, the cone C is normal, so there exists a constant y > 0 such that 0 ^ x ^ y
in C implies \\x\\ ^ y\\y\\, then

Ux
r — V\\ISX\\

(3)

Proof. Ku is a cone, and our hypotheses imply that L(PU) £ Pu and L(KU) £ Ku. By
using Lemma 1-1, we see that

suv{d(Lmx,Lmy;C): x,yePJ = A(Lm;Ku,Ku).

Theorem 1-1 now implies that

d(Lmx,Lmy;Ku) ^ cd{x,y;Ku).

(By virtue of Lemma 1-1, if £,nePu, we may write d(E,,v;Ku) and d(£,v,C)
interchangeably.) Let

and define / : Su -*• £„ by

Linearity implies that

so we obtain that
d(fm(x),fm(y);C)^cd(x,y;C)

for all x,ye*Lu. Because Pu is normal, Lemma 1-2 implies that (Eu,d) is a complete
metric space. The existence and uniqueness of v and the estimate for d convergence
now follow from the contraction mapping principle in the form stated above, since
the fixed points of/are exactly the normalized eigenvalues of L. The estimate for
norm convergence follows from Lemma l-3.
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This theorem implies that L has a unique, normalized eigenvector v in Pu.

However, even in the matrix case, the assumptions made are not strong enough to
imply that the eigenvalue A corresponding to v is equal to the spectral radius of L
(consider a diagonal matrix with distinct positive entries on the diagonal). We now
begin to place stronger assumptions on L, so as to force A = r(L) and to obtain
information about the spectral clearance q(L) of L.

THEOREM 2-2. Let C be a closed, normal cone in a Banach space E, so there exists
a constant y such that 0 ^ x ^y in C implies that ||a;|| ^ y\\y\\, and let L: E^-E be a
linear map such that L(C) £ C. Assume that there exists an integer m > 1 such that
A(Lm; C, C) < oo and Lm+1 \ C is not identically zero. Then L has a unique normalized
eigenvector v in C with Lv = Av for some A > 0. Moreover, if c is defined by

then for every xsC such that Lmx #= 0 (in particular for all xeLm(C)\{0}) and for every
positive integer j = mp + r (p^O an integer, 0 < r < m), estimates (2) and (3) in
Theorem 2-1 hold.

Proof. Theorem 1-1 implies that all nonzero elements of Lm(G) are comparable.
Since we assume that Lm \ G is not identically zero, there exists £eC with Lm+1E, #= 0.
Because u — LmE, and x = Lm(LE,) = Lu are comparable, u and Lu are comparable
in C. Define Pu to be the component of C containing u and Ku = Pu U {0}. It is easy
to see, using Lemma 1-1, that

A(Lm;Ku,Ku)^A(Lm;C,C)<co. (4)

Theorem 2-1 now implies thatL has a unique normalized eigenvalue v in Pu and since
Lm(C) £ Ku, any eigenvector of L in C with a positive eigenvalue must be in Pu. Thus,
v is the only normalized eigenvector of L in C with a positive eigenvalue.

Estimates (2) and (3) in Theorem 2-1 now follow immediately from Theorem 21
and equation (4).

The earliest version of this central result is due to Birkhoff [5, theorem 3]. In our
terminology, Birkhoff s theorem states that a strongly positive linear map L of finite
projective diameter on a Banach lattice has a unique normalized positive eigenvector
v, and that if x is any non-zero, non-negative vector then Lnx/\\Lnx\\ converges
geometrically to v. Hopf[22, 23] established a similar result for integral operators
with non-negative kernels satisfying a cross-ratio condition equivalent to the
operator having finite projective diameter (this condition is disussed in [19]). The
estimates for the speed of convergence in both of these papers are weaker than those
presented here. The existence and uniqueness of a positive eigenvector for an
operator of finite projective diameter in a normal cone is obtained in [42], but the
authors do not discuss the convergence of the sequence of iterates. Bushell[9]
establishes the existence and uniqueness of positive eigenvectors of operators of finite
projective diameter in a number of special cases, including Un, cones of positive
definite matrices and cones of non-negative continuous functions. More recently,
theorem 2-5-1 in [18] is a very similar result, but has somewhat stronger hypotheses
and weaker convergence estimates.

