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We study the map ¥: C2 — C? defined by ¥(w, z) = (z, z+ w?) and the associated
collection of sequences {z;} satisfying the recurrence z;, , =z, | + Z]z Iteration of ¥
is equivalent to the study of such sequences. We analyze growth rates of the sequences,
positive sequences, periodic and asymptotically periodic sequences and establish the
existence of doubly infinite homoclinic sequences, non-zero sequences whose limits as
j— +oo are 0. We investigate some associated functional equations, f(x+2)=
Ff(x+1)+ f(x)? and L(L(x))=L(x) +x%  © 2001 Academic Press

1. INTRODUCTION

Consider the map ¥: C*>— C? defined by ¥(w, z) = (z, z + w?). The map
¥ is one of the simplest possible examples of a nonlinear polynomial map
of C? into itself which is not a diffeomorphism and, in fact, not even a local
homeomorphism near (0,0). We are interested in understanding the
dynamical system determined by iterates ¥I"(w, z), n > 0. Even though ¥
is not one-one, much of our analysis will be devoted to the study of certain
“natural” biinfinite sequences {(,},.z such that ¥({,)=(, ., for all ne Z.
Equivalently we shall sometimes study “natural” biinfinite sequences {z,} .z
or infinite sequences {z,},, such that z,, , =z, +z2 for all n. We shall
refer to these as solutions of the quadratic Fibonacci recurrence or the QF
recurrence. Some aspects of this recurrence have already been studied in
Duke et al. [6] with {z,, z;} ={0, 1}, where a combinatorial interpreta-
tion of z, for n>0 was given and the asymptotic growth of z, was
analyzed.

This is a long paper, so an outline may be in order. We begin by considering
¥ as a map of R — R2 If (xg, x;) € Q= {(x, »): x>0, y=0, (x, y) #(0,0)}
in R% and {x.}.s0 is a corresponding solution of the QF recurrence, we
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prove (Corollary 2.1) there there are positive constants y,(x,, x;)> 1 and
vo(Xg, X1)>1 so that

. X X
lim %:1 and lim %
n e ye(xosxl) nme yo(XO’xl)

We prove that the maps (x, y) — y.(x, y) and (x, y)— y,(x, y) extend to
an open neighborhood of Q in C? and are holomorphic in the neighbor-
hood. Furthermore (Proposition 5.1), dy.(x, y)/0x>0, 0y.(x, y)/0y=0,
dy,(x, ¥)/0x =0, and 0y, (x, y)/0y =0 for all x, y > 0. In general, y,(x,, x;)
# Vol X0, X1)-

Section 3 commences the study of a central theme of this paper, doubly
infinite sequences which solve the QF recurrence. If x >0, we prove (see
Theorem 3.1 and Theorem 3.2) that there is a unique biinfinite sequence of
reals {x.} ez With x,=x which satisfies the QF recurrence. Furthermore,
{ X} xez 1s necessarily a sequence of non-negative reals and lim, _, __, x, =0.
With this result we define maps 4_;: [0, 00) > [0, 00) and £,:[0, c0) >
[0, 00) by h_;(x)=x_; and h;(x)=x,, and sometimes write L =/h,. We
prove that s, and h_, are strictly increasing, continuous maps of [0, c0)
onto [0, o0), that A (h_,;(x))=h_,(h;(x))=x for all x>0, and that, in
fact, h; and h_, are continuously differentiable: see Theorems 4.1 and 4.2.
The argument in Theorem 4.2 that /2, and 4 _, are C' on [0, o0) involves
continued fractions and expresses A7(x) as a function of the map /[ 13
and the formula for A} is a nonstandard functional differential equation.
The continued fraction approach has drawbacks, however, and in Section
10 we use a different method to prove that /4, and h_, are C* on [0, o0).
Lemma 3.6, Proposition 4.1, and results in Section 10 lead to methods for
the approximation of L. In particular, we show that R(x)=1log(y.(x, L(x)))/
log(y,(x, L(x))) is always equal to 1 to six decimal place accuracy, but is
not identically equal to 1.

Let #, ={zeC:Imz>0}, #_ ={zeC:Imz<0},R_o={xeR: x>0},
Roo={xeR:x<0}, and C_ —<[Z\R<0 For ze C\{0} let argze(—n, x]
be the unique 0 =arg z with z=|z| exp(if). We prove (see Theorem 8.1)
that there is an injective holomorphic map /#_,: C_ - C_ such that
h_(H)cH,, h_(Rog)<=Rogy, h_1(2)=h_(z) for all zeC_ and h_,
agrees with the previously defined /_, on R_,. If 7,(z) = ht)(z) for j<0
(the composition of & _; with itself | j| times), Ay(z) =z, and &;(z) = h;_(z)
+ (h;_5(z))? for j> 0, then £, is holomorphic on C _ for all je Z, h;(C_) =
C_ forj<0, h; agrees with the previously defined /; on R, and & (h 1(2))
=z forall zeC_

If ze A4, and we define {z;} ;. by z;=h;(z), then {z;} is a solution of
the QF recurrence, zo=z, z;e#, for j<0, O<argz;, ;<argz;<
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2argz;  for j<O, lim;, _ argz;=0 and lim,_, __ z;=0: see Proposi-
tion 8.1 and Theorem 8.1. A biinfinite sequence which satisfies the QF
recurrence and possesses the preceding properties is called an “argument
increasing recurrence sequence through z” or an “AIR sequence through z”:
see Definition 8.2 for the precise definition.

The previous results imply that 4, and /4 _, are real analytic on R_,. It
is easy to see that L =h, satisfies the equation x?4 L(x)=L(L(x)) for
x>0, and using this equation one can write a formal Taylor series for L
at 0. Nevertheless, we prove (Theorem 9.2) that neither /; nor /4 _, can be
extended to be holomorphic on an open neighborhood of 0, even though
(see Lemma 9.3) /; and /& _, are bounded on bounded subsets of C_.

In Theorem 11.1, we prove that there is an open set U in C? which con-
tains (0, 0) in its closure and satisfies Y(U) = (U) and lim, _, , P¥(w, z)
=(0,0) for all (w,z)e U. Combining this result with facts about AIR
sequences we prove the existence of special biinfinite sequences homoclinic
to 0: if 3¥ <@ <, it is proved in Theorem 11.2 that there exists p(0) >0
such that if z=re” and 0 <r < p(0), then there is an AIR sequence {z;} .z
through z with O <argz;<argz;,, <= for all jeZ, lim; , __ z;=0, and
lim;_, , z;=0.

By using the real analyticity of y,, 7,, and &;, we prove in Section 4 that,
for each ¢#>0, there is a real analytic, positive, strictly increasing map
fiR->R_, with f(x+2)=f(x+1)+ f(x)?® for all xeR (a continuous
version of the basic recurrence relationship) and f(0) = z. One can easily see
that lim,,, _ f(x)=0 and lim, _, , f(x)= co. We are also able to describe
other solutions to this functional equation.

The above summary emphasizes the maps y,, 7,, and L and AIR sequences.
There are, however, interesting biinfinite sequences {z;} ., which satisfy
the QF recurrence and are not AIR sequences. In Theorem 7.1, we prove
that for any (w,z)eC? (w,z)#(0,0), there exists a biinfinite sequence
{z;} jez With zo=w and z, = z which satisfies the QF recurrence and is such
that either z,, - 1+i and z,,,;, »>1—i as n—> —o0 or z,, > 1—1i and
Zope1 = 1 +iasn— —oo.

We discuss periodic points of ¥ in Section 6. If ¥I"1 denotes the nth
iterate of ¥, we use topological degree to prove that ¥I"1({) = { has, count-
ing algebraic multiplicity, 2” solutions in C% We prove that for each prime p,
¥ has a periodic point of minimal period p, so ¥ has infinitely many
distinct periodic points. We also give a precise analysis of all fixed points
of ¥I"l for 1 <n<A4.

There is an extensive literature concerning the dynamics determined by
polynomial diffeomorphisms of C” (see the early paper [9], and, more
recently, [2, 3, and 7] and the references there). Many of the results in this
literature depend on assumptions of hyperbolicity and use ergodic theory.
Since our map ¥ is not a diffeomorphism and is not hyperbolic at its fixed
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point (0, 0), much of this literature is not directly relevant. Other recent
work is relevant. The map Y21 is a nondegenerate polynomial endo-
morphism of C? in the sense of Peng [ 18] and also is regular following the
definition of Bedford and Jonsson [1]. These authors and others study
maps like ¥I?! by extending them to complex projective space and using
detailed analyses of Green functions. Some of our results overlap with
those obtained by these authors, but our methods applied to ¥ allow us to
provide more specific conclusions. Additionally, the types of questions we
ask and the types of results we obtain are different.

As already noted, the map ¥ is not a local diffefomorphism at its fixed
point (0,0) and the Fréchet derivative of ¥ at (0, 0) has eigenvalues 0
and 1. In this situation, a general result of O. E. Lanford yields a local C*
“center manifold” but provides no global results and no analyticity results.
Our map h_;: C_— C_ gives a different kind of global center manifold
with analyticity properties. If we define X, for j=—1, -2 by X;=
{(hj(2),hj;1(2)):zeC_}, then X, X, ¥(2,)=2, and X, can be con-
sidered a subset of a center manifold for ¥ at (0, 0). It seems likely that

©_, P1"I(X,), which is invariant under ¥, is quite complicated. The ideas
which we use can be applied to other examples where standard theory is
not applicable, and we hope to pursue this point in a future paper.

This paper is dedicated to Jack Hale on the occasion of his seventieth
birthday and in recognition of his many mathematical achievements.

2. THE REAL CASE
Suppose H,  ,=H,  ,+ H?> for n>0 where H,, H, > 0.

Lemma 2.1. Suppose there is n>0 and a real number ¢, >0 so that
H,<c¢,H> | and H,,  ,<c,H>. Then H,, ,<(c/(c,+1))H?>, , and
H,3<(cpfle,+ 1) Hy s

Proof. We need just show that H,,,<(c2/(c,+1))H?,,, because
then H, , ,<(c2/(c,+1))H., <c,H.,, and H, ,<c,H2, so the same
argument implies that H, , s <(c2/(c,+1)) HZ ,.

By assumption we have

+1

H,.,=H, +H><(c,+1)H?
and

1 2 1)2
Hﬁ+1:(Hn+Hi—l)2><Hn+Hn> :wl—li
c c

n n
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Thus H,,,<xH2,, if x((c,+1)*/c2) H:> (¢, + 1) HZ which is true when
k=cp/(c,+1). 1

The following result follows from Lemma 2.1.

LeEmmA 2.2, Suppose there is n>0 and a real number c¢,>0 so that

2 2 2m py2
Hn Smann—l and Hn+1<Can' Then Hn+2m<Cn Hn+2m—1 and Hn+2m-+—1
<c2"H?, ,, for any positive integer m.

Proof. Lemma 2.1 verifies this claim for m=1 since ¢Z/(c,+1)<c2.
The general case can be proved by induction. ||

If we know H,<c,H> |, and H,,,<c,H?>, with ¢,>1, then we can
eventually get a similar estimate for some larger n with positive constant
less than 1 using the following consequence of Lemma 2.1.

LemmA 2.3. Suppose there is n>0 and a real number ¢, >0 so that
H,<c,H?> | and H, ,<c,H?, then for any positive integers m,

c ” c m
H < —2—) c¢,H? and H < —2—) c¢,H?, ,,.
n+2m 3 Cn+1 nttn+2m—1 n+2m+1 Cn+1 n-"n+2m

Proof. Lemma 2.1 proves these statements when m=1. If we now
assume the result for a positive integer m, and let ¢ =(c,/(¢,+1))" ¢,, then

Lemma 2.1 shows that H, 5, ,,<((c+1))¢H., 5, 1<(c,/(c,+1))
(Caf(cu+ )" cuHE iy = (cuf(cy+ 1) e, H2,, . as  desired

because x/(x + 1) is increasing and ¢ <c¢,. ||

Therefore if H,<c,H?> |, and H,,,<c,H? with ¢,>1, there is some
sufficiently large m with H, ,,<3H2, ,, , and H, 5, <3 H? ,,.
To see this, take any m with (c,/(c,+1))"c,<3. Such m exists since
0<c,/(c,+1)< 1.

Suppose we select N >0 so that Hy<cyH%_, and Hy < cyH% with
0 <cy< 1. The previous estimates then verify these inequalities:

Hyo=Hy o +HYy<(1+cy) Hy
Hy,4=Hy 3+ Hy , <(1+cj) Hy < (1+c3)(1 +oy)?HY
Hy,s=Hy s+H3, ,<(l +C?VZ)H?V+4

ST+ (1 +e2)2 (1 +cy)* HY.

Generally, if we know

Hyom <1+ )1+ 721+ (14 ey HY
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then since Hy 2 <(1+¢% ) Hy 5, We sce
Hy omia <(L+eX)1+ 2 (1) (147
(L4 ey HY"

so by induction this holds for all m > 0.
Since ¢4 <cy for all j>0 because we assumed ¢y <1, we can further
simplify our estimate:

Hy o<1+ ex)(1+en)? (T+ey)? - (1+ey)® " HY <(1+cy)*" HY.

But H,,,>H? always, so we can estimate from below very simply:
H3'<Hpy. o for any m>0.

If we define yy by yy= H2 , then for m >0 we know
N S Hyam < (14 ) P

The following result summarizes and extends this discussion and also
asserts that the even and odd growth constants of { H,} which are called
below y, and p, are well-defined.

Tueorem 2.1.  Suppose H,, H,>0 and H,,,=H,,  ,+H?> for n>0.
Given ¢ >0, there exists N> 1 and a constant ¢y with 0 <cy<e so that

Hy<cyH3_, and Hy.1<cyH3. (#)
Also, if m =0,
Hyom<c{"HY 5, and — Hyyome1 <5 Hyyom  (##)
Furthermore, if yy=H ?v_N/z, then
VS\%(NHM}/Z) SHy om<(yn1+ CN)2 _N/z)(2(N+2mV2)~

Also, {y,,} is increasing with limit y, and {y,, .} is increasing with limit y,,.

Proof. The previous discussion proves (# ) and ( # # ) and verifies that
the c’s can be chosen so that ¢, — 0 as n — co. Indeed, the lemmas show
that the c,’s can be chosen to approach 0 very rapidly. Then ( # # ) states
that

INSVNrom SN+ CN)Z_N/2
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for m>0. This shows that the sequences {y,,} and {y,,,,} are both
Cauchy and bounded above. The sequences are increasing because
(n+2)2 n/2 (n+2)/2
Viwz | =H,o=H, +H;>H=07")=y2"""

so that y,,, ,>7,. The even and odd subsequences of {y,} are each increas-
ing and bounded, so the existence of y, and 7, is guaranteed. ||

The growth constants y, and y, of the sequence {H,} depend on the
initial conditions H, and H,, and this dependence may be indicated by
v.=7v.Hy, Hy) and y,=v,(H,, H,). These growth constants are positive
when H, and H, are both non-negative and not both 0.

COROLLARY 2.1. If Hy and H, are non-negative and not both 0, then

lim, _, o, Hyp/(7e(Ho, Hy) V2" =1 andlim,,_, o, Hy, 1 /(7,(Ho, H)Y?" ) =1.

Proof. We prove the result for y,(H,, H;). The argument for
vo(Hy, Hy) is similar. (# # ) implies that

V2n < ye(HOa Hl) < y2n(1 + c2n)2_”)
where y3. = H,,. Therefore
1 Van H,

< 5= < L
l+cy, (y(Hy, Hy)) (ye(Ho, Hy))

We have already observed that lim,, _, ., ¢,,=0 so the even part of the
corollary is proved. ||

Theorem 2.1 can be used to get accurate information about the
asymptotic growth of {H,}. In particular, the estimates reveal distinct
analytic growth rates of the even and odd subsequences.

ExampLE 2.1. If Hy=0 and H,=1, then H,; =207 73703 and H,, =
1 15957 36272 and H,;=43155 83320 68481 so that H,,<c;,H}, and
H;<c,H2, with ¢;,=13-107* Theorem 2.1 then implies that for n>6

Y2 < Hyp, < (pip(1+5-1074H@ 22)@n,

where (71,)%=H,,.

Since H,,=1 34461 53124 81085 26465 we can see that H;<c3H},
and Hy, <c;3H?; hold with ¢;;=4-107° Therefore Theorem 2.1 states
that for n>=6

2(2n+1)2 — 61\ (2 132y (22n+1)2
7(13 )<H2n+1<(3/13(1+4'10 )( ))( )
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with (y,3)'*?=H,;. Further direct computation shows that y,,=
1.43633 14218 20338 and y,;=1.45109 50811 54281, each with error less
than 10~ "%, Therefore

(143633 14218)V2" < H,, < (1.43633 21699)v2"
and
(145109 50811)V2""'< H,, ., <(1.45109 51453)v2"""!
are true for all n>6, and thus

7.0, 1) e [ 143633 14218, 143633 21699]  and
7,(0, 1) e [1.45109 50811, 1.45109 51453].

These intervals are disjoint, so y,(0, 1) #7y,(0, 1).

We can extend these results in several ways. First, it is not at all obvious
that there are solutions to our recurrence which are always negative. Two
iterations of the recurrence relation transform the initial conditions
(Ho, Hy) to the pair (Hy+ H,, Hi+ Hi7+ H,). So after H, (for n>0) the
sequence must be nondecreasing. Viewing H; as a function of H, and H,
shows that any initial conditions in the plane outside a circle of radius 1
centered at (0, —3) give rise to a sequence which has positive terms for
n = 2. Carefully chosen negative initial conditions produce sequences which
are always negative.

THEOREM 2.2. Suppose that p>1 and q is any real number satisfying
0<q<p~'=p 2 If Hy=—q and Hy=—qp~" and H,,,=H, +H}
for n=0 then for all n=0, H,<p 'H, , and H,< —qp~".

Proof. Suppose we know the following inductive hypotheses,
H;<p~'H,_, and H, < —qp~,

for 0 < j<k. These assumptions are certainly valid for k=1. Then H, <
p'H,_,<0so (pH,)*>H_, and thus

Hy 1= H+ Hi_ <H{1+ p°Hy).
Here Hy<H,< --- <H,<0 using an inductive hypothesis and the

recurrence equation. Then p?H, = —pg <p*H,. Note that 0 < pg <1 since
q is selected so that pg<1—p so that 0<1—pg=1+ p*H, <1+ p*H,
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because H, is negative, larger than H, and has absolute value smaller than
1. Thus the estimate above proves that H,  , < (1 — pg) H, again because
H, is negative.

Finally, 0<p '<1—pgsothat H,, , <p 'H,< —qp**", completing a
proof by induction of the theorem. ||

Here is a geometric translation of this theorem and its preliminary
remarks. Suppose that H,= —g—x and H,= —gp ' -y and we graph
the allowed initial conditions (x, y) which result in a sequence { H,} with
all H,’s negative. The restriction p > 1 with x and y negative restricts (x, y) to
lie in the third quadrant above the main diagonal. The more complicated
restriction ¢ <p ' — p 2 becomes —x*<xy — y? in these coordinates. The
shaded area in Fig. 1 is a sketch of the region, #, defined by this inequality.
Z must lie inside the circle mentioned above (the left half of that circle is
drawn) and above the diagonal line drawn. The boundary of # has a vertical
tangent when x = — } at the point (—%, —%). The theorem asserts that if H,
is any number between 0 and —(max,_, p~'— p ?)= —] then there are
numbers between H, and 0 so that the recurrence has negative solutions
for all n > 0.

L -.25

FIG. 1. The region %.
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Other initial conditions not in #Z may determine sequences satisfying our
recurrence with all terms negative. For example, (—0.3, —0.2) is not in £,
but one iteration of the map (x, y) = (y, y +x?) produces (—0.2, —0.11),
which is in the region. Not every point in the lune between the line and the
circle has an iterate in #: (—0.48, —0.46) is in the lune, but H;>0 for
these initial conditions. We have not analyzed sequences which change sign.
Other aspects of the iteration are studied in what follows, but certainly the
dynamics of the mapping are not completely understood.

3. DOUBLY INFINITE SEQUENCES

We now describe doubly infinite real sequences X which satisfy the QF
recurrence. These X’s are sequences {x,},.z for which x, ,=x,,;+x2
for all neZ. The existence of non-zero doubly infinite sequences which
satisfy the recurrence is not obvious. The arguments presented here are
elementary but a bit intricate. We begin by considering those pairs (x,, x;)
which have infinitely many ancestors.

LemMa 3.1.  Suppose that a real sequence {x,}, <, satisfies the recurrence
Xpy2=Xn41+X2 for all n< —1. Then {x,} is increasing: x, <X, for all
n<0. Also, x,,=0 for all n<1 and lim w X, =0. If any x,=0 then all
x,=0.

n— —

Proof. Such a sequence must be increasing since x2>0 always. Since
{x,} is increasing, lim x,=inf, <, x,=L. Either L= —o0 or L is
finite.

We first show that L cannot be —co. Select M > 1 so that M? — M > x;.
Since &— &2 —¢ is increasing on [3, c0), E2—E>x; for all =M. If
L= —o00, we can select N<1 so that xy< —M. Since xy_;<xy<0,
X% _=x%. If we then take &= —xy, Xy, 1 =Xy+x3_ ;= —C+E> X,
contradicting the increasing nature of {x,}. So L must be finite.

We know that L=Ilim,_ __ x,,,=lim wXnp1+Xx2=L+L* so
that L must be 0. Therefore x,, >0 for all n. If there is N so that x, =0,
then x,, =0 for all n <N because the sequence is increasing and bounded
below by 0. The descendents x;, x,, .., x,_; must all be 0 by using the
recurrence with initial data (xy_;, xy)=(0,0). |

n— —oo

n— —

If X is a doubly infinite sequence satisfying our recurrence, we will need
to describe x,, as a function of x, and x, for n positive and n negative. Since
Xp12=X,,1+x2 we know that x,=./x,,,—X,,.;. We may take the
square root to be non-negative because of the preceding lemma. We can
go backwards when x,,,>x,,;, which occurs when X satisfies our
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recurrence. For n>=2, x, is a continuous function of x, and x;, and we
write x, = F,(xq, x;). F, is a polynomial. Let K*= {(x,, x;) e R?*: x>0,
x1 =0} If x=(x, x;) € K? and y = (y,, y;) € K%, we write x <y if x4 < p,
and x; < y,. F, is a strictly increasing function using this partial order: if
x, ye K? with x< y and x # y, then F,(x) < F,(y) for all n>2.

LeEmmA 3.2, Suppose 6 >0 and N =2 is a positive integer. Let I'y(0) =
{(x0, x1) € K*: xo< x; and Fy(xg, x;) =06}. Then I'y=T'y(d) is a compact,
connected, nonempty set, and In(0)={Fy, (xq, x1):(xe,x,)€lN} is a
compact, nonempty interval.

