Homework 12

Problem 3

Proof. The proof will be by induction on n. We see that the coefficient on x^{0} is 1 , so we have $c(0)=1$, which is an integer. Now, assume that $c(0)$ through $c(n-1)$ are integers. In order to find $c(n)$, we equate coefficients in $y_{n}^{\prime}=f\left(x, y_{n}\right)$, where

$$
y_{n}=\sum_{i=0}^{n} \frac{c(n)}{n!} x^{n}
$$

Since $y_{n}=y_{n-1}+\frac{c(n)}{n!} x^{n}$, this gives us the equation

$$
n \frac{c(n)}{n!}=\text { coefficient of } x^{n-1} \text { in } f\left(x, y_{n-1}+\frac{c(n)}{n!} x^{n}\right)
$$

The left side equals

$$
\frac{c(n)}{(n-1)!},
$$

and by induction and the fact that the desired coefficient does not depend on terms of degree higher than x^{n-1} the right side is an integer of $(n-1)$!. Therefore, $c(n)$ is an integer, as required.