Theorem 2-2 immediately yields a result about positive eigenvectors of the Banach
space adjoint L* of L. We label this result a proposition since we shall soon be able
to give a much sharper version.
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PROPOSITION 2 1 . Let C be a closed, normal, reproducing cone in a Banach space E.
Let L.E^Ebea bounded linear operator such that L(C) £ C. Assume there exists an
integer TO ̂  1 such that A(Lm; C, C) < oo and Lm+1 =f= 0. Then L has a unique eigenvector
veC with \\v\\ = 1, L* has a unique eigenvector heC* with \\h\\ = 1, h(v) > 0 and the
corresponding eigenvalues are the same, so Av = Av and A*h = Ah for some A > 0.
Moreover, for any xeC with Lm+1x 4= 0 and for every fe C* with (L*)m+1f =t= 0,

= 0.
I I II I Jn.\\ II ' I I II / I V \J *' II

Proof. Our previous remarks about cones imply that C* is reproducing and normal.
We may therefore apply Corollary 11 to A = Lm to show that

A((L*)m; C*, C*) = A(Lm; C, C) < oo.

Because Lm #= 0, we must have {L*)m+1 =j= 0 and because C and C* are reproducing,
it follows that Lm \ C and (L*)m+11C* are not identically zero.

If we apply Theorem 2-2 to L and L*, we conclude that L has a unique normalized
eigenvector veC with Av = Av and A > 0, and that L* has a unique normalized
eigenvector heC* with L*h = fih and fi > 0. Furthermore, the stated convergence
results hold. It remains only to show that A = ji and that h(v) > 0.

Suppose h(v) = 0. We know that for all xeC, v dominates Lmx, so h(Lmx) = 0 for
all xe C. Since C is reproducing in E, we have h(Lmz) = 0 for all zeE and hence (L*)m

h = 0, which is a contradiction.
The fact that A = fi now follows from

(L*h) (v) = /ih(v); (L*h) (v) = h(Lv) = Ah(v).

Remark 2-1. Explicit estimates for the speed of convergence ofL^x and (L*Yfm&y
of course be obtained from Theorem 2-2. For the sake of brevity we have omitted
these estimates.

If X is a real Banach space, we shall denote by X the complexification of X;
formally,

X = {x + iy: x,yeX,i = \/ — 1}.

If z = x + iyeX, the norm of z is defined by

||z|| = sup{||(cos<9):t+(sin6»)2/||: 0 < 6 ^ 2TT}.
Of course, X is a complex Banach space. If L: X->X is a bounded linear operator, L
defines a complex linear operator L on X by

L{x + iy) = Lx + iLy.

With this definition L is a bounded linear operator and one may show that ||Z|| =
\\L\\. If cr(L) denotes the spectrum of L, we define a(L) = cr(L). We also define r(L),
the spectral radius of L, in the usual way:

r(L) = snp{\z\:zecr{L)}= lim \\Ln\\1/n = lim \\Ln\\1/n.

We wish to prove that A = r(L) in Proposition 2-1 and give a variety of formulae for
the spectral clearance q(L) of L, defined by

(5)
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We shall also need a lemma which is part of the ' folklore' of elementary spectral
theory. The following result was communicated to R.D.N. several years ago by
Larry Corwin, a respected former colleague.

LEMMA 2-1. Let X and Y be Banach spaces and S:X->Y and T: Y->Xbe linear maps
(not necessarily continuous). Assume that ST: Y-> Yand TS: X->X are bounded. Then
<r(8T)\{0] = v(T8)\{0}.

For z 4= 0, zIx — TS is invertible if and only if zIY — 8T is invertible, and

y1 = z~lIy + z~*S(zIx - TS)-1 T

(zIx-TS)~x = z-Ux + z^TizIy-ST^S

where Ix denotes the identity map on X and IY denotes the identity map on Y.

Proof. It suffices to prove the equations above. By symmetry, we may restrict
attention to the first equation, so we assume that zIx — TS is a bijection on X and
that 2 4= 0. To verify the first equation, it suffices to show that

Iy = (zly-ST) [z~lIy + z-xS{zIx - TS)-1 T] = [z'Hy + z^Stf* - TS)'1 T] (zly-ST).