Proof. Define J; to be {(xq, x;)€ K*: 0<xy<x; <5} If (xg, ;) €K
and x; > ¢ then Fy(x,, x;) > 9. Thus I'y, = J,. Since Fy is continuous and
Js is compact, Iy is also compact. For each m in the closed unit interval
we consider the line segment /,, = {(x,, x;) €Js: xo=mx,}. If we restrict
Fy to /,, and note that Fy(0,0)=0 and Fy(md, J) >, the Intermediate
Value Theorem implies that there is a positive number p,(m) so that
Fy(pn(m)(md, 6)) =9. Since we know that the function p — Fy(p(md, d))
defined for 0 < p <1 is strictly increasing, the number p () is unique.

If the mapping m — p(m) is not continuous for me [0, 1], there is a
sequence {m;} in [0, 1] so that m; - m but {py(m;)} does not converge
to py(m). We may take a subsequence and assume that p y(m;) — p # p y(m).
Since F is continuous, we know that 6 =lim;_, ., Fy(py(m;)(m;d,0))=
Fy(p(mo, 0)). But 6 = Fy(py(m)(md, 6)) also. Since 6 = Fy(p(md, 6)) must
have a unique solution, we have deduced a contradiction.

The line segments /,, sweep out all of J;, and therefore Iy = { p(m)(md, J):
0<m<1}. Since m— p(m)(md, 5)€Js is continuous, the set Iy is the
continuous image of [0, 1] and is therefore compact, connected, and
nonempty.

The set I,(0) is the image of I', under the continuous mapping Fyn 1,
and so must be a compact, connected, nonempty subset of R: a compact,
nonempty interval. |

We label the endpoints of the interval just found: I(d) =[ Ly(d), Ry(d)],
so Ly(Jd) < Rp(J). We next investigate the dependence of these functions
on ¢ and M.

Lemma 33. If 0<0,<6, and N is a positive integer, then Ly(d,) <
Ly(0,) and Ry(9,) < Ry(05).

Proof. We prove the result indicated for L,. The proof for Ry is
similar. Suppose 0 <Jd; <J,, and select 4 larger than both J, and J,. The
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proof of the previous lemma implies that given m e [0, 1], there are unique
numbers p,(m) and p,(m) so that Fy(p,(m)(md, 4))=05, and Fy(p,(m)
(md, A)) =9d,. Since Fy(p(md, 4)) is an increasing function of p, we know
that py(m) < p,(m).

Now Lx(d;) =min{Fy , 1(xg, X;): (X0, X;) € I'y(J;)}. Since each I'y(d)) is
compact, there must be (y;, z;) € I'y(J,) where each minimum is attained:
Ly(6;)=Fy,1(y;, z;). By our remarks in the previous paragraph, there is
s€(0,1) so that s(y,,z,)el'y(d,). Therefore Ly(d,)=Fpy,1(y2,2,)=
Fr1(8(p2,25)) Zmin{ Fy o 1(Xo, X1): (Xo, X1) € I'y(d1)} = Ly(dy). 1

We further characterize the sets I,(d) in terms of ancestors. It will then
be easy to observe that these sets are nested: I(J) 21y, (d) for N=2.

LEMMA 3.4. Fix 0 >0 and an integer N = 1. Then [y(0) =

{oeR:0<0and there exist { y,,} _ny<m<1
s0that 0y Ny<y_yi 1< SPo<)y)

with (y07 yl):(éa J) andym+2:ym+l+yfnf0r _N<m< _1}

Proof. Let W be the set defined by the right-hand side of the preceding
equation. If o€ W, then define x, =y, _» for integer m satisfying
0<m<N+1. Then Fy(x,, x;) =06 and (x,, x;) € K2 so that (x,, x;) must
be in I"y(0). Therefore Fy (xg, x;) =0 must be in (). Thus W< I4(d).

On the other hand, if (xy, x,)el'y(d) and x,,,,=x,,,;+x2, when
0<m<N-—1, we may define y,,_, by requiring that y,,_ ,=x,, when
0<m<N+1. Since y,=0, all the conditions for showing that y,=
Fyoi(y_n>Y_ni1) € W are verified, so that Iy(d)c W. |

Now let 7 ={X={x,},cz: Xns2=X,,1+x2 for all n} and let F be
those elements X of % with x,=09. If %; is not empty, Lemma 3.1 shows
that 6 must be non-negative, and that the sequence X is increasing with
lim,_, _ x,=0. It also asserts that the only X € # with any element equal
to 0 is the sequence all of whose elements are 0. Of course, the values of
xo and x; determine all elements of any X e #.

THEOREM 3.1. Suppose 6 > 0. Then F is nonempty, and there is a compact
nonempty interval I,(0)=[L(d), R(6)]=[L, R] so that if Xe&F; then
x; €[ L, R] and, furthermore, given any o € [ L, R] there is X € 5 with x, = 0.

Proof. Since Iy(0) 21y, (0) and each Iy(J) is a nonempty compact
interval, Vx>, Iy(J) is then a compact nonempty interval. We call this
interval I_,(0)=[L(J), R(J)].
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If X € Z;, then for every positive integer N, the pair (x,, x;) = (J, o) must
have ancestors of order N, and so ¢ must be in I,(J) for all N, and
therefore o € I, (0).

Given g€ l_(0), then for any positive integer N, g € I(J) so that there
are numbers y_y<y_y < - <po=0<y;=0 With y, o=y, 1+ ]
for —N<n<0. The numbers {y_y, ¥_ni1,-» V_1} are uniquely deter-
mined by ¢ and o. Therefore an X € Z; with (x,, x;) =(J, o) can be defined
in the following way: create x,, for n > 1 by running the recurrence x,,, =
X, 41+ x2 forward with initial conditions (d, ¢). For n<0, create x, by
choosing any N > —n and obtaining the unique numbers {y _y, ¥ _yi 15 -
y_,} described above. Take x,, to be y,. Any choice of N gives the same
value for x,,. Since the sequence of y,’s always satisfies our recurrence, we
know that the doubly infinite sequence X is an element of %; as desired. ||

We will show that L =Left and R =Right as defined above are equal.
That is, each Z; has one element for any 6 >0. This result follows from
the oscillation lemma below, which also will help us to approximate the
common value of L(d) and R(J) and, generally, to compare solutions of
the QF recurrence.

LEMMA 3.5, Suppose {X_n, X _n_1,es X1} and {Y _ny Y _N—_1s - Y1}
are non-negative solutions of the QF recurrence for some positive integer N.
Suppose additionally that xo < y, and x,> y,. If N is odd then x _y>y_y.
If N is even then x _ny<y _y.

Proof. x_;=./x;,—xo and y_,=/y;— Yo, SO X_;>y_,;. Then
X_,=+/Xo—Xx_; and y_,=./yo—V_,, so that x_,<y_,. We now

proceed by induction. One of two cases is done here (the other is obtained
by interchanging x and y). Assume that x_, _;<y_,_;andy_, ,>x_,_,.

Then \/xfkfl_xfkfz <\/y7k71_y7k72 SOX_j_3<V_gx_3 |

Let us consider backwards solutions to the QF recurrence given initial
conditions (y,, y;) with yo=0>0 and y, >J, but with y, ¢ I(J). Then
we know there must be positive solutions Y={y_y, ¥ _ni1s-» Vo> Y1}
for some positive integer N which are maximal or else Y can be extended
backwards forever (since we can always propagate Y forwards and Y ¢ %;).

But y_,_; “should be” /y_n,1—»_n- So the obstacle must be
V_ni1 < Y_n. If XeZ then either x; >y, or x; < y,. Consider the first
alternative. The preceding lemma asserts that if N is odd, then y_,, ;>
X_n4q and x_n> y_p. Since X € %, we can always propagate backwards,
SO X_pn41>X_p. Combining these inequalities gives the contradiction:
V_Nn+1>YV_n- So N must be even. Half of the following lemma is now
verified, and the proof of the other part is similar.



70 GREENFIELD AND NUSSBAUM

LemMA 3.6. Suppose that Y ={y_n, Y _ni1s- Vo, Y1} IS a positive
solution to the QF recurrence for some positive integer N with y,=0 and
that y _ N1 <y _n, so necessarily y, ¢ I (). If N is odd, then y, > R(d). If
N is even, then y, < L(9).

ExampLE 3.1. Take 0 =1. The initial conditions (y,, y,)=(1, 2) lead
to y_;=1 and y,=y_,. Since 1 is odd, R(1)<2. The initial conditions
(¥, ¥1)=(1,3) lead to y_, =73 and y_2=ﬁ, so y_,>y_,. Therefore
3<L(1), and I (1) =[3,2]. Further numerical work shows that 7(1) <
[1.507, 1.508], which certainly suggests the following result.

THEOREM 3.2. If 6 >0, then L(d)= R(J), so that I(J) is one point and
Fs contains exactly one sequence.

Proof. Suppose X and Y are unequal elements of % with, say, x; > y;.
Then x_,>y_, for all positive odd integers n and x_,<y_, for all
positive even integers n. Also recall that both sequences have limit 0 as
n— —oo. Now we compare the differences between the sequences.

|x—n—1_y—n—1| :l\/x—n+1_x—n_\/y—n+l_y—n|
|(x—n+17x—n)7(y—n+17y—n)|

\/xfnJrl_xfn +\/y7n+1_y7n

=Y p ) ==y )l

\/x_n+1fx_,,+\/y—n+1*y—n

Abridge this by writing D, = |x; — ¥, | and noting that the signs of x, — y,
must differ for any consecutive integers. The equation above leads to

D _ D7n+1+D7n
o \/x7n+1_x7n+\/y7n+l_y7n
D_,
=
Y =

which is impossible. To see this, consider any two positive sequences, {s,}
and {¢,}, which have limit 0. The inequality s, , >s,/t, cannot be valid
for all sufficiently large n: there must be N so that ¢, <} when n> N, and
then s, >2"~"s, for all n > N, contradicting the convergence of {s,}. |

The unique sequence in %; will be called X;. Further information about
the function L(J) and an application to functional equations are given in
the next section.
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4. SOME SOLUTIONS OF AN ASSOCIATED
FUNCTIONAL EQUATION

We consider the functional equation
flx+2)=flx+1)+ f(x)? (%)

whose natural initial conditions are functions on [0, 2). We describe some
solutions to (*) other than the trivial solution f=0. These solutions use
our previous study of the QF recurrence together with further results.

ExampLE 4.1. We create a function f'e C*[0, 2] with special behavior
at 0 and 2. Suppose f(0) =0 and f(z) >0 if >0, with f(1)= f(2)=1. We
also require that f be infinitely flat at 0: all of f’s derivatives at 0 are 0. The
classical theorem of E. Borel says that all the derivatives of f at 2 may be
freely specified, so we may require f(2) = f)(1) for all n> 0. Figure 2 is
a sketch of one such function.

With these initial conditions, f is a solution of the functional equation
() which is positive and C* on the half-line [a, c0) for any a>0.
Theorem 2.2 proves the existence of negative sequences solving the QF
recurrence, and the discussion after the theorem provides a region # of
initial conditions corresponding to those sequences. Any interval of initial
conditions smoothly chosen from the region # can be used in a fashion
similar to the preceding example to produce solutions of (x) which are C*
and negative on half-lines.

Other solutions to () can be created using the function L(J) introduced
earlier. If 0 >0, then X; is the unique doubly infinite sequence in %;. The

X

FIG. 2. Non-negative smooth initial conditions.
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initial conditions of X are (J, L(d)). For >0, the sequence has all
positive terms and is strictly increasing, so L(J)>J. We will create addi-
tional solutions to (x) with domain all of R using the function L. These
solutions will have properties which reflect what is known about L.

THEOREM 4.1. L(9) is strictly increasing and continuous for 6 =0. L(0) =0
and L(6) > for 6> 0.

Proof. Recall that L(d)=1limy _, , Iy(J) so that L is a pointwise limit
of increasing functions (Lemma 3.3) and therefore must be increasing.
Suppose 0 <d,, 0<J,, and L(J;) = L(J,). If p is this common value, then
p is positive. Consider L(p). There must be exactly one sequence satisfying
the QF recurrence with x,= p and x, = L(p). But by uniqueness, x _; must
be equal to both J, and ,. Therefore L is strictly increasing.

We verify continuity at 0. Suppose some sequence {J,} has limit 0 but
(passing to a subsequence) L(J,) > c¢>0. Then consider x5 _;, the —1th
entry in the sequence X; . It must be \/L(d,) —J, and less than J,. As
n— oo a contradiction (¢ =0) appears.

Now suppose {J,} is a sequence of non-negative real numbers with
lim, , , 6,=0>0. The sequence {L(J,)} is bounded since L is increasing,
and so must have convergent subsequences. We are done if we prove that
the limit of any subsequence is L(J). So, passing to a subsequence, we add
the assumption that lim,HooL((S )=p. Consider the —1th term of X, .
Surely x; _1=+/L . The limit of the right-hand side as n — oo is

p—0, and p—0 > 0 since 1t is the limit of a positive sequence. In fact, a
inductive proof shows that for each me Z, the sequence {x(;n,m} must
converge to some non-negative number which we call y,,, and that y,, ., =
VYma1+ ¥2. Since yo=4, the sequence must be the unique element X; of
s, and therefore p =y, =L(5). |

The function L satisfies an associated functional equation. We charac-
terize it in several ways as the only non-trivial solution of this equation.

COROLLARY 4.1.  The function L satisfies the equation 5* + L(5) = L(L(J))
for all §=0. If 12 (0, c0) = (0, 00) is a map onto (0, c0) and if 5*+ f(J) =
f(f(0)) for all 6>0, then f(5)=L(9d) for all 6>0. If g: (O oo) (0, 0) is
continuous and 6 + g(6) = g(g(d)) for all 6 >0, then g(5) = L(J) for all § > 0.

Proof. 1f 6 >0, then (J, L(J)) are the initial conditions for X;. An index
shift reveals that (L(J), 6>+ L(d)) must be the initial conditions for X5,
but by uniqueness this pair must be the same as (L(J), L(L(J))).

The functional equation 6+ f(6) = f(f(6)) for all 6 >0 easily implies
that f is one-one, and since we assume that f is onto, we can define the
inverse map fL='1: (0, o0) — (0, o). If fT¥1 is the k-fold composition of f
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with itself for k> 0 and the k-fold composition of T =11 with itself for k <0,
then define, for >0, x;, = f1¥)(6). The doubly infinite sequence {x;} 2
must satisfy X7+ x,,,=x,, for all keZ because of the functional
equation for f. Also, x, =06 and all of the x,’s are positive. It follows from
Theorem 3.2 that such a sequence is unique, so f(d)= L(J).

If g satisfies the functional equation, g is one-one. Because g is assumed
continuous, a familiar calculus lemma implies that either g is strictly
increasing on (0, o) or g is strictly decreasing on (0, c0). If g were strictly
decreasing, we could write

O<a= lim g(d)< oo.
s—->0+

We may take limits in the functional equation for g as 6 > 0" and obtain
o= g(a) where this equation also makes sense if a =oo. However, the
equation a = g(a) is impossible: if 0 <d <a, then a>g(d) > g(a). Thus we
conclude that g is strictly increasing.

If we write « =limy_, o+ g(J) again and take limits as  —» 0" in the func-
tional equation for g, we obtain a =1limy_, 4+ g(g(d)). If @ >0, we again see
that g(o) =o. This is impossible, since a < g(d) < g(a) for 0 <J <a. Thus a
must be 0. Since g(g(J))>g(d) and g is strictly increasing, we see that
g(0) > J always, so limy_, ., g(d) = oo. Since g is continuous, the Intermediate
Value Theorem implies that g maps (0, c0) onto (0, oo). The previous
result proved here implies that g and L agree on (0, c0). ||

If k is a positive integer, define LI*1(5) to be (Lo Lo --- o L)(5) (k-fold
composition). When k is a negative integer, L*1 will be the inverse of L
composed with itself k& times. The uniqueness used in the preceding proof
shows that X;={L¥(9)},.,. Since both L and its inverse are strictly
increasing, if 0 <J, <J,, then LI¥1(§,) < L¥(6,) for all k.

We now show that L is differentiable. It is helpful to “predict” its derivative.
Since 6%+ L(J) = L(L(J)), if p=L(6) then L(p)=p+ (LL=1(p))% If we
assume L is C' with non-zero derivative, then we may differentiate the
equation and repeatedly replace L’ by the right-hand side of the first
equality, appropriately shifted.

N (O N s 1)
F = D)y T
(L))
2L p)
=1+ 2L[’2](p) = ...
2Lp)

g
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The limit of the expressions indicated above is classically called a simregular
infinite continued fraction. We establish some notation for such continued
fractions.

Given any complex numbers o4, %5, ..., &,, ... define

51
[[adl=t+a  and  [fan e el =1+

(if each division is defined) and

[[ala Koy ey Xy ]] =nh—>ngo [[ala 0% PIRTI O"n]]

when the limit exists.
We rewrite the equation for L'(p) using this notation:

oo 2Lt ) 77 i 2LL-21(p)
L “”‘HL’(LH]@))H ‘HZL[ ) L'(L[—ﬂ(p))H

ZHZL[_I](p)’ 2LL-2(p), L?(LL[[—?]((/)p)))H = ...

A theorem of Worpitzky published in 1865 applies (see, for example, [21],
Chapter 2, Section 10). We know that given R>0 and pe[0, R], then 0 <
LU (p)< LI=%(R) and lim,_ , LI=¥(R)=0. Worpitzky’s Theorem
merely needs |LL=*1(p)| <1 for sufficiently large k and all p under considera-
tion to conclude that the limit displayed below exists, and it then asserts
that convergence is uniform in [0, R] to a limit which must be continuous.

2L[—n]
tim || 226-190), 226-23p), 2000, P
n— oo L'(LE=(p))
=[[2L(p), 2LE2)(p), 2LE 3N p), .., 2LT="(p), ..]].
We still must show that the difference quotient for L has the predicted
limit. Therefore we consider (L(J0)—L(d))/(0—0) for 6 and ¢ in [0, R]

with & # 0. This quotient is always positive since L is strictly increasing. We
manipulate a generalization of this quotient as in the proof of Theorem 3.2.

L[k]( L[k] \/L[k+2] L[k+1] \/L[k+2] L[k+1](5)

(8)—
_(L[k+2](5~) LUH+11(5)) — (LIE+21(9) — Lk+11(5))
_\/L[k+2](5)_L[k+l 5)+\/L[k+2] 5)_L[k+1](5)
) —
(%)

(L[k+2](5')7L[k+2]( (L[k+1](5) L[k+1](5))
=\/L[k+2](g)_L[k+l] +\/L[k+2] 5) — Lt+11(§)
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which yields

LUFI(§) — LF()
1+ <L[k+1](5) —L[k+1](5)

+\/L[k+2](5) _L[k+1](5))

L[k+2](5)_L[k+2](5)
=L[k+1](g)_L[k+l](5)'

> (\/L[k+2](5) _L[k+1](5)

We define DO(k) to be (LYI(5)— LIKI(§))/(LF—11(5) — LIF=11(4)) so
that DQ(1) is the original difference quotient. If ke Z, DQ(k) is certainly
continuous and positive for all (§,0)e[0, R]x[0, R]\{=4}. Also,
define  M(k) to be /LUI(F)— LI~11(§)+/LF(3)— LIF~11(5) =
LU¥=21(§) 4+ Lt=21(§). Then M(k) is continuous and non-negative in all of
[0, R]x [0, R]. The previous displayed equation can be rewritten as

1+ DOk +1)" ' M(k+2)=DQO(k+2).

This equation implies that DQ(j)>1 for all je Z. By using the equation
iteratively we obtain

DQ(1)=1+(DQ(0)) ™" M(1)=1+((1+(DQ(—1))~" M(0)))~" M(1) =ete.
so that if NV is any positive integer,

DQ(1)=HM(1),M(O), oy M(—n), M(=N) H

“ Do(—N_T)

Notice that as N — oo, Worpitzky’s Theorem implies that the right-hand
side converges uniformly to the infinite continued fraction

[[M(1), M(0), ..., M(—n),..]1]
which is continuous in all of [0, R] x [0, R]. Therefore the limit as § — J

of DQ(1) exists. Note also that when d =0 and # is an integer, M(n) =
2L1"=2](§). We have verified the following result.

THEOREM 4.2. L: [0, 0)— [0, 00) is a C! bijection, with L'(5)>1 for
all >0 and L'(0)=1. Also, for all 6 =0,

L'(9)=[[2L"(p), 2L =) (p), ... 2LL " p), ... 1],

where the right-hand side converges uniformly on compact subsets of [0, c0).
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More information about the smoothness of L is obtained in Section §
when the complex version of this function is discussed. We have been able
to verify by direct computation that L is C? but the computations are quite
tedious.

ExamMpPLE 4.2. We specify a solution f of (x) beginning with its behavior
on [0, 1]. Let f increase continuously from f(0)=¢&>0 to f(1)=L(&)>¢&
in [0, 1]. Define f(¢) for te[1,2] to be L(f(z—1)). Use this function f as
initial data for (), and use () and properties of L to extend f to a positive
increasing continuous solution of () with domain all of R. The range of f
must be all positive real numbers since f(n) = L"(&) for ne Z so that f(n)
has limit 0 as » - — oo and limit oo as n — oo.

If f/(1)=L'(¢) f'(0), then f is C'. All positive, continuous, strictly
increasing solutions of (x) are similar to f. If g is any such function, its
range must again be all positive numbers. We can then translate g (replac-
ing g(t) by g(t+t,)) so that g(0) = f(0). There must be a homeomorphism
¢:[0,1]—>1[0,1] with ¢(0)=0 and ¢(1)=1 so that g(¢)= f(¢(z)) for
te[0, 1], and this easily extends to relate f and g on all of R.

Each solution of () in turn yields a curve in R?: Cp(t)=(f(2), f(z+1)).
The curve passes through the space of initial conditions of the QF
recurrence. If ¥(x, y)=(y, y+ x?), then fis a solution of (*) if and only
if YoCp(t)=Cy(t+1). If fis a positive continuous solution of (*) with
domain R, the image of C,in R? is always the graph of L.

L is central to understanding solutions of (x). Lemma 3.6 has already
been used in Example 3.1 to approximate L(1). The following result also
follows from Lemma 3.6. More refined estimates for L are given in Section 10.

PROPOSITION 4.1. If J<c<1, then L(x)<x+c*x* for all sufficiently
large x. Also, if 1 <d<?2, then dx < L(x) for all sufficiently large x. The
inequalities x < L(x) < x + x? are valid for all x> 0.

Proof. We verify the first assertion since the others follow in a similar
fashion. Suppose that ¢>0 and x is large and positive. When the QF
recurrence is run “backwards” we have w_, ,=./w_,—w_,_,. If we
begin with initial conditions wy=x and w; = x + ¢*x?, then w_; =cx and
w_,=./(1—c)x. Certainly if ¢<1 the formula for w_, describes an

eligible ancestor (in the non-negative reals) for the pair (x, x + ¢2x?). Also
w_s=~+¢cx—./(1 —c¢)x which is approximately /cx for ¢ fixed and x
large and positive. Finally, w_, ~+/ (/1 —c—ﬂ) x. Lemma 3.6 asserts

that x + ¢*x? is an overestimate of L(x) if w_, is not an eligible ancestor.
This occurs when /1 —c—ﬂ<0 which happens if ce(3,1]. 1
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Since L(1)~ 1.50787 47554, the phrases “sufficiently large” are needed:
take x=1, d=1.6, and ¢=0.6 in the preceding inequalities, for example.
Since L(x) e [x, x+ x?] and Lemma 3.6 allows us to decide if a number is
larger or smaller than L(x), a computer program using bisection can
approximate L(x) to arbitrary accuracy. In particular, we can create a
graph of L. Figure 3 is a graph of L on the interval [0, 2] together with
graphs of x and x + x>

Numerical work suggests the conjecture that for positive initial condi-
tions (x, y)

y=L(x) ifand only if 7y.(x, y)=7p,(x, ).

