Homework 15

Problem 5

Throughout this document, for a family \mathcal{F} of $\{ \pm 1\}$-sequences, let

$$
\mathrm{wt}(\mathcal{F})=\sum_{w \in \mathcal{F}} t^{\operatorname{Happy}(w)}
$$

Generating Function for $P(n, t)$
We will prove the following:
Proposition 1. Let

$$
p(t, q)=\sum_{n=0}^{\infty} P(n, t)
$$

Then,

$$
p(t, q)=\frac{2}{\sqrt{1-4 t^{2} q}+\sqrt{1-4 q}}
$$

We will use the following lemmas:
Lemma 1. Let \mathcal{C}_{n} denote the family of $\{ \pm 1\}$-sequences with $n 1$'s and $n-1$'s whose partial sums are all nonnegative. Let $C(n, t)=\mathrm{wt}\left(\mathcal{C}_{n}\right)$, and let

$$
c(t, q)=\sum_{n=0}^{\infty} C(n, t)
$$

Then,

$$
c(t, q)=\frac{1-\sqrt{1-4 t^{2} q}}{2 t^{2} q}
$$

Proof. Let $\mathcal{C}=\bigcup_{n=0}^{\infty} \mathcal{C}_{n}$. Every sequence in \mathcal{C} is either empty or of the form
$[1$, sequence in $\mathcal{C},-1$, sequence in $\mathcal{C}]$.
The empty sequence gives a contribution of 1 to $c(t, q)$, and the 1 and -1 introduce a factor of q and a factor of t^{2} since we are nonnegative. So, $c(t, q)$ satisfies

$$
c(t, q)=1+t^{2} q c(t, q)^{2}
$$

Solving the quadratic equation gives the desired function.

Lemma 2. Let $\overline{\mathcal{C}}_{n}$ denote the family of $\{ \pm 1\}$-sequences with $n 1$'s and $n-1$'s whose partial sums are all nonpositive. Let $\bar{C}(n, t)=\mathrm{wt}\left(\overline{\mathcal{C}}_{n}\right)$, and let

$$
\bar{c}(t, q)=\sum_{n=0}^{\infty} \bar{C}(n, t)
$$

Then,

$$
\bar{c}(t, q)=\frac{1-\sqrt{1-4 q}}{2 q}
$$

Proof. Let $\overline{\mathcal{C}}=\bigcup_{n=0}^{\infty} \overline{\mathcal{C}}_{n}$. Every sequence in $\overline{\mathcal{C}}$ is either empty or of the form

$$
[-1, \text { sequence in } \overline{\mathcal{C}}, 1, \text { sequence in } \overline{\mathcal{C}}] .
$$

The empty sequence gives a contribution of 1 to $\bar{c}(t, q)$, and the 1 and -1 introduce a factor of q. But, no t 's are introduced, since we are nonpositive. So, $\bar{c}(t, q)$ satisfies

$$
\bar{c}(t, q)=1+q \bar{c}(t, q)^{2}
$$

Solving the quadratic equation gives the desired function.
We will now prove Proposition 1.
Proof. Let \mathcal{P}_{n} be the set of $\{ \pm 1\}$-sequences with $n 1$'s and $n-1$'s, and let $\mathcal{P}=\bigcup_{n=0}^{\infty} \mathcal{P}_{n}$. We see that $P(n, t)=\operatorname{wt}\left(\mathcal{P}_{n}\right)$. Every sequence in \mathcal{P} is one of the following:

- Empty.
- Of the form $[1$, sequence in $\mathcal{C},-1$, sequence in $\mathcal{P}]$.
- Of the form $[-1$, sequence in $\overline{\mathcal{C}}, 1$, sequence in $\mathcal{P}]$.

By similar reasoning as used in the lemmas, $p(t, q)$ therefore satisfies

$$
p(t, q)=1+q t^{2} c(t, q) p(t, q)+q \bar{c}(t, q) p(t, q) .
$$

Solving for $p(t, q)$, substituting in the functions for $c(t, q)$ and $\bar{c}(t, q)$ and simplifying gives the desired answer.

Proof of Conjecture for $P(n, t)$

Proof. Our conjecture is equivalent to

$$
p(t, q)=\sum_{n=0}^{\infty} C(n) q^{n} \sum_{i=0}^{n} t^{2 i}
$$

But,

$$
\sum_{i=0}^{n} t^{2 i}=\frac{t^{2 n+2}-1}{t^{2}-1}
$$

so it suffices to show that

$$
p(t, q)=\sum_{n=0}^{\infty} C(n) q^{n}\left(\frac{t^{2 n+2}-1}{t^{2}-1}\right) .
$$

This is equal to

$$
\frac{1}{t^{2}-1}\left(\sum_{n=0}^{\infty} C(n) q^{n} t^{2 n+2}-\sum_{n=0}^{\infty} C(n) q^{n}\right)
$$

Maple knows that this is equal to

$$
\frac{1}{t^{2}-1}\left(\frac{1-\sqrt{1-4 t^{2} q}}{2 q}-\frac{1-\sqrt{1-4 q}}{2 q}\right)
$$

This is equal to the formula from Proposition 1. (This can be seen easily by rationalizing the denominator of the latter using the conjugate, or Maple can prove it.)