However, the above equation follows by simple algebraic manipulation, such as the
observation that

(zly-STKz^S) = (z-lS)(zIx-TS).

Lemma 21 of course implies that r(ST) = r(TS). We shall use it in the following
situation. Let X and Fbe Banach spaces with F c J and let T = i, the inclusion map
of Y into X, which is not assumed to be continuous. We suppose that S is a linear map
from X to Y and that L1 = TS and Aj = ST are continuous. Lemma 2-1 then implies
that cr(A1)\{0} and cr(2y1)\{0} are equal and that r(Aj) = r(Lx).

In order to state our next theorem, we also need the idea of the essential spectrum
ae(L) and the radius of the essential spectrum re(L), where L.X-^-X is a bounded
linear map of a complex Banach space X to itself. We shall only recall a few facts here
and refer the reader to [29] and [30] for more details. The set o~e(L) is a closed subset
of a(L) and z—L is of Fredholm index zero for all z$ae(L). There are several possible
definitions of o~e(L) and these are, in general, inequivalent. If we use F. E. Browder's
definition (see [29, 30]) and if / is an analytic map defined on some open
neighbourhood of cr(L), then

f(<re(L)) = {/(z): zeae(L)} = ae(f(L)).

If we define a seminorm pK on the space of bounded linear maps L: X^-X by

pK(L) = inf{||L+jB||: B: X^-X is a compact linear map}

then we have

rlL) = sup{|2|: zeaAL)) = lim (p^U))1" = in{(pK(U))l»

and this formula is valid for all definitions of the essential spectrum. For any fixed
e > 0, there are only finitely many zear(L) with \z\ ^ re(L) + e and for each such z, z
is an eigenvalue of finite algebraic multiplicity and z—L is of Fredholm index zero.
(Recall that if 2 6 a(L) then the dimension of the subspace

{xeX: (z-Lfx = 0 for some k ̂  1}
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is called the algebraic multiplicity of z and that z is called an algebraically simple
eigenvalue of L if its algebraic multiplicity is equal to one.)

THEOREM 2-3. Let C be a closed, normal, reproducing cone in a Banach space E and
letL: E^-Ebea bounded linear operator withL(C) £ C such that for some integer m ^ 1,
A(Lm; C, C) < oo and Lm+1 4= 0.

Then the operator L has a unique normalised eigenvector veC and the operator L* has
a unique normalised eigenvector heC*. The corresponding eigenvalue in both cases is
r(L), the spectral radius ofL, which is an algebraically simple eigenvalue ofL. Moreover,
for every xeC with Lmx 4= 0 and every feC* with (L*)m (/) 4= 0,

lim (L*Yf -h = 0.
\\{L*Yf\\

If a seminorm Nv is defined on Ev by

Nv(x) = o)(x/v;C)

and if for any continuous linear operator A: EV->EV we define NV(A) by

NV(A) = inf{/* Js 0: Nv(Ax) ^ /iNv(x) for all xeEJ,

then we have the following estimate for the spectral clearance ofL defined in equation (5):

q(L) = r(L)"1 lim {N^U))1^ = r( i)"1 inf (Nv(U))1/} *S inf (Niti))1". (6)

Finally, ^ ^ q(L) < 1. (7)
r(L)

Proof. Proposition 2-1 already establishes the existence of unique normalized
eigenvectors veC and heC* for L andL* respectively, with the same eigenvalue A,
such that h(v) > 0.

Let A denote Lasa map of Ev into Ev. Since L(C) ̂  C and Lv = Av, it is easy to see
that A is a bounded linear map of norm A. If j is any integer withj ^ m, let Lx= IJ
and Ax = Â . Note that L^E) £ Ev andLj \EV = Aj. If 8 denotes L1 as a map from E
to Ev and T denotes the inclusion of Ev in E then Lx = TS and A1 = ST and Lemma
2-1 implies that

<r(L>)\{0} = criL^O} = crfAjUO} = <r(A )̂\{0}.

On the other hand, the spectral mapping theorem implies that

cr[lJ) = (<r(L)Y \ a(A') = (o-(A)Y

so we obtain that for all j ^ m,

(<r(L)Y\{0) = (<r(A)Y\{0).