Computation tends to confirm this, since p,(1, L(1))~1.88695 859 and
y,(1, L(1)) ~ 1.88695 854.

The conjecture is false. More positively, the conjecture is always true, but
only to 6 or 7 decimal place accuracy! The values given above are correct
to 8 decimal places. This can be verified with methods similar to what was

FIG. 3. Graph of L.
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done in Example 2.1 combined with accurate computation of L as previously
explained after Proposition 4.1, and therefore the conjecture is false.

Further explanation. Note that p,(x, L(x))ﬂ =7,(L(x), x*+ L(x)) =
y,(L(x), Lt1(x)) etc., so that the ratio

_ log(y.(x. L(x)))
RO = og(r,(x L(x))

defined for x >0 satisfies R(L'*1(x)) = R(x) and R(L(x)) = g and all of
its values are attained on the interval [ 1, L(L(1))], with L(L(1))~2.501.
Figure 4 is a graph of this ratio. The scales of the vertical and horizontal
axes are very different. The graph would be a horizontal line of height 1 if
the conjecture above were correct. The upper and lower bounds of R are
approximately Max = 1.00000 01150 (attained near x,;,=2.05) and Min
=0.99999 98850 (attained near x,;,=1.28). Of course, w7z~ Min and
L(-xMin) X X Max
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FIG. 4. Graph of R.
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Figure 5 may be more useful. It shows several oscillations of R (x is in
[0.5,4.5]). R is a periodic function if one’s “clock™ is given by iterations of
L. We use this comment implicitly below. Several other questions arise
which we cannot answer now:

e Is there a simple condition in (y,, y,) space which is equivalent to
y=L(x)?

e Suppose L* is defined by requiring that the growth constants
v.(x, L*(x)) and y,(x, L*(x)) agree. Does L* have interesting properties?

e Is the map (x, y) — (y.(x, ¥), 7,(x, ¥)) a local difftomorphism at
every (x, )€ (0, o0) x (0, 00)?

e Is the map (x,y)—- (y.(x, y),7.(x, y)) a difftomorphism of
(0, 00) x (0, 0c0) onto (1, 00) x (1, 00)?

We want to know if () has a real analytic solution defined on all of R.
We show later that y,, y,, and L are positive real analytic functions away
from 0 and have properties closely related to (). We use them to construct

1.0000001 1

(.99999995 +

0.9999939

t 5 g §
FIG. 5. Wider graph of R.
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a solution. R’s invariance under L[?! resembles properties of automorphic
forms. Such invariant or nearly invariant functions are used in many ways.

Any solution to (#) satisfies f(x +n) = LI"( f(x)), and, in effect, () is a
smooth interpolation of iterations of L applied to f(x). For example,
LU74(£(5)) “should be” f(22.4).

Consider the function g(t)=7y/¢t L(t)). Then g(L'(¢))=7yt, L(t))?
using the near-invariance of y,. We can see that if n is any positive integer,
g(L™(1)) = (p.(1, L(1)))*" = (.1, L(1)))¥?" = g(¢)¥*". This certainly suggests
defining

S(x) = gt="(g(1)V?")

and checking if it satisfies (x) with S(0)=¢

This is not satisfactory. If 4(¢) =y,(t, L(t)), then g(L(z)) =h(t )f S(x+1)
is not likely to be the correct value since y, and y, are usually distinct at
(¢, L(2)). But h(L(t))= g(t )\/ also. We reconsider.

Let k(0)=8(9) k(o) 50 that KL())=g(L(®) HL(1) = ks DY g(1)V? =

k(1)¥2 A proof by induction shows that k(L™(z)) = k(¢)¥?", which leads
to redefining S as

S(x) = kL= (k(1)V?)

and checking that this definition of S satisfies (%) with S(0)=r. We
compute

L(S(x)) = kL 1((k(S(x)))V?) = kL1 (h(kE =D (ke(2)V?")))V?)
= KL ((k(0)Y2)2) = K1) V2 = S(x 4+ 1)

so that LI21(S(x))=S(x+2), and (*) is verified because L satisfies its
functional equation. S intertwines L and translation by 1.

There is another detail to be checked. We have already remarked that y,
and y, are real analytic on (0, c0) x (0, co) (this will be proved in the next
section) and that L is real analytic on (0, co) (this will be shown in Section 8).
Thus k& must be real analytic on (0, co). We have proved that L'(s) > 1 for
all s >0, and we shall show in the next section that

0ye(x, y) -0, 0yelx, ) >0, 97o(x, ») >0, and 076(X, y) 0

Ox dy Ox dy
for all x, y >0. Therefore k'(¢) >0 for all >0, and we deduce that kt—1!
is real analytic with domain (1, o0). It follows that S(x) is a positive,
increasing, real analytic solution defined on all of R and that S satisfies ().
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We do not know how to characterize all real analytic solutions although
some further information is given below. We do not know if there are non-
constant real analytic solutions which can be 0. This seems unlikely since
L is not analytic at 0 as we will see in Section 9. Real-valued solutions
defined on R with negative values are not possible by Lemma 3.1. There
certainly are C* solutions on R which are sometimes 0: we will show that
L is C*® on [0, c0) in Section 10. If we then take as initial condition any
non-negative f which is C* on [0, 1], selected so that the formal Taylor
series for f at 1 agrees with the formal Taylor series for L(f) at 0 (any f
which is 0 at both 0 and 1 and which is infinitely flat at both points has
this property), we may extend fto all of R using iterations of L and obtain
a solution of () which is C* on R.

It may be useful at this point to contrast our recurrence with one that
has been more widely studied. The classical Fibonacci recurrence is
H,,,=H,, +H, Two linearly independent solutions are s  (n) =r", and
s_(m)y=r* if ro=(1 +ﬁ)/2 and r_=(1 —\ﬁ)/Z respectively. The
accompanying functional equation is f(x+2) = f(x+ 1)+ f(x). Since r_ is
negative, s_ cannot be used to create a real-valued solution to the func-
tional equation for all real x. But s, (x) is an entire solution to the func-
tional equation. Corresponding to this is recognition that the only initial
conditions (H,, H,) leading to doubly infinite sequences with constant sign
which satisfy the Fibonacci recurrence are those which have H, =r_ H,. In
fact, the function V(x)=(r,) x (just multiplication by r_ ) and its interac-
tion with the Fibonacci recurrence seem be quite analogous to L and its
relationship to the QF recurrence. Thus only initial conditions (x, V(x)) for
the Fibonacci recurrence always yield sequences { H,}, ., which satisfy the
recurrence and for all ne Z have H,=1,H, , with every 4, e R_,.

Any function f defined only on [0, 1) can be used as initial conditions for
a solution to the Fibonacci functional equation by using iterations of ¥ to
extend f°s domain to all of R: f(x)= VLI f({x}))=rL7 f({x}). Here
the outer brackets in J’s superscript refer to iteration, and the inner
brackets, to “integer part”, while {x} means the fractional part of x. For
example, f(3.7) would be ((1 +ﬁ)/2)3f(0.7).

Another way to create solutions begins with m, a periodic function with
period 1. Then

solves the Fibonacci functional equation for two reasons. First, } satisfies
an appropriate auxiliary functional equation,
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and second, V intertwines translation with iteration on functions like F:
V(F(x))=F(x+1). F inherits smoothness from m. Thus if m is real
analytic and periodic of period 1 on R, F must be real analytic on R. Also,
if m is an entire periodic function of period 1, F must be an entire function
satisfying the Fibonacci functional equation.

Results for the QF recurrence are similar to these. We use L in place of
V and create an appropriate class of functions. Indeed, if m is periodic of
period 1 and positive, then

F(x) = kT k(1))

is a solution of (). This again follows from L’s functional equation and L’s
intertwining of translation with iteration on such F’s. The latter can be
checked by direct computation, as was done earlier with S. It seems likely
that all everywhere-positive solutions of (x) defined on R arise this way. If
m is real analytic, so is F. We do not know if there are nonconstant entire
solutions to (*). The behavior of candidates for m when F is one of the
previously described C* solutions is not clear when such solutions have
Zeros.

THEOREM 4.3. Suppose k(t)=v(t, L(t)) y,(t, L(t)) for t >0, and m is a
positive periodic function of period 1. Then k maps (0, ) to (1, o), and
F(x) = kU1 (k()™ ﬁx) satisfies (x). If m is C* or real analytic, so is F.

Proof. The only part of this which remains to be verified is that £ maps
(0, 0) onto (1, o). But k(z)>0 and k(L™(t))=k(z)V?" for all neZ.
We know that lim, , L") (7)= 0 and lim » LM (1) =0. Also, k is
continuous, so the Intermediate Value Theorem applies to show that all of
(1, c0) is in the range of k. ||

n— —

5. COMPLEX SEQUENCES AND REAL ANALYTICITY

If (w, z) e C* let ||(w, z)|| =max{|w|, |z|}. Let D(w, z) = (z + W%, z+ w? +2%),
and let @' =@odo ... o @ (composition n times). We consider again the
recurrence H, . ,= H,  + H? with initial conditions H,=w and H, =z. If
(W, 2,) = @")(w, z), then w,=H,, and z,=H,,,,. We establish some
estimates analogous to the first lemmas of this paper. The function x/(x + 1)
used there is replaced by g(x)=x(x+ 1)/(1 —x)% g is increasing on [0, 1),
2(0)=0 and g(})=1.

If z, #0, let ¢,=w, /22 If w, | #0, let d,=z, /w2, . Finally, let
k,=l(c,,d,)| when both ¢, and d, exist.
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THEOREM 5.1.  Suppose that ¢, and dy are defined and k< 3. Then for
aln=N, c,, d,, and k, are defined, and k, . <xk, with k = g(ky) <1 so
that lim k,=0. Finally, if k<%, then k, . <X k2 for all n> M.

n— oo

Proof. Suppose |w,, 1| <k,|z,|* and |z, | <k, |w,,.|* for some
k,<%. Then

[Wyial| = |Zn+1+wi+1| <|zpgol+ |Wn+l|2<(kn+ 1) |Wn+1|2

1
> bl (1),

and

2
zZ
1+—=
w

n+1

|Zn+l| = |M}n+1+zi| = |M)n+1|

Since k,<3, z,.1 #0.
Therefore

Woiol (ky+1) K2 [(k,+1)k,
ERER Tl e g CRTUALE
so that |w,,»|/1zu41]?=|Cys1| <k, must hold.

Now we know that |w,, ,| <k, |z,.:1%>and |z, .| <k, |w,,|* Paralleling
the proof of Lemma 1, the argument given just previously shows that
|Zn+2|/|Wn+2|2 =|d, 1] <k,.

We now know k,, . =max{|c, |, |d, |} <k,.,;. More precisely we
have shown that k,,, ; <g(k,) k,, when k, <1 If we have N with g(ky) <
and if k = g(ky) then k<1 and k, | <xk, for all n> N.

Since g(x)=x(x+1)/(1 —x)>=((x+1)/(1 —x)?) x can be written as a
product of two increasing functions, g(x)<% x for xe[0, ]. The last
assertion of the theorem is now clear. |J

Suppose (xo, yo) e R% If H, ,,=H,,,+ H?> with Hy=x, and H, =
We separate the even and odd subsequences of {H,}. Let x,=H,, and
Vu=H,, . Define Q to be {(x, y):x=0, y=0, (x, y)#(0, O)} in R If
(X0, ¥o) € O, then Corollary 2.1 provides constants a(xq, Vo) =Y.(X0,> Vo)
>1 and ﬂ(xo,yo = (74(Xo 0))¥V?>>1 so that x,/(a(xq, ¥5))> =1 and
Y/ (B(x0, ¥6))*" =1 as n— co. We also know from Theorem 2.1 that if
Cp=Xp1/y2and d,=y, . /x2, then ¢, >0 and d, - 0 as n > c.

THEOREM 5.2. The maps a(x, y) and f(x, y) can be extended to an open
neighborhood U of Q in R% a(x, y) and B(x, y) are real analytic and non-zero

on U, and Tim,, _, ,(x,/(a(xo, 10))*") =1 and lim,,_, ..(y,/(B(xo, ¥4))*) =1
for all (x, y)e U.
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Proof. Suppose (xq, yo) € 0. We show that « and f can be defined in
an open neighborhood of (x,, y,) by realizing that they are uniform limits
of holomorphic functions in an open ball centered at (x,, y,) € C> The
notation of the discussion and proof of Theorem 5.1 is used.

By Theorem 2.1, there is N so that xy, /y¥<%and yy /x5, <5 If
(w, z)e C?, then (w,, z,) is a pair of polynomial functions of w and z. Let
Bs= Bj(xo, yo) = {(w, z)eC?: |w—xy| <9, |z— yo| <J}. Note that ¢, and
d, are defined at (x4, y,) for all n. Select 6 small enough so that
C15Coy .y Cy and dy, d,, ..., dy are defined in all of By. This is possible since
these functions are all defined at points where certain polynomial functions
are non-zero, and (x,, yo) is such a point. We can also select 6 small
enough so that cy< 3 and dy <3 for all (w, z)e By since ¢y and dy are
continuous functions where they are defined. We may additionally assume
that Re z,, >0 and Re w, >0 in all of Bs by again shrinking ¢ if necessary.

All the hypotheses of Theorem 5.1 are valid for all (w, z)e Bs. Since
ko1 <% k2 and ky<}, the two sequences of rational functions {c,} and
{d,} converge uniformly to 0 in Bs as n— oo.

For n> N, define

n—1

1 1
a, 2NLog Zyn) + Z 2]+1L0g(1+c)

n—1

1 1
n 2NLog(wN) 221+1Log(1+d)

j=N

where Log is the principal branch of log, defined here by Log(z) =log(|z|)
+iargz with —zm<argz<n. Since Rezy>0, Rewy>0, |¢;| < 4, and
|d;| <}, the functions a, and b, are all defined and holomorphic in Bj.

This deﬁnition is motivated by the following considerations. If n> N,
Zpp1=Zntwit+z2=wl,  +z2=(1 +(wn+1/z 2)) z2=(1+c¢,) z2. Therefore,
(Zps1)? T hould be” 1+¢,)2 " () "= +¢,)> """ (14¢, )"
(z,_1)* “="= ... “down to” N. Of course, holomorphic roots are problematic,
but these equations can be made precise with logs on correctly restricted
domains, as done above. A similar result is true for w,,; and d,,.

Elementary estimates for log show that [Log(l+¢;)|<2 |¢| <1 and
|Log(1+d))| <2 |d;| <1 when j> N, so the two sequences of holomorphic
functions {a,} and {b,} converge uniformly on B, to holomorphic limits
a and b.

Define o, =exp(a,) and f,=exp(b,). An induction proof combined with
the algebra above shows that z,=o?" and w,=2". Finally, we define
a=expa and f=expb.

The theorem’s final claim is verified if we show that lim,, _, ., (x,/a(xg, ¥o)?")
=1, with a similar statement and proof for y, and f. This limit is equivalent
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to lim,,_, (a2"/a(xg, y)*") =1. On the “log level” we must show lim,,_, .,
2"y % (1/27+1) Log(l +¢;) =0. The quadratic convergence of {k,} in
Theorem 5.1 guarantees this. ||

COROLLARY 5.1.  The following equations hold for all (x, y) in Q:
a(x®+ y, x2+ y*+ y)=alx, y)? and
Blx+ y, x>+ y2 + y) = B(x, y)*;
ofx, y)>=p(y,x*+y)  and
. x*+y) =B(x, y).

Proof. The unique growth constants for our recurrence given initial
conditions (xq, yo) € U are a(xy, ¥o) and f(xq, yo)- If (x4, ¥o) € Q then the
next two terms produced by the recurrence are (X3+ yo, X3+ y3+ o).
Shifting the index in the limit of the previous theorem shows that
a(xq, ¥o)? and B(x,, y,)? are growth constants for the sequence with those
terms as initial conditions, which proves the equations above.

The second set of assertions about a and f are obtained by shifting the
index only one step. Of course the first pair of equations can be deduced
from the second by applying them once each. ||

We hope that these functional equations will allow us to analyze other
properties of our sequences, such as which polynomial identities are
satisfied by generic sequences resulting from applying the recurrence.

We need to analyze the partial derivatives of y, and y, in order to
complete the proof of Theorem 4.3.

For x and y positive, we let x; =y +x? and y; =x, + »?, and generally
for any k>1 we define x;,;=y,+x7 and Y, =X, + y;i. Certainly
x,=F(x, y) and y,=Gu(x, y) where F, and G, are polynomials with
positive integral coefficients. For fixed X and j positive we have just shown
that there exists d >0 so that if |[(w, z) — (X, J)| <J, the maps (x, y)—>
(F(x, y))* " and (x, y) = (Gi(x, ¥))*>~" (initially defined only for positive
real x and y) extend to holomorphic maps which we denote (Fy(w, z))2™"
and (G (w,z))>"". Furthermore, the maps {(F(w,z))*> }rcn converge
uniformly on By(X, ) ={(w, z): [[(w, z) — (%, J)| <J} to a holomorphic
map a(w, z) =y,(w, z), with a similar statement for {(G,(w, z))rk}ke,\, and
Pw, z) = (p,(w, z))\/i. Certainly for any positive ¢’ <4,

(n2)  and L (Fewa 22 > L, 2)

(B 27 )= z £

ow ow Ve

as k — oo, uniformly for (w, z) satisfying [|(w, z) — (X, 7)| <J'.
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We only need information about the first partial derivatives of y,(x, y)
and y,(x, y) for real positive x and y. Since larger initial conditions lead to
larger growth constants, x — y,(x, y) and y — y(x, y) are increasing maps.
Thus (0y,/0x)(x, y) =0 and (dy,/0y)(x, y) =0 for real positive x and y.
Similar statements are true for y,.

ProposiTiON 5.1. If x>0 and y >0, then (0y,/0x)(x, y) > 0.

Proof. Take logarithms in the first limit displayed above. Thus it will be
sufficient to prove, given x and y positive, there is ¢ >0 so that

0
; 2 Fidx )
— (27 %log F, =2F—>c
5o (2T log i ) =27 S s

Let x; = Fy(x, y) and y, = G4(x, y) and note that dy;/dx >0 for all j > 0.
Then

0 0xr_ 1 Oyp_ 0xp _
a*F(x,y) <2xk1 ak l+yakl> Xrp—1 ak :
2—k X :2—k 5 X 22—(1{—1) 5 X
Fi(x, y) X1t Vi—1 X1t Vi—1
0
xk—1a*(x12c—2+yk—z)
>0 —Uk—1) f
Xe—1T Vi1
0Xp s
Xe—1Xk—2 2
>0 —(k=2) X ’

2
X1t Vi1

where we have used 0y, _,/0x >0 and 0y, _,/0x = 0. We may continue and
obtain

0
7Fk(x5 y)

ox Xp_1X S X
S Ye—1Xk—2 0

2k >
Fi(x, y) Xp_ 1+ Ve

>

where x,= x.

If d;= y;/x7, then we know (Section 2) that lim, _, ,, ;=0 and d;, , <d}
for jlarge. Then we may write x; =y, +x;_;=(1+d,_,)x;_orx, ;=
x;?/(1+d,;_,)"* which leads to

X _ X llc/i 1 X _ X Ilc/i 2 _ X Ilc/izl
o) T (4 de ) (L dy o) (14 dy5)
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so we have generally

1/2/-1
X1

Xp_i= it —j+ -
k=7 (1+d,_,)?*" 1(1+dk—3)2 2"’(1+dk—j)2 1

It follows that the product xyx; --- x,_; can be underestimated by
x}l{ti/2+l/22+ +1/2k-1(1 +dk,2)71/271/227 =172k
X (14 dy_y) 7127V 212 (1 4 )~

2 (k=1)

B 1
> Xal¥ii ) 1<<1+do>(1+d1>~-(1+dk_2>>'

Since x7 _,+ yr_1=(1+d,_,) x7_,, we see that

0
a Fk(xa y)
X < Xk—1Yk—2 """ Xo

2k >
Fi(x, y) xlzc—1+yk—1

2 —(k=1)
= (X _1

» | >
) <<1+do)(1+d1>---(1+dk_2><1+dk_1>

This last expression is sufficiently simple to underestimate effectively.
Our estimates imply that 372, d;=D <0, so limkaool_[’;;ol(1+dj)=
x>0. We also know that limkaooxi:(i*l)zye(x, y), where 1<y, (x, y)

< 00. Therefore

0

:Fk(xa y) 1 1
lim inf 2% > < ><> >0
k— Fk(xa Y) ye(x’ y) K

and we are done. ||

In Theorem 5.2 we have shown that the functions « and f extend analyti-
cally to an open neighborhood of Q in C2 In general, given z, and z; in
C, suppose that {z;}, j>0, satisfies the QF recurrence and define v; =z,
and w; =z, ,,. Thus, if we define F=¥11, (v,, w,) :=F"(v,, wy). If &
denotes the set of stable initial conditions in C? (so (w, z) € & if and only
if sup,{ Pt (w, )|} <o), then for (vy, we) € C* and (vy, wo) ¢ &, one
can ask whether there exist complex numbers a(v,, wy) and f(vy, wy) such
that

) v ) w
lim —"——=1 and lim ———;=1.
n—w &(Vg, Wo) n—w B(vg, Wo)



88 GREENFIELD AND NUSSBAUM

Less generally, one can ask whether there exist positive real numbers
a(vy, wo) and b(vy, wy) such that

. w
7"'” =1 and lim [V

== 1.

now A(Vg, Wo)? n—aw b(vg, Wo)?
One can also ask whether only some of these limits exist or whether there
exists a positive, real number ¢(v,, wy) such that

po 1w

=1.
n— oo C(UOa Wo) ¥

Finally, one can ask whether, for (v,, wy) ¢ &, the following limit exists:

lim M = lim G,(vy, wo) := G(vg, Wy).

n— oo 2” n— oo

We shall sketch here some answers to these questions, but we shall defer
proofs to a future paper. In the next section it is proved (see Lemma 6.1)
that . is a compact set which is contained in the closed ball of radius 2 in C2.
Also, it is not hard to prove that, for (v, wo) ¢ &, sup,{G,(vy, wo)} < 0.

LEMMA 5.1.  Assume that (vy, wo) € C?, (vy, wo) ¢ S and k> (3 +f
Suppose also that there exists a sequence of integers n; — o0 such that U, #0
and |(w, /v, )| Zk. Then there exists an integer N, such that v, ;éO and
[(w,/v,)] >k for all n=N,. It follows that if limsup,_  |(w,/v,)| =
then lim,, _, . |(w,/v,)| =

LEMMA 5.2. Assume that (vy, wo) € C?, (v, Wo) ¢S and limsup,,_, .,
|(w,/v,)| = co. Then there exists a real number b :=b(vy, wy) > 1 such that

W,
lim
n— oo bzn

=1.