Generating Function for $Q(n, t)$

We will prove the following:
Proposition 2. Let

$$
r(t, q)=\sum_{n=0}^{\infty} Q(n, t)
$$

Then,

$$
r(t, q)=\frac{2+\frac{4 t q}{1-2 t q+\sqrt{1-4 t^{2} q^{2}}}+\frac{4 q}{1-2 q+\sqrt{1-4 q^{2}}}}{\sqrt{1-4 t^{2} q^{2}}+\sqrt{1-4 q^{2}}}
$$

We will use the following lemmas:
Lemma 3. Let \mathcal{U}_{n} denote the family of $\{ \pm 1\}$-sequences of length n whose partial sums are all nonnegative. Let $U(n, t)=\mathrm{wt}\left(\mathcal{U}_{n}\right)$, and let

$$
u(t, q)=\sum_{n=0}^{\infty} U(n, t)
$$

Then,

$$
u(t, q)=\frac{1}{1-t q-t^{2} q^{2} c\left(t, q^{2}\right)}
$$

Proof. Let $\mathcal{U}=\bigcup_{n=0}^{\infty} \mathcal{U}_{n}$. Every sequence in \mathcal{U} is one of the following:

- Empty.
- Of the form $[1$, sequence in $\mathcal{U}]$.
- Of the form $[1$, sequence in $\mathcal{C},-1$, sequence in $\mathcal{U}]$.

By similar reasoning as used earlier, along with the fact that before a sequence of length $2 n$ gave a contribution of q^{n} but now it contributes $q^{2 n}, u(t, q)$ therefore satisfies

$$
u(t, q)=1+t q u(t, q)+t^{2} q^{2} c\left(t, q^{2}\right) u(t, q)
$$

Solving for $u(t, q)$ gives the desired function.
Lemma 4. Let $\overline{\mathcal{U}}_{n}$ denote the family of $\{ \pm 1\}$-sequences of length n whose partial sums are all nonpositive. Let $\bar{U}(n, t)=\mathrm{wt}\left(\overline{\mathcal{U}}_{n}\right)$, and let

$$
\bar{u}(t, q)=\sum_{n=0}^{\infty} \bar{U}(n, t) .
$$

Then,

$$
\bar{u}(t, q)=\frac{1}{1-q-q^{2} \bar{c}\left(t, q^{2}\right)} .
$$

Proof. Let $\overline{\mathcal{U}}=\bigcup_{n=0}^{\infty} \overline{\mathcal{U}}_{n}$. Every sequence in $\overline{\mathcal{U}}$ is one of the following:

- Empty.
- Of the form $[-1$, sequence in $\overline{\mathcal{U}}]$.
- Of the form $[-1$, sequence in $\overline{\mathcal{C}},-1$, sequence in $\overline{\mathcal{U}}]$.

By similar reasoning as used earlier, along with the fact that before a sequence of length $2 n$ gave a contribution of q^{n} but now it contributes $q^{2 n}, \bar{u}(t, q)$ therefore satisfies

$$
\bar{u}(t, q)=1+q \bar{u}(t, q)+q^{2} \bar{c}\left(t, q^{2}\right) \bar{u}(t, q) .
$$

Solving for $\bar{u}(t, q)$ gives the desired function.
We will now prove Proposition 2.
Proof. Let \mathcal{Q}_{n} be the set of $\{ \pm 1\}$-sequences of length n, and let $\mathcal{Q}=\bigcup_{n=0}^{\infty} \mathcal{Q}_{n}$. We see that $Q(n, t)=\operatorname{wt}\left(\mathcal{Q}_{n}\right)$. Every sequence in \mathcal{Q} is one of the following:

- Empty.
- Of the form $[1$, sequence in $\mathcal{U}]$.
- Of the form $[-1$, sequence in $\overline{\mathcal{U}}]$.
- Of the form $[1$, sequence in $\mathcal{C},-1$, sequence in $\mathcal{Q}]$.
- Of the form $[-1$, sequence in $\overline{\mathcal{C}}, 1$, sequence in $\mathcal{Q}]$.

By similar reasoning as used in the lemmas, $r(t, q)$ therefore satisfies

$$
r(t, q)=1+t q u(t, q)+q \bar{u}(t, q)+t^{2} q^{2} c\left(t, q^{2}\right) r(t, q)+q^{2} \bar{c}\left(t, q^{2}\right) r(t, q) .
$$

Solving for $r(t, q)$, substituting in the functions for $u(t, q), \bar{u}(t, q), c(t, q)$, and $\bar{c}(t, q)$ and simplifying (a bit) gives the desired answer.