This implies that r(L) = r(A) and q(L) = q(A).
Because heO*, it is easy to show that h defines a continuous linear functional on

E,,. If we define

we note that A(W )̂ ̂  Wv, for if h(x) = 0 for some xeEv then

h{Ax) = h(Lx) = (L*h)(x) = Ah(x) = 0
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so AxeWv. If (v} denotes the linear span of v, then

so standard spectral theory results imply that

We now claim that the restriction of the seminorm Nv to Wv gives a norm on Wv

which is equivalent to |-|,, on Wv. In fact, for fixed xeWv define a0 = m(x/v;C) and
j30=M(x/v;C), so

ocov ^x ^fiov

and aoh(v)^O^0oh(v).

Since h(v) > 0, we have a0 ̂  0 ̂  /?0 and the definition of \x\v gives

\x\v = max{/?0, - a 0 } ^ /?0-a0 = Nv{x) < 2|a;|w.
Thus, if we restrict attention to Wv, we can use the norm Nv and the formula for

the spectral radius gives

r(A\Wv) = lim (Nv(U))Vi = inf (NV(U)Y".

We are also using here the facts that every element x of Ev is of the form x = y + ocv
for some ye Wv and that w(y + av/v) = w(y/v), from which one obtains that

NV{U) = inf{/t ^ 0: w(Uy/v) < ^(^//u) for all ye PFJ.

We must relate NV(U) to N{V). For any continuous linear map A : X^X such that
A(C) £ C, define iV;(^) by

N'V(A) = inf{/* > 0: 0)(Ay/Av) < fiu)(y/v) for all ?/eC such that v dominates y}.

If /* = iV (̂yl) and yeEv, there exists a > 0 with —av^y^ ocv. I t follows that
y + aveC and

This proves that

iV;(yl) = inf{/t ^ 0 : w{Ay/Av) ^ fio>(y/v) for all

and recalling that 4̂u = Ajv if ̂ 4 = I), we obtain

By the definition ofiV(j4) we certainly havelV^(^l) ^iV(yl), so we conclude that

supftj: zea(A\ Wv)\ = A-HimiN^V))1" = A"1 inf (N^L3))1" < 1.
l A J ^oo }>i

In particular, this proves that q(A) < 1 and that A is the spectral radius of A and
hence of L. Since <?(A) = q(L), we have proved (6).

If W = {xeE: h(x) = 0}, note that L(W) £ W and U(W) s Wv for all j ^ m. IfL\ W
denotes the restriction of L to W, so L \ W: W-> W, and r(L \ W) denotes the spectral
radius of L\ W, the same reasoning used before for L: E^-E shows that for j ^ m,

(*(L\W)j>\{0} = (a(A\Wv)Y\{0}.
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These equations imply that r(L | W) = r(A | Wv).
We already know that r(A | Wv) < A = r(L), so (A— L) \W is a, bijection on W. Now

suppose that xeE, the complexification of E, and (A— L)} (x) = 0 for some j ^ 1. We
can write x = w + av where weW, the complexification of W, and a e C . It follows
that 0 = (A— L)}w and since (A—L) \ W is one-one, w = 0 and x = av. Thus, A has
algebraic multiplicity 1.

I t remains to prove (7). If j ^ m, define A : X^-X by

^ v .
h(v)

Because A differs from & by a compact linear map, we have

re(A) = rt(V).

The formula for essential spectral radius implies that

r.(V) = (re(L)y.

Notice that A(X) £ Wv and A\WV = A}\ Wv. It follows from Lemma 2-1 that

<re(^)\{0} £ cr(A)\{0} = <r((A\WvY)\{0} = (a(A\Wv))\{0}.

We have already seen that <r(A\ Wv) is contained inside a ball of radius q(L)r(L), so
we conclude that ^ ^ ^ ^ ^ {q(L)r(L))j

which yields equation (7).

Remark 2-2. Assume that C is a closed total cone in a Banach space E and that
L: E->E is a bounded linear operator with L(C) £ C and re(L) < r(L). Then it is
proved in [31] that there exists veC, \\v\\ = 1, and heC*, \\h\\ = 1, with Lv = rv,
L*h = rh and r = r(L). Note that no assumption of normality is needed. If, in addition,
there exists an integer m ^ 1 with A(Lm;C,C) < oo then v is the only normalized
eigenvector in C with a corresponding positive eigenvalue and similarly for h.
Furthermore, if xeC and Lmx 4= 0 then

lim w(Ux/v) = 0; lim d{Ux, v) = 0

with a similar statement for h. Once one has existence of h and v, the proofs of the
other results mentioned do not require normality and follow with the aid of Theorem
11 .