LEMMA 5.3. Assume that (v, wo) € C?, that (vy, wo) €. and that there
exists a constant M such that |(w, /v,)| < M for all large n. Then there exists
a real number a :=a(vy, wy) > 1 such that

. v
lim | ;’,,' =1.
n—->o d

The following theorem was stated by the referee in his report.
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THEOREM 5.3. For all (vy, wo) € C% (v, wo) ¢ S, the number G(vqy, w,)
(defined above) exists and is a finite, positive number. The map (vy, wo) —
G(vy, W) is plurisubharmonic.

We now turn to the question of whether, given (v, wo) € C?, (vy, wo) ¢ &,
there exist o :=a(vy, wy) and f := f(v,y, wg) such that

. v . w
lim —"——=1 and lim ———;=1.
n— oo (g, W) now (g, W)

We define o7 to be the the set of (vy, wo) € C?, (vg, Wo) ¢ &, such that
a(vg, wo) and B(v,, wo) as above exist.

THEOREM 5.4. Assume that (vy, we) € C? and (vy, wo) ¢ . It follows that
(vg, Wo) €7 if and only if there exists an integer N=1 such that vy #0,
|(wa/va)| >2 and |(wy/v%)| < (1/3). Given (v§, wi) € o/, there exists § >0
such that for all (vy, wy) € Bs(vd, w§) (where Bs(v§, w§) denotes the open
ball in C? of radius & and center (v, wi)) one has (vy, wy) € /. The numbers
a(vg, Wo) and f(vy, wy) can be selected so that the maps (vy, wy) = a(vg, Wo)
and (vy, wy) = P(vg, wo) are holomorphic maps defined on Bg(vE, wE). If
oy (vg, wo) and B(vy, wo) are holomorphic maps defined on Bs(v, we) and
such that

v
lim —2——=1 and lim ————=1
now 0q(Vg, Wo)?" now Bi(vg, w)*

w

then there are complex numbers uy and u, such that a,(vy, wo) = uya(vy, Wo)
and B1(vg, wo) =ty B(vg, wo) for all (vy, wo) € Bs(vg, we). The constants u;,
j=0, 1, satisfy lim u?' =1.

n— oo %j

6. DEGREE THEORY AND PERIODIC POINTS

Recall that ¥(w, z) = (z, z+ w?). As before, PI" 1 =¥oWo ... o ¥ (com-
position n times). We define &, the set of stable initial conditions of the
recurrence H,,,=H,,,+ H?, by the following:

S ={(w,z)eC*:sup {|P"(w, z)||} <0}

n

& must contain any periodic points of the recurrence: those (w, z) for which
there is an N with YY) (w, z) = (w, z). Considerations from degree theory
will show that % contains infinitely many periodic points.
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If (w,z)eC? then we can always go backwards: there are complex
numbers ¢ with ¢> +w =z If ||(w, z)| = R then |g| </ﬁ, so when R<2,
all ancestors of (w, z) will be in Bg(0, 0). The lemma following shows that
sup in the definition above can be taken over all integers or only over
positive integers: the set . will be the same.

If 0<t<1, define ¥,: C?>— C? by

Y, (w,z)=(z, tz+w?).

Of course ¥,=Y. The composition of ¥, with itself n times will be
denoted P,

LemMa 6.1. If |[(w,z)|=R>=2 and te[0, 1], then ¥, (w, z)|| = [|(w, z)|.
If R>2, there exists a unique positive number ¢ = c¢(R) such that *R—1=1
and ¢ <./%+3%<1 so that if |(w,z)| =R, then |¥(w, 2)[| = (1) ||(w, 2)|
and lim [P (w, 2)|| = co.

n— oo

Proof. Suppose that ||(w,z)|=R=2.If [w|=R and 0<r<1 then
[P,(w, 2)| = |w?+tz| = |w]*>—t|z]| =>R*—tR=R(R—1)>=R.

If |w| <R, then |z| =R, so |¥,(w, z)|| = R. Therefore | ¥ (w, z)|| = I(w, 2)|.

If R>2, we define /,(c)=c*R—1 and y,(¢) =1 for ¢>0. y, is strictly
increasing on (0, o) and W, is strictly decreasing on (0, o). Since
lim,_ o+ Ya(c) =00 >1lim,_ g+ Y1(c)=—1 and Y,(l)=1<y(1)=R—1,
the Intermediate Value Theorem shows that there is a unique c=c¢(R)e
(0, 1) with y,(c)=y,(c). The Intermediate Value Theorem also implies
that if 7€ (0, 1) satisfies y;(¢) > 5(¢), then ¢(R) <t. We select tz=/%+1
and consider the following functions of R: (y/,(tz))?> = R?*/4 and (Y,(1z))* =
2R/R +2. These functions are both 1 when R=2. Differentiation shows
that both functions increase for R>2, but (,(f))* is concave up and
(Y5(tg))? is concave down as functions of R for R>2. At R=2, the first
derivative of the former is 1 and the first derivative of the latter is 1. We
have verified that (7z) > ¥»(tz), 50 ¢(R) <tr=./%+1.

Our previous remarks show that if |[(w, z)[| =2, then { | ¥ (w, 2)|},cn
is an increasing sequence. If we can prove that

1PE 0w, 2)| = 2 [l(w, 2)|

whenever |[|(w, z)[| > R>2 where A=1/c(R)>1, then |[¥[*I(w,z)|>
27 ||(w, )|, so that lim,,_, , [[¥L")(w, z)| = oo for such (w, z)s.
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We now prove the needed inequality for [|¥!?)(w, z)| when [|(w, z)| =
S> R>2. There are several cases. First, if |w| = ¢S where ¢ =c¢(R),

[ (w, z)| = |w?+tz] = 2S?—tS=S(c>S— 1) = S(c?R—1)=S <1> =.S.
Then [|ZF(w, 2)| = [P (w, 2) = 4 [(w, 2)].

Alternatively, suppose |w|<c¢S < S. Then |z| must be S. We consider
(Wi, z1)=W,(w, z)=(z, w>+1z) and let S; = |(wy, z;)|. If z; =w? + ¢z has
modulus at least AS, then S, > AS, and again [P (w, 2)|| = | w, 2)|| =
Al (w, 2)]I.

So we now consider |w| <c¢S and |z,| <AS. We know that S, > S and
|lwi|=|z| =S < AS. Then |w,| =c(4S) > ¢S;, and the point (w,, z,) exactly
satisfies the hypothesis for the first case discussed. It follows that
1Z w20l = 1P (w, 2)| =28, =28, 1

¥ itself need not increase norm on a closed bidisc centered at (0, 0) of
radius R>0, since |¥(ai, R)|=|(R, R—a?)| =R for a real with 0<
max(|«|, «*) < R. The lemma shows that the set of stable initial conditions
must be bounded: surely .% = B,(0, 0). We do not know R, =sup{|(w, z)|:
(w, z)€ &}. One can show (see Section 7) that ¥ has a periodic point { of
period 4 with ||{|| > 1.7 and a refinement of Lemma 6.1 shows that R, <2,
so we have 1.7< R, <2.

We briefly review some facts about degree theory. See [5], [13], [16],
and [17] for further details. If G is a bounded open subset of R” and
F: G— R" is a continuous map such that F(x)#a for all x € dG, then one
can define an integer m, an algebraic count of the number of solutions in
G of the equation F(x)=a. m is called the degree of F in G at q,
deg(F, G, a). If Fis C', a is a regular value of Fand L,={xe G: F(x)=a}
then

deg(F, G,a)= ) &(x),
xeL,
where ¢(x) is the sign of the determinant of the Jacobian matrix of F'(x).
The degree has the following properties which will be used to analyze
periodic points:

Normalization. 1If F=I=the identity map and «a ¢ 0G, then deg(l, G, a)
=1ifaeG and deg(, G,a)=01if a ¢ G.

Additivity. Suppose that G, and G, are bounded open subsets of R”,
G=G,uUG,, and F: G— R" is a continuous map such that F(x)#a for
x€dG, udG, u (G, N G,). Then

deg(F’ Ga Cl) = deg(F’ Gl) Cl) + deg(Fa G2’ Cl).
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Homotopy. Suppose that G is a bounded open subset of R” and that
F: Gx[0,1]— R"is a continuous map with F,(x) defined to be F(x, ) for
xeGandte[0,1].If F(x, t) #aforall (x, t) € 0G x [0, 1], then deg(F,, G, a)
is defined and constant for 0 <z < 1.

If G is an open subset of R” (not necessarily bounded) and F: G — R" is
a continuous map such that L,={xeG: F(x)=a} is compact (possibly
empty), then one can still define deg(F, G, a). Let H be any bounded open
neighborhood of L, with H = G and define deg(F, G, a) to be deg(F, H, a).
Additivity of degree then shows that this definition is independent of the
particular H chosen.

We will also need the commutativity property of degree theory. Suppose
the U and V are open subsets of R” and f: U—- R"” and g: V- R”
are continuous maps. Assume that Fix, ,={xef " '(V): g(f(x))=x}
is compact (possibly empty). Then Fix,.,={yeg '(U): f(g(y)) =y} is
homeomorphic to Fix,., and

deg(I—gof. f7'(V),0)=deg(I— fog, g~ '(U), 0).

If G is an open subset of R” and f: G — R" is a continuous map, let /11
denote the composition of f with itself j times with its natural domain of
definition in G. We call x, € G a periodic point of minimal period p if
ST7(x) = xo and fT7(x) # x, for 0< j<p. Let x,= f1/)(x,) for 0< j<p,
and assume that there is ¢;> 0 so that ft71(y) # y for 0 < ||y — x;| <¢;. Let
B,(y)={y|ly—yl <e}. The commutativity property then implies that
for 0 < j<p,

deg(l_f[P]a B.sj(xj)a 0) = deg(l_f[p]a Beo(xo)a 0)

Here we will use degree theory to study holomorphic maps. One
reference for the results needed is [ 19]. Suppose that G is a bounded open
set in C™ and F: G — C™ is holomorphic. We identify C™ with R*" using
(X141, XDy Xt V) < (X1, Vis Xas Yoy Xps V) I 2=
{{eG: F({)=0} is compact and nonempty, then X is a finite set. If (€ X,

e>0and B,({) n 2= {{}, then deg(F, B,({), 0) is defined and deg(F, B,({), 0)
> 1. Thus the degree of F on G is bounded below by the number of elements
of 2. Also, if F, is a homotopy of holomorphic maps avoiding dB,({) (so
F;710)n0B,({)={{} for all 7) then deg(F,, B,((),0) is constant.

t

THEOREM 6.1.  Suppose m is a positive integer and R > 2. Let Br = Bg(0, 0).
If I: C% — C? is the identity map, then the degree of I— W' on By is defined,
and deg(I — W', By, 0) =2™ Therefore the equation YU \(w, z) = (w, z) has
2™ solutions (counting multiplicities) in Bg. These solutions are isolated, and
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there are at most 2™ distinct solutions. The map ¥ has infinitely many distinct
periodic points.

Proof. We use the results of Lemma 6.1 with G= B and F=1— %",
The lemma asserts that F({) #0 for (e C*\G, so X,={(w,z)eG:
Pirl(y, z)=(w, z)} is a finite set and deg(F, Bg, 0) is defined. Lemma 6.1
also shows that if F,=1— Y"1, then F, is not zero on 9G for 0<<1, so
that deg(F,, Bg, 0) is constant. When 7=0, this computes the number of
roots (counting algebraic multiplicity) of ¥§(w, z) = (w, z). But ¥§*(w, z)
=(w?, 2 (n even, n=2k) and YI* Y (w, z)=(z*",w¥) (n odd,
n=2k—1). Since R>1 there 2" roots, each with multiplicity 1. The
remarks preceding the theorem then verify the conclusions about the
number of solutions.

It remains to show that ¥ has infinitely many distinct periodic points.
This will be proved using a result of Shub ez al. [ 20]. An alternative proof
with more precise assertions is given below. Suppose that f: R?— R? is a
C' map and that f(x,) = x,. Assume that for every positive integer n, x, is
an isolated fixed point of f1"1: there is ¢,(x) > 0 so that fI")(x) # x for 0 <
lx —xo || <é&,(x,). Shub and Sullivan show that there exists an integer N,
independent of n > 1, such that |deg(7— ", B, ((x,), 0)| < N for all n>1.

We apply this result with /= ¥. Suppose ¥ had only finitely many distinct
periodic points, say (;, {,,.., {,. Select £>0 so that B/({;) N B,({;) is
empty for all j#k. The Shub-Sullivan result then implies that there is an
integer N with

0<deg(I— %™, B((;),0)<N

forn>=1, 1 <j<t If Ris large, the additivity property of degree gives

t
2" =deg(I— W™, B, 0)= ) deg(/— ¥, B,((;),0) <IN

j=1

which is false for sufficiently large m. ||

ExampLE 6.1. Ifn=1, ¥(w, z) = (w, z) has one distinct fixed point, (0, 0),
which has multiplicity 2 (consider ¥, which has the same multiplicity at 0). If
n=2, Y2(w, z) = (w, z) has three distinct solutions: (0, 0), {, = (1+1i, 1 —i),
and {_=(1—i,1+1i). The solution (0,0) has multiplicity 2, the other
solutions have multiplicity 1, and 2+ 1+ 1 =22 as the theorem predicts.
More information about the multiplicity of ¥ and its iterates at (0, 0), {,
and {_ is provided in what follows.

We can be more precise about the existence of certain periodic points
after computing some specific degrees.



94 GREENFIELD AND NUSSBAUM

THEOREM 6.2. For each n>1 select &,> 0 so that Y (w, z) # (w, z) for
0<|(w, 2)||<e,. Then for any ¢ with 0 <e<e, and any n>1,

deg(I— P, B,(0,0),0)=2.

Proof. We establish the theorem by a succession of homotopies inspired
by the specific form of W™, We first claim that if n>2,

Pl 2y =(z+ w2+ (n—=2) 224+ P, (w, 2), z4+w?+ (n—1) 22 + Q,(w, 2)),

where P,(w, z) and Q,(w, z) are polynomials in w and z and each term in
each polynomial has degree >3. This formula is easily established by
induction.

Next consider the homotopy

(PUY (w,z)=(z+w?>+(n—2) 22+ 5P, (W, 2),
24+ w4 (n—1)224+50,(w, z))

for 0 <s< 1 If (P (w, z) = (w, z) and [|(w, z)| = &> 0 for & small, we see
that |z —w| = O(&?) so, for ¢ small enough, we can assume |w|> 3¢ and
Izl =1e (P (w, z) = (w, z) gives

w=z4+wr+n—=2)z24+sP,(w,z) and z=z+w?+(n—1)z24+s50,w, z)
and therefore
O=(z4+w>+(n—=2)22+sP,(w,2))>+(n—1) 22 +50,(w, 2)
=nz2+ R,(w, 2)

where R,(w, z) is a polynomial all of whose terms have degree >3. There-
fore there is a constant M, independent of s€ [0, 1] such that |R,(w, z)| <
M,&* for |(w,z)| <e. Since |z| >1ie, the equation 0=nz>+ R, (w,z) is
impossible for all sufficiently small ¢. Thus there is ¢,>0 so that (¥L*1),
(w, z) £ (w, z) for 0< ||(w, z)|| <¢, and for ¢ with 0 <¢ <g,,

deg(I— ¥, B,,0)=deg(I—F,, B,,0)

it F(w,z)=(z+w?+(n—2)z% z+w?+(n—1) z?).
For fixed n>2 we now consider the homotopy

Hyw,z)=(z+ W +An—2)2%z4+w2+An—1)z?)

with 0 <A< 1. We claim that if 0 < ||(w, z)|| <& where ¢ >0 is sufficiently
small, then H,(w, z) # (w, z) for 2€[0,1]. When /=0, Hy=¥ and it is
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simple to check that Hy(w,z)=(w,z) if and only if (w,z)=(0,0). So
assume 0 <A< 1. Then H(w, z) =(w, z) is exactly

w=z+w?+An—2)z2 and z=z+wr+i(n—1)z%

The second of these equations shows that w= +iz. /A(n—1) so w=0
exactly when z=0. If we assume z # 0 then substitution in the first equation
yields

+iz JAn—1)=z—24(n—1)z%4+ An—2) 22

so that

In order for z to be a non-zero solution, A(n —2) — A%n—1) must not be
0. Then there is ¢, >0 so that

for 0<ALI.

1+in—1)
lz| = - > ¢,
2(n—2)—n—1)|

The homotopy H, can be used to compute degree for sufficiently small
e>0.
So there is &,>0 so that when 0 <e<§g,,

deg(I—¥", B,,0)=deg(I— ¥, B,, 0).

Example 6.1 shows that the degree on the right is 2. |
.=+ 1—i) and {_=(1—1i,1+41i) were defined in Example 6.1.

They must also be fixed points of ¥'?"! for any positive integer m.

THEOREM 6.3. Select ¢,>0 so that (I—WP"H(w,z)#0 for 0<
l(w, 2) =C, |l <e,, if s is either + or —. If 0<e<e,,, then deg(]— WYL,
B,((,), 0)=1.

Proof. The complex Fréchet derivative of @ = Y121 at (w, z) is given by

the 2 x 2 matrix
2w 1
Y’ = .
(v, 2) <2w 1+ 22>

¥'(w, z) acts on C? by multiplying 2 x 1 column vectors on the left.
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If &(w, z)=(w, z) and I —(D'(w, z))™ is invertible, then deg(/— @™, B,, 0)
=1 for all sufficiently small & > 0. Here (w, z) ={,. If we can prove that every
eigenvalue 4 of @'({,) satisfies |A| > 1, then 7— @'({,) will be invertible. Since
1 1s an eigenvalue of @'({,)™ if and only if 4 = A™ for some 4 which is an eigen-
value of @'({;), every eigenvalue of @'({,)" will satisfy |u|> 1. This implies
that 7— @'({,)™ is invertible, and the theorem will be proved.

We complete the proof by computing the eigenvalues of @'({,). det @'(w, z)
=4wz and tr @'(w, z) =1 + 2(w + z). Therefore when (w, z) ={,, 4wz =8 and
1+2(w+z)=3, so the eigenvalues are the roots of 2> —51+8=0. These
roots are A= (5+./7i)/2, which satisfy |1|>1. |

THEOREM 6.4. If p =2 is a prime, ¥ and @ = V' must both have periodic
points of minimal period p.

Proof. Suppose p>2. For R>2, Theorem 6.1 asserts that deg(/ — @L?],
Br,0)=2%. We again apply additivity of degree to underestimate this by
deg(I— @t B,,0) + deg(I— @LP), B,({,),0) + deg(I—@tP1, B,({_),0).
For sufficiently small ¢ the previous results show that this sum is 4. There-
fore the map @71 must have additional fixed points which are not fixed
points of @. But since p is prime, any fixed point { of @L?1 which is not a
fixed point of @ must satisfy @L/1({)#( for 1< j<p. Such {’s are fixed
points of minimal period p for @.

Only (0, 0) is a fixed point for ¥ and its multiplicity is 2. The degree
inequality above becomes 27 >2 for p > 2, thus showing the existence of
periodic points of minimal period p for ¥ as well.

We complete the proof of the theorem by verifying the case p =2. Each
{, is a periodic point of minimal period 2 for ¥. ®t?] has degree 2*=16
on a large ball, and the fixed points of @ are 0 and the two {,’s, which
contribute only 4 to that count. Thus (as above) there are additional fixed
points of @21 which cannot be fixed points of ¥. ||

We can completely describe the periodic points of Y"1 for n=3 and
n=4. We describe the easier case when n=3 completely and summarize
what happens when n=4.

Complex conjugation is the real linear involution of C? defined by %(w, z)
= (W, 2). Of course, the QF recurrence (the map ¥) and ¥ commute which
helps further analysis of the periodic points.

LeEMMA 6.2. Suppose {=(w,z)eC? and {#(0,0). If YBY) =, then
€O ¢ PO, PRI

Proof. (0, 0) is the only periodic point in R? of ¥. But if ¥({) =¢, then
¢ e R? which contradicts the assumption that { # (0, 0). Therefore €({) #¢.
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If €(0) = ¥({), then (w, 2) = (z, z+ w?). Then w =1 +w?, so if w=x+iy
the equation

x+iy=x—iy+(x*—y?) +2ixy

results. Taking imaginary parts of both sides yields the equation y(1 —x) =
0 while taking real parts gives x> — y*>=0. So either y=0or x=1.If y =0,
the second equation shows that x=0 so w=0 and then { must be (0, 0),
which is again a contradiction. If x=1, then y= +1. Then w=1+1i so
z=17F1, and it is easy to see that Y31 +i, 1Fi)#(1+i 1 Fi).

Finally, suppose that %({) = ¥Y'?1({). Since ¥ and ¥ commute, we see
that €(¥({)) = P3¢ =¢ so that Y({)=%({) since ¥ is an involution.
But we previously showed that this equation has no solutions under the
hypotheses of this lemma. [

Let T={neC?: Y (y)=pn}. T is a finite set whose points all have
distance at most 2 from the origin. There is ¢ >0 so that ¥I3(v) # v when
0<|v—y|l<e and e T. Note that deg(I— ¥, B,(n), 0)>1 and
deg(I — W31, BL(0),0)=23=8 for any R>4. Previous results show that
there must be some { of minimal period 3. The lemma then asserts that (,
Y(0), PL20), 6(0), €(W(()), and 4(¥P21({)) must all be distinct. These 6
points each contribute at least 1 to the total degree count. Since deg(/— %3,
B,(0),0)=2 we have accounted for all elements of 7, and have verified
almost all of the following.

THEOREM 6.5. ¥ has precisely two distinct periodic orbits of minimal period
3. If one orbit is {{, P(0), PP}, the other orbit is {%((), ¥(%(0)),
YRN G} If n is any periodic point of ¥ of minimal period 3, then
I— (YB3 () is nonsingular.

Proof. The final assertion of the theorem is a consequence of an addi-
tional result of [ 19]: suppose that {e C", ¢ >0, F({)=a, and F: B,({) » C"
is holomorphic. If deg(F, B,({), a) is defined and equal to 1, then F'({) is
nonsingular. Take F=1I— W3] here, proving the final statement of the
theorem. ||

Computer-assisted computation reveals that the minimal period 3 points
of ¥ are of the form (w, —3w—3w?+Zw?+1w’) where w is any root of
w® —3w? 4+ 6=0. Approximate numerical values are w= +a+bi or +ci
with a~1.1776 50699 and b ~0.4573 953100 and ¢~ 1.5346 99123.

