Math 640
February 16, 2014

Homework 7

Problem 3

We will prove the following result.
Theorem 1. The unique polynomial of degree less than n interpolating the points $\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)$ is

$$
f(x)=\sum_{j=1}^{n} y_{j} \prod_{i \neq j} \frac{x-x_{i}}{x_{j}-x_{i}}
$$

We will use the following lemma:
Lemma 1. A polynomial of degree less than n that vanishes at n distinct places must be the zero polynomial.

Proof. Let $f(x)$ be a polynomial of degree less than n that vanishes at n distinct places x_{1}, \ldots, x_{n}. Then

$$
\prod_{i=1}^{n}\left(x-x_{i}\right)
$$

divides f. Since f is degree less than n, this means that f is identically 0 , as required.
We will now prove the desired result.
Proof. Let $f(x)$ be as in the theorem statement. It is easy to see that $f\left(x_{i}\right)=y_{i}$ for all i, since all terms in the sum become zero except for one of them, which is y_{i}. So, all that remains is to prove uniqueness. Let $g(x)$ be any polynomial of degree less than n such that $g\left(x_{i}\right)=y_{i}$ for all i. Then, $(g-f)(x)$ is zero at all of the x_{i}, and it has degree less than n. Hence, $g-f \equiv 0$, so $g=f$, as required.

