Nathan Fox
Math 640

Tools for Investigating Subtraction Games

1 Introduction

Everything that follows will be based on the following definition:

Definition 1. A subtraction game is a counter-removing game where the legal moves consist
of removing exactly some number of counters in a set S, called the subtraction set. The first
player to be unable to move loses.

One can consider subtraction games whose subtraction sets are either finite or infinite.
We will only consider the finite case here.
We will also need the following definition:

Definition 2. The Sprague-Grundy function of a position in a subtraction game is defined to
be zero if the position has no legal moves, and it is the minimal excluded nonnegative integer
(mex) of the Sprague-Grundy function values of all positions reachable from the current
position otherwise.

For a given subtraction set S, we define the Sprague-Grundy sequence, or Nim sequence,
of S to be the sequence of values the Sprague-Grundy function takes on 0, 1, 2, etc. counters
with subtraction set S.

It is well known that, if S is finite, then the Nim sequence of S is eventually periodic [1].
We will call the period of the period part of such a Nim sequence the period of the Nim
sequence, and we will call the shortest possible prefix such that the remainder is periodic the
prefiz of the Nim sequence. Beyond this fact about periodicity, very little is known about
general subtraction sets. The initial goal of this project was to discover some general facts
about subtraction games. The eventual outcome is a Maple toolkit that can be used to
examine specific sets of subtraction games in an attempt to learn information about them.
In addition, it can be used to automatically write papers proving basic results about them.
In Section 2, we discuss the implementation of these tools. In Section 3, we discuss how to
use these tools.

2 Implementation

The core procedures in this package can be found in code_finsubgames. txt, which depends
on code_utilities.txt, code_dbfiles.txt, code_filters.txt, and code_selectors.txt.
The early procedures in this file compute Nim sequences and determine (with proof!) the
prefixes (aperiodic parts), and periods of Nim sequences for finite subtraction sets. The way



the code accomplishes this is by generating a large initial chunk of the Nim sequence for a
given subtraction set S. It then looks for eventual periods of that chunk that repeat at least
twice. For each such period, it then checks whether that period is a possible period for S.
If it is a possible period, it then generates enough more of the Nim sequence necessary to
confirm or refute that that eventual period persists. Once it has found a period satisfying all
of these things, it tries to extend it as close to the beginning of the Nim sequence as possible.
Finally, it returns the found period and prefix. In order to guarantee that it returns the
simples period, it considers candidate periods in increasing order of length.

The next few procedures compute contractions of subtraction sets. A contraction of a
subtraction set S is a subset S’ C S with the same Nim sequence as S. A criterion for
identifying contractions is given in [1]. Another way of identifying contractions is by proving
that S” and S have the same period and prefix. This is the method that this code uses, since
all the framework has already been built for this.

The rest of the procedures are concerned with gathering large amounts of period and
prefix data and analyzing these data. The first of these procedures format the data and
write it to files in a format described in Subsection 2.1. The rest of the procedures work
with these data files, either modifying them or analyzing the data they contain. These
procedures make use of two abstractions, filters and selectors, which will be discussed in
Subsection 2.2. All the data reporting procedures here return data in a raw format, which
the user is free to manipulate as desired. Most of these procedures automatically open and
reset the DB file passed to them. The procedures whose names contain NoReset do not reset
the DB file. These procedures take an additional argument called stopcond, which is a filter.
Searching begins wherever the file pointer left off, and searching stops once one satisfactory
entry has been found and when stopcond fails to accept the next entry. Such procedures
can be called repeatedly with different values of stopcond in order to only traverse a large
file once, as opposed to once per call. Additionally, some of the procedures contain the word
Parallel in their names. These procedures allow multiple searches to be done on a DB file
simultaneously, even further reducing the number of file traversals required.