I t is less clear what should be the analogue of (6) in this generality. If aea(L) and
re(L) < \a\, then it is known that a is an eigenvalue of L. A simple argument shows
that

^ i < -lim (N^Lf))1'1 = Uni(Nv{lJ))lli ?S inf

Using this fact we conclude that

q(L) = r(L) U

Returning now to the case of a closed, normal, reproducing cone in a Banach
space, Equation (6) may be sharpened. We shall prove that

r(L)'1 inf (NV(D))1" = mf{N(D))xij (8)
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and also establish a variety of closely related results. Note that (6) and (8) apply even
though L may not be compact and cr(L) may contain elements which are not
eigenvalues.

We begin by recalling a classical calculus lemma which is often used in deriving the
formula for the spectral radius of a linear operator.

LEMMA 2-2. Let (cm)m>1 be a sequence of non-negative real numbers ivith cm+n < cmcn

for all m,n ^ 1. Then it follows that Iimm_00c^m exists and that

limc^m = inf c^m.

With the aid of Theorem 1-1, we may easily show the relevance of this lemma to
proving (8).

PROPOSITION 2-2. Let C;- be a cone in a real vector space Ej for 1 ^ j> ^ 3. Suppose
that A: EX->E2 is a linear map with ^(Cj) <= C2 and B:E2-+E3 is a linear map with
B(C2) £ C3. Let k(A) = k{A ; C,, C2), N(A) = N(A ; Clt C2) etc. Then we have

k(BA) = N(BA )^k(A) k(B) = N(A) N(B). (9)

If El = E2 and C1 = C2, so A : C1->C1, we also have

lim (fc(^))iw = inf (k{Aj))1/j = lim (JV(4'))1W = inf (N^))1". (10)
;'-oo j^l j-^co }»l

If A(AP) < oo for some p ^ 1, then l im^^ A(̂ 4;) = 0 and

lim (k(A}))1/j = lim

Proof. Theorem 1-1 implies that for L = A, B or BA we have k(L) = N(L). Thus, to
prove (9) it suffices to prove that k(BA) < k(A)k(B).

To see this, let x,yeC1 with x comparable to y. so Ax and Ay are comparable in
C2 and by definition of k(A), d(Ax,Ay) < k(A)d(x, y). Now, B(Ax) and B(Ay) are
comparable in C2 and

d(B(Ax),B{Ay)) < k(B)d(Ax,Ay) < k(A)k(B)d(x,y).

If Ex = ^ and (7X = C2, applications of (9) imply that for all positive integers TO and
n we have

k(Am+n) ^ k(Am) k{An).

If we define cm = k(Am) and apply Lemma 2-2 and Theorem 1-1, we obtain (10).
If A(AP) < co for some p ~$. 1, we have A;(̂ 4P) = cp < 1 and

0 < lim k(Apm) < lim ĉ 1 = 0.

It follows from our previous remarks and Theorem 11 that for j ^ p,

k(A}) = tanhfA(^) < oo ; lim A(Aj) = 0.

These two equations imply that

limk(Ai) = 0.
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It is now a simple calculus exercise, which we leave to the reader, to prove that

lim (k{A}))lli = lim [tanh (iA(^43))]1/J' = lim (A(A}))1/}.

Remark 2-3. This proposition, if rewritten in terms of ^(i) , is a generalization of
Theorem 2 in [28]. From our point of view it is a simple consequence of Theorem 1-1,
but the authors of [28] were unaware of this theorem.

In order to prove Equation (8) we shall need some variants of k(L) and N(L).

Definition 2-1. Let C be a cone in a real vector space E and L:E^~Ebea, linear map
with L(C) £ C. Assume there exists veC\{0} with Lv = Av. Define Ev by

Ev = {xeE: — av ^ x ^av for some a > 0}.