The analysis of the fixed point set of ¥I*! is considerably more com-
plicated. The total degree count is 2* = 16. The origin accounts for 2 of this
total, and each of {, and {_ for 1. None of these is a minimal period 4
point. The interaction between % and Y!"! and its consequences for fixed
point sets have been investigated. The proofs use rather specific homotopies.
The arguments are complicated but similar to some of the proofs given
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previously. They will not be given here. Some of these results may seem
familiar, such as the following:

LEMMA 6.3. For any R>2, deg(I—%@W!, Bx(0),0) is defined and
equal to 2",

Of course, % is not holomorphic, and this has consequences which may
not be anticipated and which emphasize that degree counts the solutions of
an equation algebraically. If #¥"1({) ={, then Y?"1({)={. Therefore the
solutions of #¥"({) ={ are isolated, and there can be no more than 4" — 1
distinct such solutions (the origin is counted twice in the degree of WI?1),

LEMMA 6.4. For each n>=1, select £,>0 so that €PN ()#( for
0 < ||l¢|l <e&,. Then for any ¢ >0 with 0 <& <e,, deg(I —F¥", B,(0),0)=0.
The idea of the proof is to use a homotopy and obtain the equality
deg(I—€P™, B(0),0) = deg(I— €, B,(0),0).

The details of this argument are intricate but the final step of this lemma’s
proof uses a technique not previously employed here. The final step follows.

Proof (of the lemma for n=1). We write w=x, +ix, and z = x; + ix,.
Then
EGP(w, z) = (x3—ixy, x5+ (X7 —x3) — i(x4 +2x,X5,))
and we think of ¥¥ as a map from R* to R* Then
(I—FW) (X1, Xa, X3, Xg) = (X1 — X3, Xp + X4, X2 — X2, 2X4 + 2X1 X,).

If a > 0, we claim that (0, 0, —a?, 0) is a regular value for I —%¥ on B,(0),
and that (1—%%¥)~" (0,0, —a?, 0) consists of the two points 7, =(a, 0, a, 0)
and #_=(—a, 0, —a, 0) for a sufficiently small. We verify this claim.

Certainly (/—%%)(,)=(0,0, —a? 0). Conversely, if (/—€¥)(x,, X,
X3, X4) = (0,0, —a? 0), then

X, —x3=0, Xy +x,=0, x:—xi=—d% 2X4+2x,x,=0
and therefore x;=x3, X,= —x4, and 2x,+2x;x, =2x4(1 —x;)=0. If
x, #0, then x;=1 which is not possible for ¢<1. Thus x,=0 and
X, = —x,=0, so that —x}= —a? and x, = +a. Further computation gives

| 0 -1 0
0 1 0 1
—2x; 2x, 00
2x, 2x, 0 2

(I—=FY) (x1, X, X3, X4) =
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which has determinant —4x,(1 —x;) +4x3. At 7, this is —4a(1 —a), and
at #_, it is 4a(1 +a). When 0 <a <1, both determinants are non-zero,
establishing the regularity asserted. The determinants have opposite signs,
so the algebraic count of the degree is indeed 0. ||

The last two results imply that ¥¥2)({) = ¢ has non-zero solutions.

LEMMA 6.5. There is { # (0, 0) such that €P(()=¢.

Proof. For R large, deg(I— €W, Bx(0),0)=2", so deg(I— €W,
Bx(0),0)=4. For sufficiently small ¢>0, deg(I—%¥'?], B,(0),0)=0. If
U= Bx(0)\B,(0), additivity of degree implies that deg(I — €W}, U, 0) =4.
Therefore there is { € U with €PN =¢. |1

An exact description of the orbit structure of the fixed point set of ¥I*]
requires a great deal of specific computation differing in detail but not in
nature from what has already been written above. We will not show these
details. We state the final result, however.

THEOREM 6.6. ¥ has precisely three distinct periodic orbits of minimal
period 4. If P N)={ for (eC? and {#0, then I— (P () is non-
singular. There are precisely four distinct solutions of € W) ({) ={ and these
solutions make up one of the minimal orbits of period 4, an orbit which is
conjugate to itself. The other two orbits are complex conjugates of each
other.

The fixed points of minimal period 4 can also be described as the collection
of points (w, P(w)) in C? where P is a specific polynomial of degree 11, and
the w’s are all roots of another specific polynomial of degree 12. Both poly-
nomials have real rational coefficients.

7. ASYMPTOTICALLY PERIODIC DOUBLY INFINITE
COMPLEX SEQUENCES

In this section we continue our use of complex numbers in the QF
recurrence. Any initial conditions other than (0, 0) then will be part of
uncountably many distinct doubly infinite sequences satisfying the QF
recurrence. But we can, in fact, specify the behavior of such a sequence as
n— — oo rather strictly. If ¢ is a complex number, write ﬁ to indicate the
principal branch of square root, defined here by restricting its argument to
the interval (—7%, 5]. We further define the open quadrants of the complex
plane: if j is one of the integers {1,2, 3,4}, then Q,={zeC:(j—1)5<
Argz< j(3)} (here Argze[0,2n)). Let 2, (respectively, Z_) denote
0, x Q, (respectively, Q4 x Q;). Both are subsets of C? and {, € Z, . One
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realization of @' is the mapping (w,z)r—> (VWw—/z—w,/z—w)

which we call 6.

Lemma 7.1. O is a holomorphic mapping from & (respectively, Z_) to
itself. The only fixed point of © in 9, (respectively, Z_) is { . (respectively, {_).

Proof. We verify the + variant, noting that — is similar. If (w, z)e D
=0, xQ,, then —we Q5 so z—w has argument in (7x, 27). Therefore

Jz—weQ, —./z—w must be in @, so w—./z—w has argument in
(0, @), so that v/ w—.,/z—we Q,. Therefore O(Z,) < Z_ . The fixed points

of O are as indicated (see Example 19). ||

Both &, and Z_ are open subsets of C? and hyperbolic complex
manifolds, and @ is a holomorphic self-mapping of each domain with a
unique fixed point. This fixed point is attractive (the eigenvalues of the
inverse mapping computed in Theorem 6.3 all have modulus greater than
1). General results on mappings of hyperbolic manifolds (the generalized
Schwarz lemma) show that given any (z, w)e &, (respectively, Z_), the
iterates ©@"I(w, z) all have limit {, (respectively, { _) as n— co. See [8] or
[10]. We describe the idea of the proof for &, . Similar reasoning holds for
9_ . There exists a metric p on &, which gives the usual topology on &,
makes (2., p) a complete metric space, and satisfies p(O@((,), O((,)) <
p(¢1,¢,) for all {4, {, €2, . Combining this with the fact that @ has an
attractive fixed point {, € Z,, one can prove that lim,_, , OU¥({)={
for all {e &, . We have almost proved the following result:

THEOREM 7.1.  Suppose (w,z)eC? and (w,z)#(0,0). Then there is a
sequence {z,} .z which satisfies the QF recurrence so that either z,, - 1 +i
and zy, .1 > 1 —iasn— —o0 or z,, > 1 —iand z,, ., > 1 +iasn— — 0.

Proof. Suppose (w, z) # (0, 0) is given. The recurrence produces z,, for
n> 1. The preceding lemma and the remarks about hyperbolicity show that
if we can find some “ancestor” of (w, z) for the QF recurrence which lies
in either ¥, =Q, x Q4 or Z_=Q, xQ, we are done. Thus we need to
show that [, Y™z, u2_)>C*\{(0,0)}. We will in fact show that
YUl(g, 0z_)>C*\{(0,0)}. Here R., will denote the non-negative
reals.

2STEP 1. Y9, u}@_)DGlz{(a,b)e@z:aeQ4,Imb>O}u{(a,b)e
C’:aeQ,,Imb<0}.

Proof of Step 1. Suppose that aeQ, and Imb=0. If P(w,z)=
(z,z+w?)=(a, b), then z=aeQ, and w>*=bh—a. Since Imbh>0 and
Im(—a)>0, then Im(b—a)>0 and there is weQ, with w?*=b—a.
A similar argument shows that ¥(2_)> {(a, b): a€ Q,, Im b <0}.
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STEP 2. ¥(G,)2G,={(a,b)eC*:Ima>0,Imb»<0,Ima—Im b >0}
U{(a,b)eC*:Ima<0, Imb>0,Imb—Ima>0} oG,.

Proof of Step 2. Gy >{(w,z):we Q4 Imz>0}. If Ima>0, Imb <0,
and Im a —Im b >0, we want ¥(w, z) = (z, z +w?) = (a, b). Choose z=a so
Imz>0. We want w?+z=bh for weQ,, so w? must be b—a. Since
Im(a—b)=Ima—Imb>0, Im(b—a)<0, and there must be we Q, with
w?=bh—a.

If Ima<0, Imb>=0, and Imb—Ima >0, we want (w, z) with we Q,
and Im z <0 so that

Y(w,z)=(z, z+w?) = (a, b).

Thus z=a and w? must be b —a. Here Im(b—a)>0, so there is we Q,
with w?=b—a.
That G, o G, is clear.

STEP 3. ¥(G,)>G3={(a,b)eC*:Ima#00orIma=0andb—a¢R.,}
> G,.

Proof of Step 3. G, =G, so Y(G,)< ¥(G,) and G, = P(G,). If (a, b) e
C*\{(0,0)} and Ima>0, take z=a and select we C such that Im w<0
and w?> =b —z =b —a. We can always select such a w. Then (w, z) € G, and
Y(w, z)=(a, b).

If (a, b) e C*\{(0,0)} and Im a <0, take z=a and select w e C such that
Imw>0 and w>=b—z=b—a. We can always select such a w. Then
(w, z)e G, and ¥P(w, z)=(a, b).

Finally, suppose aeR and b—a¢ R.,. Let z=a. Then there is weC
with Imw <0 and w>=b—z=b—a, so (w, z)e G, and ¥(w, z) =(a, b).

Again, that G; o G, is also clear.

STEP 4. W(G3) 2 G,={C*\{(0,0)} }\{(a, b) e R*\{(0,0)}:b=a and
az./b—a}>Gs.

Proof of Step 4. Surely ¥(G;) o W(G,) > G5. Now suppose (a, b) € R?
and b—aeR.,. We want to discover when there is (w, z)e G; with
Y(w,z)=(z,z+w?)=(a,b). Thenz=a and w?>’=b—a=0sow=+./b—a
€ R. The condition for membership in G5 translates to a—./b—a¢R-,.
Thus there is no suitable element of G; when ¢ >./b —a.

STEP 5. ¥(G,) > Gs=CA\{(0,0)}.
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Proof of Step 5. W(G,)> ¥Y(G,;)> G, from the previous step, so we
need only discover why (a, b) with real a and b not both 0 satisfying b > a
and a>./b—a are in ¥s image of G,. Since Y(w, z) = (z, z + w?) = (a, b),
again z must equal ¢ and w= +./b—a. For (w, z) to be an element of G,
either w>z=a or z=w and w<./z—w. The first alternative, w> aq,
cannot occur, since we know that |w| =.,/b —a < a. But this implies z > w.
We just must check w<./z—w, but this translates to +./b—a<

a—(+./b—a). Takew= —./b—a. Thenweneed —./b—a<~/a+./b—a.

This can only fail if @ =5 =0 which is impossible, since not both can be 0.

We have shown that ¥V/(2, UZ_)> G, with Gs=C?\{(0,0)}, and so
have shown that every element of C*\{(0,0)} has some ancestor in
9, vZ_ as required. |

A proof of the previous result “looking backwards”—getting inverses of
¥ applied to (w, z) e C*\{(0,0)} to lie in Z, U Z_—can be written. The
proof given above seems more natural. Examples show that there is no
uniqueness of the sequence {z,} or of the parity of n for which z, - 1 +i.

Numerical and graphical exploration of the results of choosing “the
other” square root in the definition of @ (that is, —\/ ) indicates interest-
ing behavior in the sequence {z,} as n— —oo. Define ¥, and % by
S(w,z)=(J/z—w,w) and &_(w, z) = (—+/z —w, w), respectively, so that
O0=%, %, . Some compositions of ¥, and ¥_ correspond to orbits of
powers of ¥ and additional results about asymptotically periodic sequences
can be proved.

For example, the conjugate-invariant minimal period 4 orbit of ¥ (see
Theorem 6.6) is 4% B-% C-% D% A where the points 4, B, C, and
D in C? are

1.5148 — 0.39460i, —0.62408 + 1.5901i);

A~( );
B~ (—0.62408 + 1.59014, 1.5148 + 0.39460i);
C=~(1.5148 +0.39460i, —0.62408 — 1.59017);
~ (—0.62408 — 1.59017, 1.5148 — 0.39460i).

Then 4-2 D25 25 B2 4 and the mapping & o, oS oS,
has A4 as an attractive fixed point. A result similar to Theorem 7.1 about
asymptotically periodic sequences of period 4 can be proved, so that as
n— — oo, generically sequences would approach the repeated pattern 1.5148 —
0.39460i, —0.62408 + 1.59014, 1.5148 + 0.39460i, —0.62408 — 1.5901..

The other two minimal period 4 orbits of ¥ are conjugates of each other.
If S oS oF o 1is used as the backwards mapping, the limiting
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pattern becomes 0.60196 +0.69713i, —0.95125—0.54455i, —1.0749 +
0.29474i, —0.46654 + 1.3307i, while if &_ o o9 .9, is used, the limit-
ing pattern becomes 0.60196 — 0.69713i, —0.95125 + 0.54455i, —1.0749 —
0.29474i, —0.46654 — 1.3307.i.

w415 orbits and the resulting patterns are perhaps exceptionally simple.
For example, experiments suggest more complicated relationships between
the orbits of %31 and limiting behavior of tails of sequences satisfying the
QF recurrence.

Compositions of .%_ alone give results which seem to depend strongly on
the initial conditions. For certain initial conditions, there may be sets of
attractive points in the left half-plane. But qualitatively new phenomena also
occur. Some sequences seem to approach smooth embedded closed curves
in C as n —» — o0, while other sequences seem to approach fractal sets.

We certainly do not understand now the set of all ancestors of general
initial conditions in C? very well.

8. ARGUMENT INCREASING DOUBLY INFINITE
COMPLEX SEQUENCES

We discuss in detail a class of solutions to the QF recurrence. Under-
standing the behavior of these solutions will allow us to improve our
knowledge of the qualitative properties of the function L defined earlier.
We first label several subsets of C:

H,={zeC:Imz>0}, the upper half-plane;
H_={zeC:Imz<0}, the lower half-plane;
R.oo={zeR:z>0}, the right open half-line;
Roo={zeR:z>0}, the right closed half-line.
We will need to be quite careful about our use of argument of a complex
number. In what follows, if z#0 is a complex number, Arg z will be the
unique number in [0, 277) so that z = |z| e'A™7, and arg z will be the unique
number in (—n, 7] so that z=|z| ¢’*2% These arguments coincide in
A, \{0}.
The proof of the lemma below is left to the reader:

LemMa 8.1. Ifw,ze#, UR_,and0<Argw < Argz <m, thenz +w>#0
and

min(Arg z, Arg(w?)) < Arg(z + w?) <max(Arg z, Arg(w?)).

If Arg z # Arg(w?), then strict inequality holds in both relations above.
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Simple examples show that if 0 < Argz < Argw <=, the conclusions of
Lemma 8.1 may not hold.

LemMa 8.2. Suppose that zy,z, e H, UR_, and Argzo<Argz, <
2 Arg zy. For j>1 define zj=zj_1+z _, and assume that z;e #, UR,
Jor 0< j< N with N2 1. Then z; #0 for 0< j< N+ 1 and

Argz;, <Argz;<2Argz;_,

for 1<j<N+1. If 2Argzy>Argz,, these inequalities are strict for
2<j<N+1L

Proof. Since Argz,<Argz;<2Argzo=Argz2, Lemma 8.1 implies
that z, #0. If further Argz, <Arg(z3), then Lemma 8.1 declares that
Arg z, = Arg(z, + z5) > min(Arg z;, Arg(zg)) = Argz, and Argz, <
max(Arg z,, Arg(z3)) = Arg(z3). Since Argz,>Argz,, Arg(z?)> Arg(z)),
so that Arg z, < Arg(z?), and therefore

Arg z; < Arg(z,) < Arg(z3).
If we know only Arg z, < Argz, <2 Arg z, we can conclude similarly that
Arg z, < Arg(z,) < Arg(z}).

A formal induction argument using the same ideas can now be made to
finish the proof of the lemma. ||

Recall that Q, is the open first quadrant of C, so that Q; ={zeC:
Im z>0 and Re z>0}. Hypotheses about arguments of numbers satisfying
the QF recurrence allow conclusions about moduli in Q,\{0}.

LEMMA 8.3. Suppose that zo,z, € 0;\{0} and that Argzy<Argz, <
Arg(z3). For j>1 define Zj:zj_l—i-zf_z and assume that z;e Q, for
0<j<Nwith N>1. Then |z;, ;| > |z;| for I<j<N+1.

Proof. The previous lemma shows that z; #0 for0< j< N+ 1 and, if 0, =
Argz;then 0,_;<0,<20;_, for 1 <j<N+ 1. Also, Oy, <max(Oy, 205_;)
<n. Lemma 8.1 implies strict inequality if Oy #205_,. If O5=205_1,
then since zy € O, 05 <Z so that 0, ; <= in this case also.

Consider Fig. 6 for 1 < j< N+ 1. The law of cosines gives

|z, 4117 = (distance(0, P, , ;))*
=1z,12+(1z-11%)? =2 |z] 1z;-1 12 cos(2m — (n — 0,+20,_,))
=z, 1>+ |z, 1 [*+ 2 |z;| |z;_ 1 |? cos(20;_, — 0;).
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FIG. 6. The law of cosines.

But Lemma 8.2 shows that 20, | —0,>0 and that 20, | —0,<0, <0,

JVYj
<3,s0co0s8(20, —0,)=0for 1<j<N+1 and
|Zj+1|2>|Zj|2+ |Z_/71|4+2 |Z/| |Zj71|ZCOS(9]‘71)>|Z_/|2+|Zj71|4> |Z_/|2

which completes the proof. ||

If we know that 0, <3, so cos(fy)=c>0, then

|Zj+l |2> |Zj|2+ |Zj71 |4+2 |Z_/| |Z_/71 |ZC
=(zl+clz; PP+ =) [z, [P =zl + ez 1)

and we have verified the following corollary:

COROLLARY 8.1. If the hypotheses of the previous lemma hold and if also
Oy<3, then |z, || =|z;| + ¢ |z;_|? for 1<j<N+1 where ¢ =cos(0y).

If zy,z, eC and z;=z, | —i—z‘f_2 for j>2, then z;=gq;(zy, z,), a polyno-
mial in z, and z, for j=2. If qy(zy,2,)=2, and ¢,(z,,z,)=2z;, then
4220, 21) =21+ 25, qs(20,21) =z, +23+27, and generally q;(zo, 21) =
q; (2o, 21) + (g, _2(2¢, 2,))* for j=2. If we choose z,=z, =z and define
p,(z)=q;(z,z), then p;(z) is a polynomial in z whose coefficients are
non-negative integers and deg(p,,,) =deg(p,,,.1)=2" for integral m >0
(here deg(P) denotes the degree of a polynomial P). p;(z) has no constant
term and the coefficient of z is 1, so p;(z) =z + (terms of degree greater
than 1).
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DerFINITION 8.1. Suppose N>2 is an integer and 0, is a real number
with 0 <0, <n. Then

UN,0,)={zeH, : fzg=z,=zand z;, , =z;+ z;_, for j>1,

then z; € #, for 1 <j< N and Arg(zy) <#0,}.
We could equivalently write
UN,0,)={zeH, :p(z)e A, for 0<j<N and Arg (py(z)) <0,}.

Lemma 8.2 shows that if ze #,, z=zy=2z,, and z;e #, UR_, for
1<j<N, then z; #0 for 1<j<N and Argz; | <Argz;<2Argz; , for
2< j<N. So certainly each z; € #, for 0<j<N—1. If Argzy<0, also,
then ze U(N, 0,,). Thus we can also write

UNN,0,)={zeA, :pj(z)e#, UR ofor I<j<N
and Arg(py(z)) <0,}.

The following lemma will play a significant part in creating a holo-
morphic analog of the function L. It is similar in purpose to the simpler
lemmas in Section 3.

LemMA 8.4. Suppose that 0<0,<mn and that N>=2 is an integer. If
we A, and Argw <0, there is a unique complex number z e U(N, 0,) such
that py(z) =w. Furthermore, p'y(z) #0.

Remark. Before proving this result, note that if we R_, and if py(z) =
w for some ze #, UR_, so that p;(z)e #, UR_., when 1 <j<N, then
by Lemma 8.2, ze R_,: otherwise Argz>0 so Arg px(z)>0. Since the
coefficients of p,(z) are all positive integers, and pn(0)=0, we see that
pa(z) =w will have exactly one solution and that p’y(z) >0 for all ze R_,.

Proof. We first check that U(N, 0,,) is nonempty. For sufficiently small
z, p;(z) is close to z. This allows us to conclude that U(N, 6,) is non-
empty. Less concisely, given ¢ > 0, there is p(g) > 0 so that if |z] < p(¢) then
|p;(z) —z| <elz| for 1 <j<N. Now fix 0 with 0 <60 <0, and take z with
Arg z = 0. Select ¢ small enough so that the disc {weC: |w—z| <e|z|} lies
inside the wedge {we #, : Argw<0,}. If additionally |z| < p(¢), certainly
ze U(N, 0,,). Since each of the p;’s is continuous, U(N, 0,) is open.

We will also need information about dU(N, 0,). Each p; has positive
integer coefficients, so OU(N, 0,)>R.,: z’s in #, close to the non-
negative real axis must be in U(N, 0,,) because Arg(pj(rei‘g)) — 0% for r and
J fixed as 0 —» 0*. Now suppose that z¢ R_, and ze dU(N, 0,,). z must be
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the limit of a sequence {z,} in U(N, 0,). We know that z, € #,, and, for
1<j<N, pi(zi)e A, and 0 <Arg(p;(z;)) <0,. Since z¢R_,, Argz; —
Arg z>0 so that 0 <Arg z<0,. Lemma 8.2 implies that p,(z) #0 and 0 <
Arg py(z) <2m, so Arg(p,(zi)) = Arg(py(z)). Thus 0 < Arg(z) <Arg(pa(2))
<0,. We may apply Lemmas 8.1 and 8.2 inductively together with con-
tinuity of argument (applied to sequences of non-zero complex numbers
with non-zero limits all contained in the interior of our argument’s domain!)
to conclude that if zedU(N, 0,) and z¢ R, then 0 <Argz <Arg(p,(z))
< - <Arg(palz) <0, If Arg(pa(z))<0,, then zeU. Therefore, if
z€dU(N, 0,), eitherze R, or p;(z) #0for 1 < j< Nand 0 <Arg z <(p,(2))
< - <Arg(py(z) =0,

Now suppose we #, with Arg w<0,,. Select R> 0 so that |py(z)| > |w]|
when |z|>R. Let UWN,0,)g={z€UN,0,):|z|<R}. UN,0,)g is a
bounded open set. We claim that

deg(pw, UN, 0, ) g, tw) =1 (*)

for 0<r<1.

We first must show that pn(z)#tw for zeOU(N, 0,)g and 0 <t<1.
deg(py, UN, 0,)g, tw) will then be defined and will not depend on ¢ by
the homotopy property of degree theory. If ze U(N, 0,) then either (i)
|z] =R or (ii) ze Ry, or (iii) ze #, and Arg py(z)=0,.

(1) If |z] =R then |pp(z)| > |w| = |tw| so p,(z) # tw.
(ii) If ze Ry, then py(z) e Ry 50 pulz) #tw.