Finally, there is the file code_paper.txt. The first procedure in this file is WritePaper.
This procedure uses its input to generate a human-readable paper from the raw data returned
by procedures in code_finsubgames.txt. The format for this input will be discussed in Sec-
tion 3. The second procedure is ProvePeriodAndPrefix. This procedure writes a theorem
and proof structure for a given subtraction set, proving the prefix and eventual period of
its Nim sequence. This procedure can be made to output either LaTeX or plain text. The
third procedure, WritePrefPerPaper, allows for grouping a bunch of successive calls to
ProvePeriodAndPrefix. The fourth procedure, WriteSelfContainedPaper, uses the third
procedure in LaTeX mode to produce a file that can immediatley be compliled with LaTeX
into a paper. The fifth procedure, WriteSelfContainedPaperFromDBFile, combines the
filters of DB files with the paper writing capabilities of WriteSelfContainedPaper to allow
for automatically generating lists of sets to analyze in a paper. The file code_paper.txt
depends on code_finsubgames.txt.



2.1 DB Files

Procedures for manipulating files containing data about subtraction games, known as DB
files, can be found in code_dbfiles.txt. An entry in such a file consists of at least six lines,
in the following order:

1. A line beginning with S, followed by a space, followed by a space-delimited sequence
of positive integers (possibly of length zero), followed by a newline. This sequence of
numbers is the subtraction set for the entry.

2. A line beginning with F, followed by a space, followed by a space-delimited sequence
of positive integers (possibly of length zero), followed by a newline. This sequence of
numbers is the prefix for that subtraction set.

3. A line beginning with P, followed by a space, followed by a space-delimited sequence
of positive integers, followed by a newline. This sequence of numbers is the period for
that subtraction set.

4. A line beginning with G, followed by a space, followed by a positive integer, followed
by a newline. This integer is the length of the prefix.

5. A line beginning with L, followed by a space, followed by a positive integer, followed
by a newline. This integer is the length of the period.

6. One or more lines beginning with E, followed by a space, followed by a space-delimited
sequence of positive integers (possibly of length zero), followed by a newline. Each
such sequence of numbers is a contraction of the subtraction set.

Different entries in a DB file are separated by an extra newline.

Maple complains whenever an attempt to open an already-open file is made. Hence,
code_dbfiles.txt includes wrappers for opening and closing DB files. Using the procedure
OpenDB to open a DB file will never complain if the file was already open. Also, there are
procedures for fetching the next entry or the previous entry. Entries are returned in the
form S,F,P,G,L,E, where each of these terms is the corresponding entry component in its
appropriate Maple data structure (set, list, list, integer, integer, set of sets). Finally, the
procedure ResetDB makes it so that the next entry to be fetched is the first.

2.2 Filters and Selectors

Procedures related to filters can be found in code_filters.txt. A filter, at its most basic
level, is a procedure with the following properties:

e [t takes six arguments in the order S,F,P,G,L,E, which are the same data fields in the
same formats as described in Subsection 2.1.

e If the inputs are all of the proper types, it returns a boolean value.



e If the input S is passed as 0 (as opposed to as a set), then it returns a string.

More to the point, the boolean value is true if the filter “accepts” the entry, and it is false
if the filter “rejects” the entry. Also, the string is a description of what the filter checks for.
If the user wishes to use a custom filter with the WritePaper procedure, this description
should begin with a present progressive of a verb, and the phrase should be able to function
as an adjectival phrase in a sentence.

The file code_filters.txt provides four groups of procedures for manipulating filters.
The first is a collection of procedures that take filters as arguments (possibly along with other
arguments), and they return new filters based on those filters. For example, the procedure
AndFilters returns the boolean conjunction of two filters, and it modifies the description
appropriately. The second group is a collection of procedures which take non-filter arguments
and return filters based on those arguments. For example, the procedure MakeSizeNFilter
takes an argument n and returns a filter that checks whether S has cardinality exactly n.
The third group is a collection of procedures which take no arguments and return “mutable
filters”. These filters have some memory and may not always return the same value on the
same input. For example, the procedure MakeStrictlyLongestPrefixSoFarFilter returns
a filter that returns true if and only if the argument G is greater than any other value of G
this filter has seen before. The final group is a collection of premade filters. For example,
the procedure IdentityFilter is a filter that always returns true.

Procedures related to selectors can be found in code_selectors.txt. A selector, at its
most basic level, is a procedure with the following properties:

e [t takes six arguments in the order S,F,P,G,L,E, which are the same data fields in the
same formats as described in Subsection 2.1.

e [f the inputs are all of the proper types, it returns something.
e If the input S is passed as 0 (as opposed to as a set), then it returns a string.