Now for R > 0 define numbers kv(L), kvR(L), NV(L), N'V(L) and N'vR(L) as follows:

kv(L) = inf {/i > 0: d(Lx,Lv) ^ /id(x,v) for all xeC with x ~ v),

kv R(L) = \n£{/i > 0: d(Lx,Lv) ^ fid(x,v) for all xeC with £ ~ v and d(x,v) ^R},

NV(L) = mi{fi > 0: w(Lx/v) s$ JU,OJ(X/V) for all xeEJ,

N'V(L) = inf {/t > 0: w(Lx/Lv) ^ /<6j(a;, u) for all xe C such that v dominates x},

N'vR(L) = inf{/4 > 0: w(Lx/Lv) s$ /iu>(x,v) for all xeC

such that t; dominates x and o>(x/v) ^ i?}.

LEMMA 2-3. With the notation and hypotheses of Definition 2-1, we Aave

N'V(L) = N'V<R{L) ^ kViR{L) ^ eRN'v{L) (11)

and A-1NV(L)=N'V(L). (12)

Proof. The argument given in the proof of Theorem 2-3 proves (12). To prove (11)
we can assume that A = 1, since all the quantities in (11) are unchanged if L is
replaced by A^L.

I t is immediate that for any R > 0, N'v R(L) ^N'V(L). To prove the reverse
inequality, let R > 0 and notice that for any x dominated by v there exists t > 0 such
that co(tx/v) ^ R (because a>(tx/v) = to)(x/v)). Now,

o(Lx/Lv) = t-xa>{L(tx)ILv) ^r1^ R(L)oj(tx/v) = N'vR(L)w(x/v)

which shows that N'V(L) ^N'v R(L).
To show that N'V(L) ^ kv R(L), take any x e C with co(x/v) > 0 and write a = m(x/v),

P = M(x/v), a' = m{Lx/v) and ft' = M(Lx/v). Because Lv = v, we have

If we define xt = x + tv for t > 0, we have

m(xt/v) =a + t; M(xt/v) = fi+t; m(Lxt/v) = a +t; M(Lxt/v) =

I t follows that
d(Lxt,v) _
d{xt,v) \og{fi+t)(a
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Taking limits as t -> oo gives

d(Lxt,v) _ p — a! _ w(Lx/Lv)

Now, since lim^^dix^v) = 0, we have

a>(x/v) ^^^L>

which, since x was an arbitrary element of C with OJ(X/V) > 0, shows that N'V(L)

It remains to be shown that kv R(L) ̂  eRiV ,̂(L). Suppose xsC and 0 < d(x,v)
Let a,/?, a' and /?' be as above, so

d{Lx,Lv)

Because a ^ a' ^ /S' ^ /?, we have

yS-a £ / a - l " yff/a-1

On the other hand, the mean value theorem gives

\ogp/a g-W/a-l)

where 1 < £,' s£ fi'/a' and 1 ^ £ < ft/a < efl. It follows that

< C < C

d(x,v) ^6 ft/a-\ ^6 o(x/v) ^eJS»{L>
which is the required estimate.

We also need to relate kv(L) and kv R(L).

LEMMA 2-4. With the assumptions and notation of Definition 2-1, let

Pv = {xeC:x~v}; Kv = PvU{0}

so L(KV) £ Kv. Assume there exists an integer m ̂  1 with

A(Lm; Kv, Kv) ••= sup {d(Lmx, Lmy; C): x, y ePv} < co.

Then for any R > 0, l im^^ (kv(lJ))lli and l im^^ (kViR(lJ))ll] both exist and are equal.
Proof. If we define ci = kv(V) and dt = kv R(V), a simple argument like that used

in Proposition 22 shows that for all j,n ^ 1 we have

Cj+»<c,cB; dj+n^d}dn.