(i) If Arg(pn(z))=0,, then Arg(py(z))>Arg(w)=Arg(tw), so
Palz) F#tw.

Suppose we prove that for sufficiently small > 0 the equation p y(z) = tw
has exactly one solution z=z(¢) e U(N, 0,,) and that p’y(z(¢)) #0. Then we
see that deg(py, U(N, 0,), tw)=deg(py, U(N, 0,)r, w)=1 and proper-
ties of degree theory for holomorphic maps imply that py(z)=w has a
unique solution zx € U(N, 0,,) (and therefore a unique solution in U(N, 0,,))
and that p’y(z) #0.

So we study the equation p,(z) =tw for small . We apply the implicit
function theorem to the function F(z, t)= py(z) —tw for zeC and teR.
Certainly F(0,0)=0 and (0F/0z)(0,0)=1. The implicit function theorem
implies there are p >0 and ¢ > 0 so that if |¢| <& the map z+ F(z, ¢) is one-
one on B,(0)={z |z|<p} and for each ¢ with |f| <e, the equation
F(z, t)=0 has a unique solution z(¢) € B,(0). The map ¢+ z(¢) is C* and
Z'(0) = w. Therefore z(t) = tw+ O(#*) as t — 0. This is enough to conclude
that z(¢) e U(N, 0,) for sufficiently small ¢, because p;(z(¢)) = tw + O( t?) for
1<j<N (again using the specific form of the polynomials p;). Also
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pn(z(t)) =14 0(1), so piy(z(t)) #0 for t>0 and ¢ small. Therefore we can
choose positive ¢, <& so that z(¢) e U(N, 0,,) and piy(z(2)) #0 for 0 <t <e,.

We can thus conclude that deg(py, U(N, 0,), tw)>1 for sufficiently
small positive . We complete the proof of the lemma by showing that there
is ;>0 so that if 0 <7 <e, <¢; and F(z, t) =0 for some ze U(N, 0,,), then
|z| < p. This forces z to equal the z(¢) previously exhibited and the degree
must equal 1. If 0 < Arg w < § then Lemma 8.3 applies and we can conclude
that |z] <|py(2)| < --- <|pN(2)| =|tw|. Take positive ¢, <&, so that if
|t| <e&,, then |tw] < p.

The analysis of the case when 7<Argw <0, is more extended. We
suppose that py(z) =tw where 0 <t <e¢, and ¢, <e&; will be selected later.
Let z;=p;(z) for 1 <j<N. If 0,=Argz; then 0, |, <0,<20,_, for
2<j<N, and 0y=Argw. We seek to bound |z;_;| by an appropriate
multiple of |z;[. As in the discussion of Lemma 8.3, we write:

z =1z P+ 1z o P+ 20z 2012 c0s(20, 5 —0; ). (%)

Certainly 0<20;, _,—0, <0, ,<0y_,<Argw<m when 2<j<N. If

20,_,—0;, <%, then (xx) implies |z;| >./|z,_,|*+ |z;_,|*>|z,_,|. This
will be true if Argw<Zorifjust Oy ,<3.1f5<20, ,—0,_,(so5<0;_,)
we complete the square in (sx):

1z, 1>=(lz;_1 ] + |z;_21* cos(20,_,— 0, _,))*
+(1—(cos(20;,_,—0,_1))*) |z;_,|*
<(1—(cos(Arg(w)))?) |z;_o|* = (1 —&?) |z;_5|* (k)
Here x = cos(Arg(w)). Because 5<0;_, and 0, _, < Arg(w) <=, we know

0>r>—1and 1>1—x>>0. Therefore |z;| >./1—x?|z;_,|*% But (sxx)
also implies

|21 =11z 1| + 12212 cos(20; 5 = 0,_1))]

e
J1—x? /

>z | =Ixl z 2?21z 0 =

so that when 20, _,—0;_, > % we obtain

Ky

—

1=+ k|

|Zj| = |Zj—1|-
J1—x?
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If k, =max(x, 1) (the first entry takes care of the case Argze (5, n) and
the second, Argz€(0,3])) and 2<j< N, then

L% |Zj| = |Zj—1|
which results in
()™ lzy| = |21 = |zo .
Therefore
|zl =|zo| < (Kz)N lzyl = (Kz)N ltw| < (Kz)N32 [w]

so |z| < p for &, sufficiently small. ||

Let C_=C\R_y. C_, a “slit” plane, is an open subset of C and
invariant under conjugation. Other slits in the complex numbers could
possibly be used to prove results similar to those here. This choice seems
simplest since the polynomials p, have real coefficients and their symmetry
acting on C _ helps to prove the major result of this section: that C _ is the
domain of a holomorphic extension of the function L defined earlier. We
need preliminary work before this result is verified.

Let Uy={ze A, :p)(z)e A, for 0<j<N}. Uy is the union of the
sets U(N, 0,) for 0<0,<n. We let Gy="%Uy 9 Uy v Ry, Where Uy=
{Z:z€Uy}.

LemMA 8.5. Gy is an open subset of C_. For each we C_, there is a
unique z € Gy so that py(z)=w, and py(z) #0.

Proof. Since %,y and its conjugate are open in C_, we need only check
that R_, is a subset of the interior of G . But given ¢(z), a non-zero poly-
nomial whose non-zero coefficients are real and positive, there is i with
0 <y <7 so that if ze #, and arg z <y then ¢(z) € #, . This can be seen,
successively, for monomials, positive multiples of monomials, and sums of
such terms. If we then define the wedge K, by K, ={zeC: |arg z| <y},
we can surely find ¢ so that R_, c K, = Gy.

If wes#,, Lemma 84 shows that there is exactly one ze%, with
pn(z)=w and p'y(z) # 0. Conjugation shows that if we #_, there is exactly
one z € %y with py(z) =w and py(z) # 0. We finish the proof by noting that
the desired behavior for p, on R, was exactly described in the remarks
following the statement of Lemma 8.4. ||

The restriction of p, to the domain G, will be called p,. We define
gn: C_ —> Gy to be the inverse of jy. g is a biholomorphic mapping
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of C_ to Gy. If j=2—N, h; y:C_ - C will be defined by %, y(z)=
Pn+(an(z)). We also know that

(hj, N(Z))z + hj+ 1, ~z)= hj+2, ~2)

forall j= —Nand h; y(z)eC_ for —N<j<0. Of course /1; y(R_,) =R,
for j= —N and h; p(H#, )= A, and h; y(H_) = H_ for j= —N. When
—N<j<0 we also know:

if ze A, , 0 <arg(h; y(z)) <arg(h;,, n(z)) <2 arg(h; n(2));
if ze#_, 2arg(h; y(2)) <arg(h;, n(z)) <arg(h; y(z)) <O.

Suppose 0, is between 0 and 7, and K, = {zeC: |arg z| <0,}. The proof
of Lemma 8.4 provides x, >0 so that

|h; n(2)| <Y |z
when —N < /<0 and zeKig*\{O} and
|hj71,N(Z)| <K, |hj,N(Z)|

when —N < j<0 and ze Ky \{0}.

Any compact subset C of C_ must be contained in some Kig*. Suppose
that C is such a set and je Z is fixed. The preceding inequalities and the
QF recurrence allow us to conclude that there is a constant M(j, C)
depending on j and C so that for all N>2 with —N<jand all ze C,

lh; n(2) < M(j, C).

We may then use Montel’s Theorem and Cantor diagonalization (since C _
is o —compact) to conclude that there is an increasing subsequence { N}
such that for each jeZ and ze C _

lim fy y(2) = hy(z)

k— o

exists. The convergence is uniform in z for z in any compact subset of C _
and the functions /; are therefore holomorphic in C _. The use of Montel’s
Theorem at this stage of the argument is somewhat analogous to the inter-
section of a sequence of nested closed intervals in the proof of Theorem 3.1.
Now we consider the properties of the limit functions, /;, and their
properties, most of which are simple inheritances from the /; y’s. If we
define /;(0) =0 then the inequalities show that /; is continuous in C _ U {0}.
We also see that
lh; (2) < x5 hy(2)]

J
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for all j<0 and zeKig*. The limits certainly preserve the recurrence so

(hj(z))2 + hj+ i(z)= hj+2(Z)

holds for all ze C_ and all je Z.

Suppose h; (z) =0 for some j, <0 and zeC_. Since hy(z) =z, j, <O0.
But then the preceding inequality implies that 4,(z) =0 for all j< j,. The
recurrence then shows that /;(z) =0 for all j, contradicting /(z) =z #0.

If ze #, and j<0, then h;(z) e #, by taking limits. But since /;(z) #0
for j <0 we may also take limits in the inequalities for arguments to get

O<argh;, ,(z)<argh;(z)<2argh; ,(z)

when —N < j<0. Since h(z) =z we see that 0 <arg(h;(z)) <m. If h;(z) eR .,
then /1;_(z) € R, also, implying by the recurrence that /1o(z) = z € R, which
is incorrect. Therefore arg /1,(z) >0 so h;(z) e #, .

Symmetry under conjugation is preserved by limits, so 4;(z) = h;(z) for
all jeZ and ze C_. Thus h;(#_) = A#_ for j<0 and

2 arg(h;_y(2)) <arg(hy(z)) <arg(h;_)(2)) <0

for all j<0 and ze #_.

We know that /1; y(R. o) =R, for all j= —N so h;(R.,) =R.,. But if
h; (x) =0 for xeR_,, the recurrence shows that /;(x)=0 for all j which
we know to be false for negative j. Thus /;(R.o) =R, for all je Z.

If zeC_, the sequence {/,(z)},., which we have begun to investigate

has properties interesting enough to name distinctly.

DErFINITION 8.2. A doubly infinite sequence Z = {z;} ;. is an argument
increasing recurrence sequence through ze C _ if all z;’s are in C_ for j <0,
Zo=2, 2;=2; 1 +z;_, for je Z, and one of the following occurs:

(i) z;e, forallj<0andargz;, ;<argz;<2argz;_,forallj<O0.

(i) z;eR_,forall j<O.
(ii) z;eA_ for all j<Oand 2argz;, ;<argz;<argz;_ , forall j<O0.
We will sometimes say that Z is an AIR sequence through z. Any simple
extension of this definition to the negative reals will need to break the
symmetry between the upper and lower half-planes, since we have seen

(Lemma 3.1) that there are no sequences whose tails (the z;’s for j<0) are
all negative real numbers.

PROPOSITION 8.1.  Suppose Z.={z;} ;.5 is a sequence of complex numbers
with z;e #, for all j and that 0<argz; ,<argz; for j<O0 and z;=
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zj,1+ _, for all jeZ. Then lim,_,
SO lim]_,,oo z;=0.

wargz;=0 and Y0__ |z;|*<

Remark. We shall frequently prove results for all A/R sequences by
verifying them for the upper half-plane using proofs which can be reflected
by complex conjugation. The result above verifies that the tail of any AR
sequence is in /> and must therefore approach 0. Since the arguments
decrease to 0 in the upper half-plane, Lemma 8.3 eventually applies, and
therefore the tail of an AIR sequence eventually also decreases in modulus:
that is, there exists j, so that |z;|<|z;, | for all j<j,.

Proof. Let p;=|z;| and 0,=argz;. Since 0<0, ,<0;,<n for j<O,
lim,, _, 0;=u>0 ex1sts The recurrence can be written as zj2 =
Z—Z;_q. W1th n<m<0, sum and cancel so that

Z Z}ZZm—Zn_l. (t)

j=n—2

Multiply by e™* to get

mz pjzei(ze,-—u) =, @O O =),
j=n—2
Now suppose ,u > 0. We show that this leads to a contradiction. Select
6>0 so that 0 <3 u and pu + 25 <= Select m <0 so that u<0;<pu+ 9 for
all j<m. We know that u<20;,—u<p+20, so that sin(20,—u)>
min(sin g, sin(u +26) =¢>0. We then estimate the imaginary parts of the
previous equation:

m—2

m—2
tY pr< Y pisin(20,—u) <p,,sin(0,, —u)

j=n—2 j=n—2

since sin(é’n_1 u) is always positive. Let n—> —oo and conclude that
ST W pj <oco. Thus lim;_, _ p;=0.
Multlply () by e~ m and let n > —oo. Then

m—2
2 ,i(20;—6
Z pje’( / m):pm'

Jj=o©

Here 20;—0,, must be between y—¢ and u + 20 which are both between
0 and = If ¢; =min(sin(u —3J, u+29) then ¢, >0, and, again taking
imaginary parts,

m—2
oy p Z #sin(20,—0,,)=Im p,,=0.
Jj=o©



DYNAMICS OF A QUADRATIC MAP 113

This can only occur if all of the p,’s are 0 for j<m—2. The recurrence
equation then implies that all z;’s are 0, so x4 must be 0.

We still must show that the tail of Z is in /% Since =0 we may now
find m so that 0<20,,_, <% and 0<0,, < 5. The real part of (}) then yields

m—2

m—2
0<cos(20,,_,) Y pi< )Y p;cos(20)

Jj=n—2 j=n—2

=p,cosb,—p,_,cosb, ,<p, cosb,

which gives, as n— oo, the estimate 7> , p7 <(p,, cos 0,,/cos(20,,_,)).
|

We have proven that {/,(z)} ;. is an AIR sequence through any ze C _.
Theorem 3.2 shows that there is a umiqgue AIR sequence through any
x e R.,. We use this uniqueness and analytic continuation on the connected
open set C _ to derive useful relationships among the /,’s.

If xe R. o, {x;} will denote the unique A/R sequence through x, so x, = x.
Therefore x;=h;(x). But {x,_,} is the unique AJR sequence through
xX_1€RLy, s0 hy(x)=h; (x_y)=h;,(h_;(x)). We can repeat this to
conclude that /,(x) =ht1(x) for all xeR_, and j<0 (here A1 repre-
sents the composition of /_; with itself || times). #_; and all /; for j<0
map C_ into itself holomorphically. Therefore we may conclude that /;(z)
=ht(z) for all ze C_ and all integers j <O0.

Similar reasoning allows the conclusions /(4 _,(x))=x and h_,(h(x))
=x for xe R_,. The domain of the holomorphic function 4, ch_; is C_,
a connected open set, so that s,(h_,(z)) =z for all ze C _ and A _; must be
one-to-one. However, /4,(C _) may not be contained in C _. We may there-
fore conclude only that 4 _,(h,(z))=z for all zeh_,(C_), a connected
open subset of C_ containing R_,.

The following existence result for A/R sequences is now proved.

THEOREM 8.1.  There exists an injective holomorphic map h_,: C_ — C _
so that h_y maps Ay to Ay and R_oto R_o, and h_(Z)=h_(z). If h;(z)
=htW(z) for j<O, hy(z)=z, and h;(z) for j>O0 is defined by h;(z)=
h;_1(2) +(hj_2(z))2, then h; is holomorphic on C _ for all je Z and h;(C _)

cC_ for j<0. Also, hi(h_i(z))=z for all zeC_. For each zeC_,
{h;(2)} ez is an AIR sequence through :.

Techniques involving continued fractions can also be used to study the
existence of AIR sequences, and provide a description of /4 _; as a locally
uniform limit of a sequence of linear fractional transformations. Since AI/R
sequences through elements of R_, are unique, the function L defined in
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Section 3. must coincide with /,, which maps R, to itself. Restrictions of
holomorphic functions to R, are real analytic, so the corollary below is
verified. Direct proof of this using the formulas in Sections 3 and 4. seems
difficult.

COROLLARY 8.2. The function L is real analytic on R_,.

We do not know if there is exactly one AIR sequence through each
ze C_ but results on continued fractions imply uniqueness for some non-
real z’s. We present the uniqueness theorem below, but first quote the
needed information about continued fractions.

THEOREM 8.2. Suppose D={zeC:|z| —Re(z) <3} and suppose that C
is any compact subset of D. Let {y,} -, be any sequence of complex numbers
in C. Then for k=2, [[ V3, V3> s Y211 is non-zero, and [ [ 75, V3, . Y117 L€
V={zeC:|z—1|<1,2#0} and [[75, V3, - Vi 11" converges as k — o
to an element of V. This convergence is uniform for all sequences {y;};s»
with elements in C.

The theorem is a combination of various statements about continued
fractions in [21]: Theorem 14.2 (p. 58 of [21]), Theorem 14.3 (p. 60), and
Theorem 18.1 (p.78). It contains a precise statement of Worpitzky’s
Theorem used earlier. We now state and prove our result about uniqueness
of AIR sequences.

THEOREM 8.3. Suppose that z € C satisfies Re z >0, z#0 and |z| — Re(z)
< 3. Then there is a unique AIR sequence through z.

Proof. We consider here the case Imz>0. Theorem 8.1 shows that
there is at least one AR sequence through z. Suppose there are two distinct
AIR sequences through z, {z;},., and {Z;},.,. We know zy=2,=z.

We establish some notation. For j <0, let zjzpjeief, 0,=argz;, p;=|zl,
z”j=p”je"éf, éj:arg Z,, and p;=|Z%,|. Since we know ze Q,\{0}, all of the
indicated arguments exist, and p;,_; <p;, 0<9j_1§0j<20j_1 for j<0
(with analogous statements also valid for p; and 0;). We have further
assumed that

|z| =Re z=po—pocos Og=po— pocos éog%
so that for j <0 we know

|z;] —Re z;=p;(1 —cos 0,) < po(1 —cos 0y) <3
and similarly

|Z,] —Re £,< 3.
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Add these inequalities and estimate |z;+ Z;| by |z;| + |£;| to see that

|z;+2;| —Re(z;+ 2)) <

N—=

for j<0.If y;=z_,+Z_, for j>0, each entry of the sequence {y;};.n is in
the set D of Theorem 8.2 and lim,_, ., y,=0 by Proposition 8.1. Therefore
{7;}jen lies in some compact subset C of D.

The recurrence relation satisfied by both sequences shows that

A

Li—=2 a—z (G 0=z )60tz 5)

and we use this to compare the sequences.
If j<0and 2, , #z;_,, then

2 a—Zi o
‘I‘;>Vua-
j—1

Define ;) to be (£,—z;)/(¢;,_; —z;_;) when the denominator is not 0. If
Z_y=z_; in addition to 2, =z,, then z;=Z; for all j. Since these sequences
are supposed to be distinct, Z_; #z_,. Then «, exists and it is 0. Let
k=1j|. If both «; and «, , exist, then the preceding equation becomes

ak=1+7)1€7+2.

A1

If o exists but 2_, _,=z_,_, then a; =1.

We now consider several cases. First, suppose there is m <0 so that
Zn,=2, We have seen that m< —2. If 2_,=z_,, the recurrence shows
that Z_, =z_, which has already been forbidden. Therefore m < —3, and
we may assume Z;#z; for m<j<0. Then op=1+ (5 2/% ) for
0<k<|m|—-2, a,_»=1, and ay =0. Combining the equations results in

O('OZO= [[yZa V35 s y|m|—1]]

which is impossible according to Theorem 8.2 since y, € D for k> 1.
Now assume £, # z,, for all m <0. Every a,, is then defined, and

2
aOZO:|:|:y27 V35 s Vo I;+1:|:| .

k

If there is some k for which |y, . /o, | <31, then (since all z’s with |z| <1 are
in D as are all y,’s) we have produced a finite continued fraction equal to
0 with all entries in D. Again, this is impossible by Theorem 8.2.
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So in addition to Z,, # z,, for all m <0 we may assume 4 |y, , | > |a;| for
all k>0. If we let 6, =|Z_,—z_;| #0 for k>0 and recall the definition of
o, the inequality becomes

41yrs1l Ogp1> 0.

We analyze the sequence {J,};.n With manipulations similar to what
was done in the proof of Theorem 4.2.

5k+2=|Zﬁfk72_ka72|=|\/Z,\7k_27k71_\/ka_sz71|
_ |(Z_k—2 k1) — (2 —Z2_x_1)l
|\/57k_27k71+\/27k_27k71|
12 _c—z g1l =12 x—Z kil
|\/Z k=2 ke 1+\/Z k—Z k1]
12 k=2 k1l (1 =4 7esal)
|\/Z k= 2k 1+\/Z k—Z_x—1]
(=411l

|\/f—k—f—k—1 +\/Z—k—Z—k—1|

Several comments should be made about the algebra. Since we are
considering AIR sequences with entries in Q,\{0}, the square roots are
well-defined and non-zero. The denominators are sums of elements of
0,\{0} and so cannot be 0.

The sequences {y,} and {|\/f_k—f_k_1 +\/Z—k_Z—k—1 |} both have
limit 0 as k — co. From this and the inequalities above we can conclude
that there is K> 1 and k, >0 so that for k>k,, 6,,,> Kd,, ;. But each
Jy. is positive which implies that the limit of {d,} as k — oo is oo. Since the
limit of the sequence {Z_,—z_,} is 0 by Proposition 8.1, we again have
a contradiction. |

=04 41

9. NON-ANALYTICITY OF THE FUNCTIONAL EQUATION’S
SOLUTION NEAR 0

The function L introduced in Section 3 satisfies the functional equation
x?+ L(x) = L(L(x))

for all x > 0. We have described how to extend this function to /; which is
holomorphic on C_. Here we investigate the behavior of L near 0.
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Some formal power series solutions of this equation can be created if the
initial condition L(0)=0 is given. Suppose L(x) is written as a formal
Taylor series Y2 ,(L™(0)/n!) x". We differentiate the functional equation
and get

2x 4+ L'(x) = L'(L(x)) L'(x).

The initial condition implies that L'(0) is 0 or 1. Further differentiation
reveals that if L(0)=0 and L'(0)=0, then all coefficients are 0. There is,
however, a unique non-zero formal power series solution with integer coef-
ficients to the functional equation when L'(0) = 1. Here is the beginning of
this solution:

X+ x%2—2x3 +9x* — 56x° +420x° — 3572x7 4+ 33328x% — 3 34354x°
+35 59310x'°—398 38760x'! + 4657 43720x'2 — 56589 83108x!3
+7 11919 48512x™ + ...

The observed almost geometric growth of the series coefficients suggests
that L can be extended holomorphically to a neighborhood of 0. We prove
that this is not correct. The proof initially considers / _;, whose behavior
near 0 seems easier to analyze than that of #; = L. If 7 _; were holomorphic
near 0, its power series at 0 would be the formal inverse of the one dis-
played above and have real rational coefficients.

We begin with some preliminary lemmas. Contrast the first with Lemma
6.1, which discusses the size of descendants rather than ancestors in sequences
satisfying the QF recurrence.

LEMMA 9.1. Suppose {z;} ;o is a complex sequence and z} +z;, 1 =2z;  ,
Jor j< =2, If R=max(2, |z_,|, |zo|), then |z;| < R for all j<O0.

Proof. 1f the lemma is false, there are some z;’s with |z;| > R. Let m =
max{j<0:|z;|>R}. Certainly m< —2 and |z;| <R for m < j<O0. Since
22 4 2y 1 =Zm4o We know that |22 + 2z, 1| =|z,,, | <R But

1224 2| 2 122] = 21| > == R=R(R—1)>R

which is a contradiction. ||

The following result would follow easily from Lemma 8.3 if we knew that
all the z;’s and z were in Q;\{0}. The result is needed, however, when z
is a negative real number in an effort to investigate candidates for i _,(z).
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LEmMMA 9.2. Suppose zeR and {z;},..n Iis a sequence in A, with
lim, ., z,=z. For each k>1, let {z, ,},., be an AIR sequence through z,.
Then {z;. _\}icn is bounded.