More to the point, the “normal” return value is whatever the selector is “selecting” from the
input. This is usually some part of the input, possibly in a modified format. The string
return value is a description of what the selector does. If the user wishes to use a custom
selector with the extract capabilities of the WritePaper procedure (see Section 3 for more
information on this), this description should be a noun phrase.

The file code_selectors.txt provides three groups of procedures for manipulating selec-
tors. The first is a collection of procedures that take selectors as arguments (possibly along
with other arguments), and they return new selectors based on those selectors. For example,
the procedure AddSelectors returns the numerical sum of two selectors, and it modifies
the description appropriately. The second group is a collection of procedures which take
non-selector arguments and return selectors based on those arguments. For example, the
procedure MakeConstantSelector takes an argument n and returns a selector that always
returns n. The final group is a collection of premade selectors. For example, the procedure
SSelector is a selector that returns S.



Ideally, filters and selectors would be implemented as objects with an intricate inheritance
pattern (they would both extend the same class, and each different filter/selector would be
a subclass). Though Maple supports objects, they are just glorified modules and do not
support inheritance. Hence, filters and selectors have been implemented as procedures in
the manner described.

3 Interface

3.1 WritePaper

First, we will discuss in detail how to use the WritePaper procedure. The raw procedures
in code_finsubgames.txt use similar arguments, but are less complicated. The procedure
WritePaper takes five arguments:

1. outfile: the name of the file to which the paper should be written
2. files: a list of DB files to process. The files will be processed in the order given.

3. descs: a list of strings. This list has the same number of entries as files, and the
entries in descs are descriptions of the corresponding files in files. If no description
of the file is desired to appear in the paper, its description should be included as false.

4. argseq: a nested list data structure that is the meat of the procedure. Details are
described below.

5. opts: a set of options, each of which is passed as a string. Right now, there is only
one option the procedure recognizes: “FLOAT”. If included, averages are reported as
floating-point numbers. If excluded, averages are reported as fractions.

There are three different types of reports that can be performed and written into a paper.
The first is a count. A count goes through a file and counts the number of entries satisfying
a given filter. The second type of report is an average. An average uses a filter and a
selector that returns a numerical value. It goes through a file and takes the average of the
selector’s value over all entries satisfying the filter. The third type of report is an extract.
An extract also uses a filter and a selector, though the selector can have any return type. It
goes through a file and gathers in a list the selector’s values over all entries satisfying the
filter. The procedure PaperWriter converts all of these report types into human-readable
English.

The argument argseq is a list of lists of lists. The outermost list contains the same num-
ber of entries as files. Each of these entries (which are lists of lists) contains six-element lists
of the form [countfilters, avgfilters, avgselectors, extfilters, extselectors,
stopcond]. These correspond to a collection reports to run on the file. The following is an
explanation of each of these parameters:



e countfilters: a list of filters. Each filter in this list will be used to generate a count
report. If no count reports are desired, this list can be empty.

e avgfilters: a list of filters. Each filter in this list will be used to generate an average
report. If no average reports are desired, this list can be empty.

e avgselectors: a list of selectors with the same number of entries as avgfilters. This
list will be used in conjunction with avgfilters to generate the average reports.

e extfilters: a list of filters. Each filter in this list will be used to generate an extract
report. If no extract reports are desired, this list can be empty.

e extselectors: a list of selectors with the same number of entries as extfilters. This
list will be used in conjunction with extfilters to generate the extract reports.

e stopcond: afilter. All report generators will stop running when this filter fails to accept
the current entry, provided that at least one report filter has accepted something thus
far.

The file will not be reset before the next set of reports runs. To reset it, pass it multiple
times in the files list.