It follows from Lemma 2-2 that the two limits mentioned both exist and that

lim ( A ^ ) ) 1 " = inf (kv(D))W; lim (kVt R{L>)Y» = inf {kVt R(U))^.
j-+cc i ^ \ j^-co j^l

This part of the argument is independent of the assumption that A.(Lm;Kv,Kv) < oo.
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By applying Proposition 22 to L:KV^-KV, we see that lim^^,A(U;KV,KV) = 0.
Thus, by selecting sufficiently large m, we may assume that d(Lmx, v) ^ R for all
xePv. If d(Lmx,v) = 0 for all xePv, we are done. Otherwise, for all j ^ m we have

kv(U) = suV{d{jfX'V^: xePv and d(Lmx,v)
I d{x,v)

([d(ti-m(Lmx),v)~\[d(Lmx,v)~\ _ , J / r m v J
= s u p i v

 1/rl — - \ \ ~ — \:xeR,a,ndd(Lmx,v) > 0}
*[[ d(Lmx,v) JL d(x,v) J " J

/ • )

I t now follows that
(

Taking the limit as j -»• oo we see that

The opposite inequality is obvious, so the lemma is proved.
In our final lemma, we need to relate A(U) to kv R(U).

LEMMA 2-5. Let C be an almost Archimedean cone in a real vector space E and let
L: E->E be a linear map with L(C) c: C and A(Lm; C, G) < oo for some m ^ 1. Assume
there exist A > 0 and veC\{0} with Lv = Xv. Then one has, for any E > 0,

Proof. By Lemma 2-4, we may assume that R < 1. Proposition 2-2 implies that
A(&)-±0 asj-> oo ; using Theorem 1-1, we see thsitUx is comparable to v iixeC and
Dx =t= 0. It follows that by increasing m we can assume that d(Lmx, v) < R for all
x £ C with Lmx =(= 0. If? > m and x,yeC are such that Lma; =t= 0 and Lmy # 0, we obtain

d(Vx,Uy)

<djJJ^{L^xlv^ d{v,V-m{Lmy))
d(Lmx,v) d(v,Lmy)

^2kViB(U-m).
It follows that

Using this inequality, Proposition 2-2 and Lemma 2-4 we see that

Proposition 2-2 already implies that

lim (A(Z/))1W = lim (k(U))U} ^ lira (k^

so the lemma is proved.
Our next proposition describes some connections between the various quantities

we have defined.



Applications of the Birkhoff-Hopf theorem 509
PROPOSITION 2-3. Let C be an almost Archimedean cone in a real vector space E and

L.E^-Ebea linear map with L(C) <= G and A(Lm) < oo for some integer m ^ 1. Assume
that there exist A > 0 and veC\{0} with Lv = Xv. Then it follows that for any R > 0,

A"1 lim {Nv(V))llj = lim (N'JiV))1'1 = lim (kvR{U))x" = lim
^ • o o ; ' ^ o o i^-co ;'->-oo

Furthermore, we have

= inf (Jfe(W = l im^i^ ) ) 1 ^ = in
j^ao j ^ l j^oo ;>1

Proof. If we apply Lemma 2-3 to & we obtain

If we now use Lemma 2-4 we find that

Applying (12) to U gives

so the first equality in the above proposition is easy. The remaining assertions follow
directly from Lemma 2-5 and Proposition 2-2.

COROLLARY 2-1. Let assumptions and notation be as in Theorem 2-3. Then Equation
(6) can be sharpened:

q(L) = r'1 lim (N^U))1^ = r~* inf (Nv(&))113 = inf

where r = r(L) > 0. Moreover, we have for all j

N(D) = k(U) =

and inf (NilJ))1" = lim (NiU))1" = lim
^51 3^00 ;->oo

Proof. This follows immediately from Theorem 2-3 and Proposition 2-3. Theorem
2-3 and Corollary 2-1 generalize results in [28], [27] and [42]. However, our real theme
is that all the results of this section follow without great difficulty from Theorem 1-1.

With the aid of Theorem 2-3 and Corollary 2-1 one can obtain estimates for q(L)
which are of interest even in the case of non-negative matrices.

COROLLARY 2-2. (Compare [2]) Let (S,fi) be a a-finite measure space. Assume
that lc:SxS->R is a non-negative measurable function and that for almost all seS,
jsk(s,t)fi(dt) = 1. Let A : Lx->Lm be defined by

(Ax)(s) = k{s,t)x(t)/i{dt)
Js

and let v denote the function identically equal to I, so Av = v. If C is the cone of non-
negative functions in LCC(S) and NV(A) is defined as in Theorem 2-3 we have

NV(A) < fr = less, sup j J \k(Sl,t)-k(s2,t)\/i(dt): (s^sJeSx
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If S is a Hausdorff topological space and the map

(s1,s2)^8(s1,s2)-= \k(svt)-k(s2,t)\/i(dt)

is continuous on S x S, we have
NV(A) = y/2.