Proof. 1f the lemma were false, we could assume after passing to a sub-
sequence that we have zeR, a sequence {z,},.n in #,, and, for each
k=1, an AIR sequence {z; ,},., through z, with |z, _,|— c0.

Let oy = |z, | and 0, ;=arg(z, ;) for keN and j<0. We investigate
the asymptotic behavior of 6, ; for je {—1, =2, —3, —4} as k— co and
arrive at a contradiction. Define 6, by (n—0, _,)+20, _,+0J,=2n so
that 20, _,—0, _,=n—0, (as in Fig. 7). The law of cosines gives

G+ |z o |* =20 |24, 5|7 cos(,) = |z, |>.

Since z; -z and |o;| — 0 we see that |z, _,| — oo and cos(d,) must
eventually be positive. Complete the square:

(o —c0s(;) 125, _al?)7 + |zx, o |* (1 —(c0s(d,))?) = |z, |>.

Then (1—(cos(6,))*) < |z |*/1zk. —21* so 1—cos(d,)*—0 as k— oo.
Since d, €[0, z] and, as noted, cos(d,) is eventually positive, J, — 0 as

20 2

0

FIG. 7. The law of cosines again.
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k—o. So 20, ,—0, =n—0,—>m as k—oo. But 20, ,—0, ;=
O, 2+ (0, _5—0,, _1)<0,, _,<m and 0, _, - n. Also, 0, _, — n because
Or, _, <0, _,<m. Since e™ = —1, we know

Zk’;l__l
k— oo O(k ’

The recurrence relation gives

(2

o X e

which yields limy _, ,(zx, _,/\/ou)* = —lim , (zx _ /o) =1.But0, _, - =
so that arg(z; _,/\/%)— m. Therefore

Go backwards another step with the recurrence relation

<Zk,—3>2+ 1 <Zk,—2>:Zk,—1
NV AW

and see that

2
lim <Z’°’—3> -1
k— o /(xk

Since z,, _; € A, for all ke N,

1i Zk, —3 . <7T>
m =1=CXp|(l1<-].
k— oo /ak 2

A final backwards recurrence step gives

2

<Zk, —4> i <Zk, —3> Ik, -2
1/4 =

o N N

and thus

2

. Zk, —4 .
lim 7 =—1—1i
k— oo “k
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The choice of square root is clear because again all numbers are in J, .
Therefore

5
lim =4 _piA4 exp <1;> .

koo op4

But 3>3 so that eventually we cannot have arg(z, _,)<arg(z. _s),

a contradiction since {z; ;};. is supposed to be an AIR sequence for
every ke N. |

We apply the two earlier lemmas to get a local uniform bound on all
iterates of i _;.

Lemma 93. If r>0, let #, ,={zeH, :|z|<r}. Then there is a
constant M = M(r) so that |h%(z)| < M(r) for all ke N and all ze #, _,.

Proof. Given ze #,, Theorem 8.1 asserts that there exists an AIR
sequence through z, and that such a sequence has z,=h""l(z) for k
negative. But Lemma 9.1 allows us to bound the values of 4l (z) for all
ze K, , if we can find a bound for /_,(z).

If there is no bound, there is a sequence {{;};.n in J#, , so that lim;_,
|h_1({;)| = oo. An appropriate subsequence of this bounded sequence will
converge to (e #, UR. The alternative {e #, is impossible, since the
domain of the continuous function /4 _; includes {. But (e R is also ruled
out by the previous lemma. So no such sequence exists and this result is
true. |

The lemmas are used to construct a candidate for an AIR sequence
through a negative real number. These sequences are a key ingredient of
the proof that /_; cannot be holomorphic in a neighborhood of 0.

THEOREM 9.1. If ze R _,, there is a bounded sequence {{;} ;<o in #, \{0}
so that

(1) O<arg{;<arg(;,<2arg(; for all j<O.
(2) 2+ =, for all j<O.
(3) lo==z.
Proof. Let {z;},cn be a sequence in #, whose limit is z. For each
J€Z, let z; ;=hY](z;) when j<0 and let z; o=2z;. When j>0, let z, ;=
Zj j—1+Zx j_2- Then {z, ;} .5 is an AIR sequence through z, by Theorem

8.1. Lemma 9.3 applies since the z,’s must be bounded because they
converge, so there is M > 0 independent of j <0 and ke N with

|Zk,j| <M.
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Then take subsequences and diagonalize so that limg_ ., z; ;=(; eH,
exists for each j<0. Continuity implies that o=z, lim, _, ,, z; ;={; € #,
exists for j>0, and {(;} . satisfies the recurrence: {;={;,_,+(;_, for all
JeZ. Also O<arg(;<arg(;,_;<2arg{; for j<0O when {; and {; , are
non-zero.

If there is j < 0 with {; #0 and arg {;= 0, the preceding inequality implies
that for k < j, either {, is 0 or arg {, =0. Thus all such {,’s are real and
non-negative, which implies that every {, is in R, ,. But {, =z <0. There-
fore arg {;>0 for any j <0 with {; #0.

In fact, {; #0 for all j<O. If this is false, let J=max{jeZ: ;<0 and
{;=0}. The recurrence relation becomes

6371"‘4}: §71=C1+1

which shows that {,_; #0 and O <arg{,_,<3%. The last inequality is a
consequence of 2arg{, =arg{,, <z since {,,, € #,. Going back-
wards one more time in the recurrence relation gives

G+ 81=0=0

so that {,_, is also non-zero. We know O<arg{, ,<arg{,_; <% and
arg{;_,<2arg{,_,. Lemma 8.3 then implies |z,;| > |z,_,| >0 which is a
contradiction. ||

At least one {; whose existence we have proven above for j <0 must be
in J, rather than R _,. For suppose all such {;’s are negative real numbers.
Since Cﬁz +{;_1={,weknow {; ,<{;<0. Also the set {{;} ;s bounded,
implying that lim, , _, {;={ exists. But (*+{={ so that { must be 0,
contradicting { <{; <0.

THEOREM 9.2. h_, has no holomorphic extension to any neighborhood
of 0.

Proof. Suppose h_; had a holomorphic extension to D, ={zeC: |z| <r}.
The formal power series for /2 _; shows that 2_,(0)=0,/4"_,(0)=1,and & _,(2)
=h_4(z)soh_;(D, nR)<R.

Select zeR_o,n D, so that h_,(z)eR_, D, and select {z;}icn, @
sequence in J, with lim,_ . z,=z As in the proof of the previous
theorem, we may assume by taking subsequences and diagonalizing that
limy _, ,, htH1(z,) =, exists for all j<0. We know {_; =h_,(z) e R_,. The
remarks preceding the statement of this theorem imply that some (; with
Jj<0 must be in #,. Let J=max{jeZ:{;e#,}. J<—1 and {;eR for
J < j<0. The previous theorem implies that such {;’s are actually in R _,.
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Certainly (3=(;,>,—{s41. If {;.2>(,,, then {, e R which is a contra-
diction. Therefore {,, ,<{;, ;.
Let a=—{;,, and b= —{;,,. Then a and b are real and 0 <a<b.

Since {;e H,, {;=/b—aexp(i5). We go backwards once more. The
equation

O +8=01=—a

shows that (3 ,=—a—./b—aexp(i%) =exp(in)(a+./b—aexp(i})).
Write a +./b—aexp(i3) as pexp(iy) with p>0 and 0 <y <7Z. Because
(€A, also, we may write {,_, =+/p exp(i(Z+¥)). Thus we have

A VI
arg ;4 =§+5>§= arg (,
contradicting the argument increasing behavior of the sequence {(;};<o:
O<arg(; ;<arg(;<nfor;j<0. |

We know that L=/, and h_, are inverse functions on R, and that
h1(0)=1. A holomorphic extension of /; to a neighborhood of 0 would
thus imply a similar extension for /_;.

COROLLARY 9.1. L=h,; has no holomorphic extension to any open
neighborhood of 0 so L cannot be extended to a real analytic function in any
open neighborhood of 0.

Eugene R. Speer has investigated /., numerically using the formal power
series combined with the functional equation. The behavior of iterates of /,
seems to be quite complicated. Note that /4 _; cannot be extended even
continuously over any point of R_,. If #_; were extended continuously to
C_ u{z} with ze R_,, the conjugate symmetry and injectivity of A_,
force h_,(z) to be in R_,. Arguments similar to those in the previous two
theorems show this is impossible.

Although L is not analytic near 0, we will show that it is C* in [0, o0).
Of course, there are classical examples (e.g., > , % z>") of power series
whose radius of convergence is 1 and whose boundary values on the circle
of convergence are C* and nowhere real analytic.

10. SMOOTHNESS OF THE FUNCTIONAL EQUATION’S
SOLUTION NEAR 0

The original functional equation can be rewritten as

L(w)=w+ (LI=1(w))? (%)
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which immediately suggests using a contraction mapping on an appropriate
set of functions. Good properties of L could then be proved by writing it
as a limit of some approximation scheme in that set. We follow this outline
in part. For each positive integer m, the set of functions will be a subset of
C™[0, r] for some r > 0. The specification of the subset and the approxima-
tion method take some effort. We set the stage by giving another proof that
(=) has a unique continuous strictly increasing solution, and hope the more
elaborate framework used to prove smoothness at 0 will then be easier to
understand.

For r>0, let X,= Cg([0,7])=C°%0,r]), the Banach space of con-
tinuous real-valued functions on [0, r] with the sup norm. X, is also
partially ordered by requiring that f<g in X, if f(x)<g(x) for all xe
[0, R]. If L is a solution in X, of (), then certainly L is strictly increasing
and L(x)>x. Lt=" would also be increasing, so that L(y) — L(x) >y —x
for all x, y in [0, r] with x < y. Of course this encodes the fact that L', if
it exists, should be at least 1. We define a suitable subset of X, :

G,={feX,: f(0)=0and f(y) — f(x) =y —x
for all x, ye[0, r] with 0 <x < y}.
G, is a closed, convex set in X,. If feG,, then f is strictly increasing,
f(x)=x for all xe[0,r], and the increasing function fT =1 maps [0, f(r)]
to [0, r]. Since f(r) =r, fT =11 may be restricted to [0, r] and is continuous

there. This restriction will be called I,(f). The reflection of the property
f(x)=xis I(f)(x)<x so that

S ) =T )x)=y—=x=T(f)(y) = (f)x)
If feG,, define a map F,: G, - X, by
F()(x)=x+(T(f)(x))%

Solving (*) is equivalent to finding a fixed point of F,.

Lemma 10.1. F,: G, —» X, is continuous, and F,(G,) <= G,, and F.(G,) is
compact. F, is order-reversing: if f<g, then F,(g)<F,g).

Proof. IffeG,and g=1TI,(f), then g(0)=0, g is increasing, and g(x) < x.
Thus 0<F(f)(x)=(g(x))>+x<r’+r for xe[0,r]. Also, F.(f)(0)=0
and F, is the sum of two increasing functions and is therefore increasing.
Since (g(x))? is increasing, if x, y € [0, r] with x < y,

F(f)y)=F(f)x)=y—x+(g(»)?—(gx))’=y—x
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and we have shown that F.(G,) = G, with the uniform bound ||F.(f)|| <r?*+r.
That the closure of the uniformly bounded set F,(G,) is compact follows if
we prove equicontinuity.

We first suppose that f and f are in G, with g=I",(f) and g=TI,(f).
Then

|g(x) — g(x)| < | f(g(x)) — f(&(x)] = |x — f(&(x))]
= /(8(x) = f(GN < | f—FI.
Thus

IF(f)(x) = F(/)(x)] =(g(x))* — (&(x))*]
< g(x) + &)l |g(x) = gl < 2r) |1 =TI

showing that F, is a Lipschitz map with Lipschitz constant at most 2r.
Now consider F,(f)(y)—F.(f)(x) when 0<x< y<r.

OSF(f)(y)—F(f)x)=(y—x)+(g(»)*—(g(x))?
=(y—x)+(g(y)—gx))(gly)+ g(x))
S(y—x)+(y—x)(g(y)+gx) <(1+2r)(y—x)

so each F,(f') is a Lipschitz function with Lipschitz constant at most 1 + 2r.
The family of functions F,(G,) is certainly equicontinuous.

We now check the stated order-reversing property. Again, assume that f’
and fare in G, with g=I",(f) and §=I',(f), and, additionally, /< f. Thus
f(x) < f(x), so that §(f(x)) <&(f(x))<x=g(f(x)) for all x’s such that
f(x)e[0,r]. Every element of [0, r] can be so written since f(x)>x. We
have verified §<g. ||

We build a solution to (%) by changing r, the right-hand end point.
Suppose that R >r> 0. Define the restriction mapping % ,: X — X, by
(Zg, (f))(x) = f(x) when x€[0,r]. Then %g (Fr(f))=F(ZAg (f)) for
feXg. If fis a solution of (*) in Xz (so Fg(f)=f) it follows that % ,(f)
is a solution of () in X,. If fe C[0, o), then #,, (/) is the restriction of
fto [0, r], an element of X,.

Lemma 102. If r>0, there is a unique L,eG, with F(L,)=L,. If
R>r, then Ry (Lg)=L,, and there is a unique continuous strictly increasing
function L solving (%) on [0, o).

Proof. G, is a closed, convex set, and by the previous lemma, F,: G, — G,
is a continuous mapping whose range is contained in a compact subset of G,.
The Schauder Fixed Point Theorem (see [5] or [13]) applies and F, must
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have a fixed point. If f, is any such fixed point in G, and if xe [0, ], then
the sequence {x;};, defined by x,= f L7)(x) (the iterates of the inverse of
the one-one map f, applied to x) must satisfy the QF recurrence. Given x,
Theorem 3.2 declares that there is exactly one x _, allowing a sequence to
be continued “backwards” indefinitely in R_, (the theorem applies to
doubly infinite sequences, but the recurrence can always be pushed forward
in R_,). Therefore f,(x) and fL=')(x) are uniquely determined for any
x€e[0,r], and F, acting on G, has a unique fixed point, L,. Uniqueness
also confirms that %z (Lz) =L, when R>r, and allows the definition of
L(x): it is L,(x) for any r > x> 0. The uniqueness of L also follows from
uniqueness of the L,’s. ||

The previous lemmas can be used to “construct” a solution to (x). Define
the sequence {%,},.n in G, by %(x)=x for all xe[0,r] and &, =
F.(%,) for n=0. These functions are all in C[0, c0), and are in G, by
restriction. We use two facts. First, %4, is minimal in G,: %4 < f for all
f€G,. And, second, even compositions of F, (that is, the maps FL*1) are
order-preserving, and odd compositions of F, (the maps FL***'1) are
order-reversing. We must have

H<DH< o S, <KDy i< Sy 13D S - SBLS Y

Also, if f€ G, and neN, then %, < FI*1(f) and FI*"*')( /)< %, .. Lis
a fixed point of F, and thus must be between all %,,’s and %, ’s.

Suppose that %, is the pointwise limit of {%,} on [0, c0) and that %,
is the pointwise limit of { %, ,,} on [0, co). The equicontinuity previously
shown verifies that %, —» %, and %, ., — %, uniformly in C%([0, r]) for
fixed r>0. We will show that .%, and .%, agree on all of [0, c0). We know
that F, is a Lipschitz map with Lipschitz constant at most 2r. Take
re (0, 3). Then

| Lo(%) = Ly 1 (X)| < (21)* || % — 4 |

for any xe[0,r] and keN. % and %, must agree on [0, r] because
(2r)%* =0 as k - .

For any 5> 0, both % and %, are fixed points of FL*1 in C[0, s]. This
translates to

LLUx)+ X)) =L(x)+ x>+ (Z(x))*> and
L(L(x)+x%) =L, (x) + x>+ (Z,(x))?

for all x>0. Since Z,(x)>x and Z(x)>x, given ye[0, r +r?] there is
xe[0,r] with Z(x) + x*= Z(x) + x*= y. The equations above show that
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the functions %, and .%, are equal at least on [0, r +r2]. We may repeat
this argument to show that the agreement of %, and %, extends to all
of [0, o0).

THEOREM 10.1. There is a unique strictly increasing continuous map
L:[0,00)— [0, 00) such that L(w)=w+ (LL="(w))? for all we[0, ).
For every r>0, the unique solution L, in G, of the equation F.(f)=f is
R AL). If %(x)=x and %,=F"(L), then {L,},cn (respectively,
{ Lon_1} nen) is an increasing (respectively, decreasing) sequence in X, both
converging 1o L,. If f € G,, F([)> %, and F>* ()< B, .

We omit the subscript from L, € X, since it is now known to be unique
and to be the restriction of L e C[0, o).

Formulas for the first few %,’s can be used to estimate how rapidly L is
approximated by %, in X,. Since %(x)=x, we know %(x)=x +x% The
estimate x < L(x)<x+ x? was already used to draw a graph of L, the
figure following Proposition 4.1. Then ZL='(x)=1(./1+4x—1), so
that %(x) = x + (2x%/(1 + 2x + /1 + 4x)). We can continue one more step,
after rewriting %(x) as 3 ((4x+1)—./4x+1). Then ZL~'(x)=
1 (4x+./8x+1—1) which yields Z(x)=x + ((8x*>+1+@dx—1)./8x+1)/32).

We get the finer estimates

2x?2 <Lix)< +8x2+1+(4x—1)4/8x+1
S X)X
14+2x+,/1 +4x 32

valid for all x > 0.

Suppose N is an even positive integer and that /> %, and /> ¥,. For
example, we could ask that f and f be elements of FIN(G,). If g=I',(f)
and g=1 ,(f), then as before

X+

IF(f)(x) = FAD)) < f=Fllx 18(x) + &(x)I.

Since =%y, FAf)<%y,,. Therefore g(x)=1I,(f)(x)<T (L) (x).
Since I',(f) and I',(%)y) are increasing, we have proved

IF() = F( D, < IS =Tl (2 17230 ).

If < is a partial order on a set S, let 4, z={CeS: A<C<B}. J, .,
is the set of C’s in S satisfying 4 < C only.

We see that F, is a Lipschitz mapping from o, ., (respectively, F N(@G,))
to itself with Lipschitz constant 2 [|[I'(%y)llx =2I"(%y)(r). Note that
I,(%y)(r) is a continuous strictly increasing function of r with I'o(%y)(0) =0,
so F, is a contraction mapping after N iterations for small enough r’s (any
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r< R where I'g(Z%y)(R)=1). For example, if N=2, then I'x(%)(R)=3
when R=,%(%)=3—\/§/2z0.66397. Thus F, is a contraction mapping
after two iterations for r less than this R. When N =0, the appropriate R
is just 3, so F, is itself contracting when r < 1.

Since L is fixed by F,, the following result follows from standard facts
about contraction mappings.

ProrosiTioN 10.1. If N is an even integer, then F, is a Lipschitz map
with Lipschitz constant 2T (Zy)(r) on Io ., (respectively, FIN(G,)). If ¢ =
20 (Ly)(r) <1 then F, is a contraction mapping on each of these sets, and
has a unique fixed point. Also | %, y—L|x <c" | %y— Lllx, for n=1. For
such r and n, and for any x € [0, 7], 0 < L(x) — %, n(x) <" [ Ly 1 — Dl x,
when n is even, and 0 < %, y(x) — L(x) <" | Lyin —Znllx, when n is
odd. For N=2, any r<(3 — \/g)/2 suffices for these conclusions.

Although this result only applies for small enough r, the equation ()
allows computation of L(x) for all x. For example, if L is known on [0, ]
for some r >0, then LI ~!! is known on [0, L(r)] with L(r)>r. L’s values
on [0, L(r)] are then given by (x), etc., so that we can evaluate L on
[0, Lt¥)(r)] for any positive integer k, and lim, ,  LI*1(r) = .

We now discuss the differentiability of L. Although we already know that
fis real analytic on (0, co) (Corollary 8.2), we prove independently that L
is C* on [0, c0). The method uses generalized measures of noncompactness,
which we now briefly review.

Suppose (X, d) is a metric space, and S < X. Kuratowski [ 12] defined
the measure of noncompactness a(S) of S by

«(S) =inf {(5 >0:S8=J S,,n<oco and diameter(S;) <5}.
j=1

j=

If (X, d) is a complete metric space and S c X, S is compact exactly when
o(S) is defined and o(S)=0. In what follows we shall assume a(S) is
defined and finite when it is written (such S’s are bounded).

If (X,d) is a complete metric space and {S.},.n is a decreasing
sequence of closed, nonempty sets such that lim, _, ., a(S;) =0, Kuratowski
proved that S = (Vx> Sk is compact and nonempty. Furthermore, if U is
any neighborhood of S, there is N=N(U)eN so that S, = U for n > N.

If X is a Banach space whose metric is derived from a norm | ||,
G. Darbo [4] proved that Kuratowski’s measure of noncompactness has
nice additional properties. Suppose 4 and B are bounded subsets of X and
A is a scalar. Define A4 ={Ja:ae A} and A+ B={a+b:acAd,beB}.
co(A) will denote the closed, convex hull of 4, the smallest closed, convex
set containing 4. Then Darbo proved
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(co(4)) =a(A).

(A+ B)<a(A) + aB).
(24) = 2] a(A).

(d) o(A4vuB)=max(a(A4), a(B)).

(¢]
—
o

The following remains true
(e) a(A4)=0 if and only if 4 is compact.

Suppose that w is a function which assigns a non-negative real number
to each bounded subset 4 of a Banach space X. If w satisfies properties
(a)—(e) above then w is called a generalized measure of noncompactness.
Many definitions of these measures can be given but we use the one here.
See [14-16] for further background on this material.

The following result is due to Darbo [4] who stated it for the Kuratowski
measure of noncompactness. The same proof works for generalized
measures of noncompactness.

THEOREM 10.2.  Suppose X is a Banach space, o is a generalized measure
of noncompactness, and G is a closed, bounded, convex set in X. If F: G—> G
is a continuous map and there is a non-negative constant k <1 such that
o(F(A)) <kw(A) for all sets A< G, then F has a fixed point in G and
{feG:F(f)=f} is compact in G.

We list some generalized measures of noncompactness to be used here.
Suppose (S, d) is a compact metric space, and let X = C(S), the continuous
functions on S with the norm | f| =sup{|f(s)|:s€S}. Iff >0 and 4 is a
bounded subset of X, define

ws(A)=sup{|f(s)—f(1)]: feA,s,teS and d(s, 1) <J}.

If w(A)=limy_, o+ ws(A4), then w is a generalized measure of noncompact-
ness on X.

If [a, b] is a closed, bounded interval in R, m>1 is an integer, and x,
is a fixed point in [a, b], then C™([a, b]) will denote the m-times con-
tinuously differentiable functions on [a, b] with the norm

m—1

IfIl="2 1fPx0)l +sup{|f(x)]: a<x<b}.

i=0

C™([a, b]) is a Banach space with this norm. If 4 is a bounded subset of
C™([a, b]), define Q,,(A4) to be w({f™: feA}) where {f"™: fe A} is
viewed as a subset of C([a, b]). Then Q,, is a generalized measure of
noncompactness on C™([a, b]).
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We begin by showing that f'is C*.