If there exists an integer m $5 1 so that A(Am;C,C) < 00, we have that
q(A) = sup{|z|: zea(A)\{l}} = lim (Nv(A

n))1/n = inf (Nv(A
n))1/n.

n-*-co n^l

Proof. If xeL'x(S) and £ = TX + OCV for r > 0 and aeM, we have for w(x/v) > 0,

w(Ax/v) _
(o(x/v) OJ(&V)

If o)(x/v) > 0, we can arrange by appropriate choice of T > 0 and a that

Using this observation we see that

^(^4) = inf{p > 0: w(Ax/v) < po)(x/v)

for all xeLm withM(x/v) = 1 and m(x/v) = — 1}.

For x with M(x/v) = 1 and m(x/v) = — 1, we have \x(t)\ ^ 1 a.e. and

CJ(AX/V) = ess.sup{(Ax)(s1) — (Ax)(s2): (s1,s2)eSxS}

= ess.sup< (k(svt) — k(s2,t))x(t)/i(dt):(s1,s2)eSxS>

a )
\k(sv t) — k(s2, t)\ fi(dt): (sv s2) 6S x S >

s )

Since o)(x/v) = 2, this shows that NV(A) ^ y/2.
To prove equality when 6 is continuous, note first that we can assume y > 0, since

equality is obvious for y = 0. Since 6 is continuous, the essential supremum in the
formula for y can be replaced by a supremum and we can select y^y, y;- > 0 and
points (slt,s2j)eSxS with

7}=\ \k(swt)-k(s2j,t)\fi(dt).

Let E1} = {teS: k(sipt)-k(s2j,t) ^ 0} and E2j = S\E1}. If /i(E2j) = 0, we find that

0 = l - l = f (k(Slj,t)-k(s2jJ))ii(dt) = J \k(Sl,t)-k(s2jJ/i(dt) = y}

which is a contradiction, so fi(E2;j) > 0. Similarly, ^(E^) > 0.
If we define ^ e l 0 0 by x}(t) = 1 for teE1} and x}(t) = — 1 for teE2j, we have that

(o(Xj/v) = 2 and

<o(Ax}/v)> J (k(Sli,t)-k(s2pt))x}(t)(i(dt) = \ \k(slj,t)-k(s2j>t)\fi(dt) = yj.
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It follows that NV(A) ^ y}/2 for all j ^ 1, so NV(A) 5= y/2.

Remark 2*4. Suppose that (8,/i) is a cr-finite measure space, that k: SxS^-U. is a
non-negative measurable function and that there exists M > 0 with jsk(s,t)ju,(dt) ^
M almost everywhere. If A is denned as in Corollary 2-2 then v = 1 is not necessarily
an eigenvector of A. Suppose that weC is an eigenvector of A with positive
eigenvalue A and define D: LX(S)-*LK(S) by Dx = ivx. If we define B = )ClD'lAD
then <T(B) = A"1^^) and Bv = v, so Corollary 2-2 applies to B. Thus, if A and w are
known explicitly, q(A) can be computed with the aid of Corollary 2-2.

Remark 2-5. If S = {j: 1 ^ j ^ n) is a set with n elements, then A in Corollary 2-2
becomes a n t i x u non-negative matrix A = (oy) with

S ow = 1 for 1 ^ 1 < n.
3 - 1

The formula for ^,(^4) becomes

it\avl-agj\. (13)
v,q j - \

In this case, results like Corollary 2-2 can be found in [2] and [21].
If A is an nxn non-negative matrix acting on column vectors in IRn and

S"_ 1 ai} = 1 for 1 < j ^ n then A maps Y = {y e Un: E"_ j ̂  = 0} into itself. If we give
IRn the I1 norm ||x||j = Sf.Ja;^, Dobrushin has shown (see Lemma 1 in Section 3 of
[15]) that

la^-cg. (14)
P,Q 1-1

Generalizations and further remarks in this direction are given in Section 3 of [24].
By considering adjoints it is not hard to see that (13) implies (14) and vice-versa. In
particular, we could prove Corollary 2-2 in the matrix case directly by starting from
(14).
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