THEOREM 10.3.  Suppose L is the unique strictly increasing solution to (x).
Then Le CY([0, 0)).

Proof. Fix r>0 which is less than (3 — \/§ )/2 (see Proposition 10.1). Recall
that Jy, g, Is the “interval” of continuous functions on [0, r] whose values
are between the values of % and %. Let #=CY[0,r])n I, 2,0
(/1 =1 Thus fes if f(0)=0, and if %(x)<f(x)<%(x) and
f'(x)=1 for all xe[0,r]. Define F,: # — CY[0, r]) again by (F.(f))(x)
=x+ (fI=1(x))2 This is consistent with F,’s prior definition on functions
in their common domain. We consider the derivative of F,(f):

2/ 1(x)

! =l+—.
(Fr(f)) (x) +f/(f[—1](x))

Then F, maps #, continuously (with the C! topology) into itself, since

L(x) < f(x) S ZL(x) implies (F(£))(x) = ZL(x) < (F(f))(x) < L(x) =
(F(%))(x) < Z(x), and (F,(f)) (x) is clearly at least 1.
When fe s, f/(f1=1(x)) =1 and fL='(x) is increasing, so

2/t H(x)

W< 1421191 < 1 +225-1(r).

I<(F(f) (x)=1+

If we define 7 = { f e : f'(x) <1422~ )(r) for xe [0, r]}, then 7 is

a closed, bounded convex set and F,(A) < A.

We apply Darbo’s Theorem to F, acting on # with Q, as the
generalized measure of noncompactness. Let 4 be a bounded subset of .
Q,(A) is the limit as § - 0+ of ws(A41"), where AV is the set of derivatives
of functions in A. Given ¢ >0, we estimate |(F,(f)) (s)—(F.(f)) (¢)| in
terms of | f'(s)— f'(¢)| when fe A and s,1€ [0, r] with |s—¢]| <.

I(FL) () = (FL) (0]

_ |2 U @) =2 ) ST )
SR @)

<1217 H0) 1) =210 £ ()
SIS = N 1)
+2/7H@ @) — 1))




130 GREENFIELD AND NUSSBAUM

We examine these terms separately. | fL=1(s) — fL=1(¢)| <|s—¢| since
0<(fT=1y (x)<1 for xe[0,r]. Also 1< f'(x)<1+22L7H(r) for all
x€[0,r], and therefore

Q) =D U <2 |s— o (142257 H()).

For the other term, observe that /T='1(¢) < #§="(r) and that both fT=11(s)
and fL=1(¢) are in [0, r] and | fL=1(s)— fL=1(1)| <6 so

2fT=U) (/ST ) = (ST <2257 () ws({ f': fe A}).
We have thus shown
a)(;({(F,(f))’:feA})<25(l+2$£_1](r))+2$[ Hr ws({f": feA}).

Then taking limits as § - 0" we see that Q,(F,(4))<2ZLL71(r) Q,(A).

Since 257 1(r) <1, Darbo’s Theorem (Theorem 10.2) implies that F,
has a fixed pomt in #. But F, has a unique fixed point in G, > #, and
therefore this fixed point must be C' in [0, 7]. Now use the reasoning of
the remark after Proposition 10.1 to “transmit” differentiability to all of
[0, c0): since L is C' in [0,r], LI~ is C! in [0, L(r)], and (%) then
shows that L is C! in [0, L(r)]. By induction we see that L is C! in
[0, LI¥)(r)] for any positive integer k, and since lim, , ,, LI*I(r) = 0 we
are done. ||

The proof that L is C™ for any positive integer m follows the outline
established above. Again we control the variation of the highest derivative
with two terms. One is an “error term” depending on ¢ > 0, which vanishes
as 0 > 0*. The other term satisfies the hypotheses of Darbo’s Theorem.
The algebra is more elaborate. We have tried to isolate that aspect in the
following lemma which gives a formula for the mth derivative of fT—11,

Lemma 10.3. Suppose m =2, fe C™([a, b]), and f'(x) >0 for xe[a, b].
Then there is a polynomial #, € Z[ Wy, Wy, ..., W,,_1] independent of a, b,

and f, so that for xe[ f(a), f(b)],
(m—1) _ 1 >m+1 (m)
)a o f (u)> <f’(l/l) f (u)’

x)=1/f"(u) we may write (fI71)"(x)=
Yy=(=1/(f"(1))?) f"(u). So the result is verified

(ST () =2, (

1
f(u)’
where u= f1=1(x).

Proof. Since (fL—11y

(
(= 1/ (u))?) f" () (1/f"(u)
for m =2 with % equal to 0.
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Now assume for some k >2 that (fL~11)® has the desired form

A gy 0 700~

and differentiate. The chain rule and the earlier formula for ( fT=11)” produce
k—1 ( k )

> D, F (W1, Was ey W) W'+ — 5 (1) u) f®(u)
j=1 (f"(u))

1 k+1 e 1) 1
-\ 7 SET ) ——,
<f (u)> S (u)
where D; is the jth partial derivative of the polynomial %,. Here w,’' =

(=1/(f"@)*) f"(u) = —wiw,, and wi=(fD(u)) = fU"D(u) u' =w; 1w,
if 2< j<k—1. The polynomial

p _ 3
P AW Was ey W) = — D1 B W1, Way ooy Wi () WiW,

k-1
+< Y D AWy, Wa, ey W) ijw1>

j=2

+(k+1) whT3wyw,

together with the preceding computation completes the induction proof. ||

THEOREM 10.4. Suppose L is the unique strictly increasing solution to ().
Then Le C*([0, o0)).

Proof. Let m be an integer greater than 1. We prove that L e C*([0, o0)).
Select » > 0 which is less than (3 — \/g)/Z. We always consider C*([0, r]) as
a subset of C/([0,r]) for k= j>0. Let # be defined as in the proof of
Theorem 10.3. Then if fe #, f'(x) =1 for all xe [0, r], and L < f< L. A,
is closed, bounded, and convex in C!([0, r]) and # <= C([0, r]) " G,. Also
F(H) = .

We define G, to be . Assume that we have found for each j with
1< j<m, asubset G, ;of Cj([O r]) which is closed, bounded, and convex
in C/([0, r]), that F(G, ;) =G, ;, and G, ;,, =G, ;for j<m—1 We will
find a closed, bounded, convex subset G, ,, of C’"([O, r]) so that

(1) Gr,m CGr,mfl'
(2) F(G,,)<=G,,
(3) Q. (F(A) <225 (r)Q,(A) for all A= G, ,,
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In fact, G,, will be G, ,,_,n{feC™[0,r]): supocr<, |/(x)|
<K,,} for some suitable constant K,,. If G, ,, is such a set, then it is surely
closed, bounded, and convex in C™([0,r]) and G, ,, =G, ,,_,;. We now
describe how to select K, so that the other specifications listed are fulfilled.

If feG, ., then Leibniz’s formula states that

m

(F ()™ (x)=, <rJn> (L1 (x)(fI-11) =) ()

Jj=0

for xe[0, r]. The “x” term in F,(f) vanishes because we are taking at least
two derivatives. We apply Lemma 10.3 to analyze this sum. We specially
note the terms where (L ~11)(" (x) appears: there are two, when j =0 and
j=m. Each such term is multiplied by u= (I~ (x). We can collect
terms and declare that there is a polynomial 2,, € Z[ w,, w,, ..., w,,_; | not
depending on f so that

-2
(F(f) (x) =24 pomyy >+£m<

"(m—1)
@) W), - J (“)>‘

(%)

1
J'(w)’

By assumption, if € G, ,,_,, there is a constant D,, so that sup{|f“(x)|:
0<j<m—1 and x€e[0,r]} is bounded by D,,. Thus there must be a
constant E,, so that

1 2 m—1 .
sup {] 0, < e P f )(u))‘ .

f.eGr,mflﬁ u:.f[ill(x)s andxe[(), r]}

is bounded by E,,.

If feG,, _,, then since G,, c A, we know (see the proof of
Theorem 10.3) 2u=2f1"1(x)<22L"(r)<1. Also f'(u)>1 always.
Therefore

[(FN™ ()] <225 H0) [ £ E 1030 + E,
Select K,, so large that
22V K, + E,, <K,,

and define G, ,, as written earlier. F, now maps G, ,, continuously into G, ,,
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We will bound Q,(F.(A4)) by a multiple of 2,(4) for AcG as

described by (3). Let (F,(A4))™ denote the set of m th derivatives of functions
in F,(A). Equation (xx) allows us to write

(Fr(A))(m) CAI +A23

where

— _72” (m)(,)- _ f[-1] }
A, {(f’(u))"‘“f (u): fed and u=f (x)

and

A, = {,@m< _1 , fP(u), ..., f(’"‘”(u)>: fe A and u=f[‘1](x)}.
S (u)

Of course, Q,,(F.(A4))=w((F,(A4))™), and by property (e) above, this is
bounded by w(A4,)+ w(A4,). But 4, is a bounded, equicontinuous subset of
C([0,r]) (functions in A, have their derivatives are bounded because of
the restriction given by K,,), and so 4, is compact, and w(A4,)=0.

Therefore w((F.(A4))™)<w(A4,). Given § >0, we now estimate ws(A4;)

as in the proof of the previous theorem. If s, 7€ [0, r] with |s—¢]| <9, let
u=fI=1(s) and v= fL=(s). Consider

‘mfwmo__zdwxw
ey (o)

which we must estimate.
The function which takes the pair (s, ¢) € [0, r] %[0, r] to

2u _ 2v
(f'a)mt (f'()"*!

vanishes on the diagonal and is smooth on its compact domain. Thus given
0 >0, there is M >0 so that |W(u, v)| < Mo when |s—t| <. Then

W(u, v) :‘

2uf ™) 20/ ™)
)™ (f ()"

2
Gyt /7w = 7w

< (M) K, + 20 | £ (u) — f(0)| S Kpy MO + 2257 1(r) wos(A™),

< Wiu, ) | f™(u)] +

where 4™ is the set of mth derivatives of functions in A. The estimation
| £ (1) — fO(v)| < ws(A) occurs because |u—ov| = |fL~H(s)— L 1(1)| <
|s—t]<d since 0<(fI=1Y (x)<1 for xe[0,r]. Of course, f'(v)=>1
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which allows the omission of the powers of f'(v) in the denominator to
help the overestimate. Let § - 0 to get w(A4,) <2257 1(r) w(A"™), which
implies (3).

Darbo’s Theorem applies as before. F, has a fixed point in G, ,, which
must be L restricted to [0, r] by uniqueness of F, on . The functional
equation can be used to show that L is C” on all of [0, c0). Since m>1
was arbitrary, L must be C*. |

11. HOMOCLINIC DOUBLY INFINITE COMPLEX SEQUENCES

We show below that there is a set of complex initial conditions for the
QF recurrence with non-empty interior in C? so that the resulting sequences
always have limit 0. If both y, and y, are 0, x,= —g and x; = —¢gp ' (so y
below is p~!), a statement similar to Theorem 2.2 is recovered. The proof
below is also similar in outline to that theorem’s, but the details are more
complicated.

THeEOREM 11.1.  Suppose > 1 and y > 1 are real numbers. Let zy = x¢+ iy,
and z,; = x; + iy, be complex numbers such that

(1) x¢<0, x; <0, =0, and y, =0;

(2) »i/lxil <1, yo/lxol <1, and yy/1x11 <2(yo/1X01);
(3) i l<min(y=>—y7 3 (BT =)

(4) yx1< X3

(5)

((B=1)/2) y1= Ix0l yo-

For j>2 define z;= x;+1iy; by z;=z; _+z;_,. Then

(6) x,_1<x;<0andy;, ,=y;20 forall j>2;

(7) yx;<x;_y for all j=1 and By;>y;_, for all j>2;
(8) yj/|xj|<yj71/|xj71|f.0r all j=2;

(9) lim,, ., z;=0.

Proof. We claim that for all j>2 we have

-1 )
(a) x;_1<x;<y” x;_,<0;

(b) J’j—1>yj>ﬂ_lyj—1>0;

(0 Ltz
|xj—l| |xj|
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We first establish these inequalities for j =2 and then prove them generally
by induction. Of course x;, | =X; —|—x]71 y] vand y; =y, +2x;, 1y
for j=1.

Equations (1) and (2) show that yj < xj. Since x, =x; +x5— V5, X5 = X;.
Now x,<x;+xj and equations (1) and (4) show that x,<x;+y%x?=
x,(1 =92 |x,]). This implies x, <y~ !x, if y 7' <1 —9? |x,|, which is exactly
guaranteed by part of (3). So (a) holds for j=2.

Since y, = y; +2x, ¥y, then by (1), y,<y,. Also y,= "1y, is true if
1+ 2x0 yo= B 'y, which is exactly equation (5) since x, is negative and
Yo 1s non-negative, and (b) is true for j=2.

We relate y,/|x,| to A= y,/|x1]:

<1_2 |x0|J’o>
V2 Y1+2X0 Yo iy A x|

X3 —xl—x(z)—i-yg_ v<1_(x%)_J’(2))>.
x|

Therefore y,/|x,| < y,/|x;]| is true if

<1 _2 |xo | y0> < <1 _x(z)_y(z)>
A x| |y |
and that in turn is the same as (x3 — y3) A<2 |x,| yo. But in (2) we see
that y,/|x;] <2(po/|Xo|) which can be rewritten Ax3<2 |xo| yo, even
stronger than we need. So (c) is also verified for j=2.
We now complete the inductive proof of (a), (b), and (c¢). We assume

that these statements are true for all integers j where 2 < j <k, and we must
prove them for k + 1. We know from (c) that

V1 > V2 > .. ykfl
Ixi| ™ |x,] |xk—1|

SO [xp_ 112 Z= pE_y. Since Xp iy =X+ X5 — Vi 15 X1 = X

We will overestimate x,. Consider the inequalities x; ;< x;+x7_; <
X+ 72x2 = x4 (1 — 92 |x¢]). Xg4 Will be overestimated by y ~'x, if 1 — 5 x|
>7~! (because x, is negative). 1 —92 |x, | =y~ Lis true if p72—y 73> |x.|.
But x; <x, <0 so |x;|>|x,| and assumption (3) provides the link: |x;| <
y~2—y73. (a) is therefore true for j=k + 1.

The relations yp,;=Vr+2Xp_1 Vi—1, Xx—1<0, and y,_,; =0 imply
that yi 1 < V. Pyip1= v is true if f(yr+2X,_ Yi_1) = Vi. This is the
same as requiring that

(B=1) ye= =2Bxp_1 Vi1 =2 X1 | Yie—1-
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Our inductive hypothesis states that Sy, > y,_,; so we are done bounding
Vi 41 if we know that (8 —1) y,=2B% |xc_1| ye. This last inequality is true
ifﬁ— 1 >2ﬁ |xk_1 |. But we know |x,_;| <|x,| and from (3) that |x;| <
(B~ —=B72) so (b) is verified for j=k + 1.
We know that x; ., is negative and y, . ; is non-negative. Therefore to
prove (c) for j=k+ 1 we must show that

Yer1 Vet 22X 1V <i=

- ~
[xs 41 _xk_xlzc—1+y12c—l

Vi
| |

As before,

<1 _2 |xk:1|yk—l>
Vet 2%t Vi1 -7 A X |

_xk_xifl'i_yifl - <1 _(xi1_J’i1)>'
[ X

So (c) is proved if
1 _2 |xk:1| Yi—1 <1 _(xlzc—l — Vi1

A ] x| x|
which is the same as A(x2_, — »2_ ) <2|x;_;| ye_:. It is certainly suf-
ficient to verify that Ix?_, < 2 |5 1| Vi_1 holds, an inequality equivalent
to Yi/lxk| <2(yx_1/Ixr_1|)- But (c) for j =k asserts this is correct with 2
replaced by 1, so we have completed the inductive proof of (c).

We still must prove assertion (9). {x,} is an increasing sequence of
negative reals, and {y,} is a decreasing sequence of non-negative reals.
Therefore each sequence has a limit:

lim x,=x<0 and lim y,=y=>0.

k— oo k— oo

Then z=lim;_, , zp=x+iy and lim;_, oz, ,=z=lim,_ o Z4, +27=
z42z% 50 z2=0and z=0. |

Since complex conjugation commutes with ¥, if (z,, z;) € C? is chosen so
that (z,, z; ) satisfies the hypotheses of the theorem (statements (1) through
(5)), then the sequence {¥I(z,,z,)} must also approach (0, 0). In this
case, for all k=2, the y.’s are non-positive, |y, 11>Vl =87 1Ve_1l
and |yel/[xel <[yl /Ixe—1l-

DErFINITION 11.1. A complex sequence {z;} ;.5 is homoclinic for the QF
recurrence if some z; is not 0, if Z}—i—sz:szr2 for all jeZ, and if

lim;_, ,, z;=0 and hm]_,_oo z;=0
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Classically, one investigates homoclinic points of a homeomorphism
@: X - X, where X is a metric space (see, e.g., p. 275 of [11]). Our map ¥
is not a homeomorphism or a local homeomorphism near (0, 0) but our
definition is a natural extension of the classical one. Homoclinic sequences
exist for the QF recurrence. Recall that we have shown in Theorem 8.10
that for every ze C _, there exists an A/R sequence {z;};., with zo=z.

THEOREM 11.2. Suppose that 3n/d <0<z and p>1 and y>1 are real
numbers. Then there is a positive number p(0, f, y) with the following properties:

If 0<p<p(0,.y) and if {z;};., is an AIR sequence through z = pe”,
then

(1) O<argz;<argz;,<m forall jeZ,

(2) If x;=Recz;and y,=Imz;, then yx;<x;_ <x;<0 and 0< y; <
Yi—1<Py; for all j=1;

(3) lim z;=0 and lim;

j— o0 “j ]4,7002 0

j=

Proof. By Theorem 8.1 there exists an AIR sequence {z;};., with
zo=2z. Proposition 8.1 asserts that lim;_, _., z;=0 and establishes (1) for
j<0. The other conclusions of the theorem will follow if we can show that
the hypotheses of the preceding theorem are satisfied. Conclusion (8) of
that theorem establishes statement (1) of this theorem when j >0 for the
values of 0 under consideration (the quotients in (8) are just |tan(arg z;)]).
So we must verify conditions (1) through (5) of Theorem 11.1. Here we
consider 0 € (3n/4, ©), f>1, and y>1 as constants, and show how to pick
sufficiently small p’s satisfying these conditions. Note that the variables x,,
Yo, X1, and y, in the hypotheses of Theorem 11.1 are here called x _,, y _,,
Xo, and y, respectively.

We have shown that there is x, >0 so that |z;,_,| <k, |z;| for j<0, and
1, depends only on . (For this see the proof of Lemma 8.4 and the discus-
sion following the proof of Lemma 8.5.) Therefore |z_;| <K, |zo| <Kyp
and |z_,| <k, |z_,|<k3p. Since |zo—z_,|=]z2,|, we conclude that
|zo—z_,| <x3 p> The real and imaginary parts of this expression follow

4 2 4 2
lxo—x_1|<lzo—z_1[<K3p and o=y 1l<lzo—z_1l<K3p
and, writing x,=p cos 0 and y, = p sin 0, we have

pcosO—r3p*<x_;<pcosf+k3p> and

psin—rx3p*<y_<psinf+x;pi

Recall that 0 e (37/4, ) so sin 0 > 0. Suppose now 0 < p <sin 0/k3. Then
psin 0 —r53p*>0and y_, must be positive. Also for 0 € (3n/4, n), |cos 0] >
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sin 0, so that x5 p> < p |cos 0|, forcing x _; to be negative. Condition (1) is
verified (that x, <0 and y,> 0 follows from &s restriction).
We estimate
yoi psinl+x3p*  sinO+x3p

lx_1| " |pcosO@+x4p? |cosO| —xip

This is bounded by 1 for sufficiently small p since for 6 fixed in (37/4, 7),
0<|tan #]| < 1. The ratio y,/|xo| is |tan 6|, so we have checked another
part of (2). Now the corresponding underestimate is

) I psin 0 —x35p? sin 0 —x3p
Ix_i|” " IpcosO0—x3p?| " lcos Ol +x3p

Again, for p small (@ is fixed!), this is close to 2 |tan 6|, which is certainly
larger than y,/|xq|. All of (2) has been verified for small enough p.

Since |x,| = p |cos 0] # 0, condition (3) can be satisfied by choosing p so
that

p<|cos O 'min(y 2—y 3 (BT =)

We have now chosen p so that both x, and x_, are negative. Condition
(4) then becomes y |xo| = |x_1|. But |x_;| <|xo| +|xo—x_1| <p |cos 0]
+ 13 p? so we need to verify

7p |cos 0] = p |cos 0| + x5 p*.

This holds if 0<p<x;*y—1)]|cosf| and therefore (4) is verified for
sufficiently small p.

We know that |x_;|<p |cos 0| +«5p* and y_, <p sin 0+ k3 p> Thus
condition (5) follows if the estimate

—1
<ﬁ2>p sin 0= (p [cos 0] + 13 p?)(p sin 0 + x5 p?)

holds. Again, this is clearly true for small positive p when 6 and f are
fixed. |

A specific complex number satisfying the conditions of the previous theorem
is z=0.001e*>~ —0.000 80114 36155+ 0.000 59847 21441i, with f=y=2
and x, ~2.338.

Remark. The most familiar recurrences are linear. Each of these is
defined by a linear map, 7T: C"— C, which is applied recursively to an
initial condition Z = (z§, z§{, ..., z¥_,)e C". If T(1, 0, ..., 0) #0, then there is
always a unique doubly infinite sequence {z,} ,. defined by requiring that
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zn=T(zZy_ s Zn _ni1>-Zy_1) be true for all NeZ and z;=:z} for
0< j<n—1. For example, the standard Fibonacci sequence is defined by
T(w, z) =(z, w+ z) with initial condition (0, 1). Linear recurrences cannot
have homoclinic sequences so the qualitative behavior of the QF recurrence
is quite different. The map ¥(w, z) =(z, z +w?) which generates the QF
recurrence has a fixed point at (0, 0). Its linearization at (0, 0) is (§ ;) with
eigenvalues 0 and 1. The existence of homoclinic sequences demonstrates a
striking consequence of nonlinearity

Suppose {;=(z;, z;, ) € C* where {z,} is one of the sequences created in
Theorem 11.2. Then ¥({;)={,,, for all jeZ, none of the {;’s are zero
lim, ,, {;=0eC? and lim, , , {;=0€eC? Given f: R— R with f(0) =
an appropriate one-variable analogue of our homoclinic sequences mlght
be a sequence {x;},., with f(x;)=x,, for all je Z, and with lim, , , x,=
0 and lim;_, _ x;=0. Such sequences with all x; non-zero can exist, even
for polynomlals 1f f(x)=x—x*—0.29x3 choosmg X, in a suitable neigh-
borhood of the negauve critical number of f (approximately —2.72124)
guarantees the behavior of the sequence. Figure 8 illustrates the evolution
of one of these sequences.

N

/ !

FIG. 8. x and x —x%—0.29x>.
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