3.2 Self-Contained Papers

Now, we will describe how to use the WriteSelfContainedPaperFromDBFile procedure.
During this discussion, we will also explain the remaining procedures in code_paper.txt.
The procedure WriteSelfContainedPaperFromDBFile takes five required arguments and
two optional arguments. They are listed and described here, in order.

filter: This argument specifies a filter to apply to a DB file to select subtraction sets to
put into the paper. This argument is required.

infile: This argument is the name of the DB file to which to apply the filter. This argument
is required.

outfile: This argument is the name of the file to which to output the paper (should have
extension .tex). This argument is required.

title: This argument is the title of the paper. This argument is required.
author: This argument is the author of the paper. This argument is required.

opts: This argument is the set of options to use when writing the paper. See the section on
options below for a description of how to use this argument. This argument is optional.
Omitting it is equivalent to passing the empty set.



stopcond: This argument has no effect unless the NORESET option is used (see the section
on options below). In that case, it specifies a filter that indicates when searching for
sets in the DB file should stop. Specifically, searching will stop when at least one set
has been found and when stopcond fails to be satisfied. This argument is optional.
Omitting it is equivalent to passing false, which has the effect of only stopping when
the whole file has been scanned.

The procedure itself will print nothing, and it will output a LaTeX file to outfile that can
then be compiled into a PDF. It works by using the filter on the DB file to create a list
of subtraction sets, which it then passes with all of its other arguments to the procedure
WriteSelfContainedPaper. This procedure has the same type of input and output as
WriteSelfContainedPaperFromDBFile, except that it takes a list of subtraction sets as a
first argument in place of a filter and a DB file. Also, its last (optional) argument is a string,
descr, as opposed to a filter. If provided, this string should provide a short description
of what the sets in the paper have in common in the same grammatical form as a filter
description. The procedure WriteSelfContainedPaper calls WritePrefPerPaper to write
the bulk of the paper, which, in turn, calls

ProvePeriodAndPrefix once to produce a proof for each set in the list. All four of these
procedures can take a number of options, which we will discuss next.

3.2.1 Options

The procedures ProvePeriodAndPrefix, WritePrefPerPaper, WriteSelfContainedPaper,
and WriteSelfContainedPaperFromDBFile all have an optional argument opts. This argu-
ment should be a set of double-quoted strings. Omitting the opts argument is equivalent to
passing the empty set. What follows is an alphabetized list of all meaningful options, which
procedures they apply to, and what they do. Passing an option not in this list has no effect,
unless it contains one of these option names as a prefix (in which case the behavior is un-
defined). Additionally, remember that all of these options must be passed as double-quoted
strings (i.e. “DETAILED”).

DETAILED:

Applies to: ProvePeriodAndPrefix, WritePrefPerPaper,
WriteSelfContainedPaper, WriteSelfContainedPaperFromDBFile

Effect: Replaces abbreviations (e.g. “mex”) with their non-abbreviated forms (e.g.
“minimum excluded element”).

DISPLAY:

Applies to: ProvePeriodAndPrefix, WritePrefPerPaper,
WriteSelfContainedPaper, WriteSelfContainedPaperFromDBFile

Effect: No effect unless LATEX option also present (or LATEX mode automatically
employed). In that case, pieces of Nim sequences are put into display mode
whenever they appear.



INSTRUCTIVE:

Applies to: WriteSelfContainedPaper, WriteSelfContainedPaperFromDBFile

Effect: If present, not all sets in the list will have proofs written for them. Rather,
a random selection will have proofs written. This number is, by default, propor-
tional to the logarithm of the number of sets. One of the sets proved will the
a set with the longest period, and another set proved will be the set with the
longest prefix (if there is a nonzero prefix and this is not the same set as the
longest period). In addition, one of the sets will always be one without a prefix
(if possible). Attaching a number to the end of the word “INSTRUCTIVE” (i.e.
“INSTRUCTIVES”) is allowed. This will force the number of proofs to equal that
number.

INTRO:

Applies to: WriteSelfContainedPaper, WriteSelfContainedPaperFromDBFile

Effect: If present, includes an introduction in the paper. If WriteSelfContainedPaper
is called with a string passed for the argument descr, then that description is used
as a part of the intro. The procedure WriteSelfContainedPaperFromDBFile
seeds that description from the description of its filter. Other than the sentence
or two stemming from that description, all intros are the same. Including an
introduction also includes a bibliography at the end of the paper, as the generic
intro includes a citation.

LATEX:

Applies to: ProvePeriodAndPrefix, WritePrefPerPaper

Effect: If present, the theorms and proofs will be produced in LaTeX code, as-
suming the presence of the amsthm package and appropriate \newthms. Pro-
cedures WriteSelfContainedPaper and WriteSelfContainedPaperFromDBFile
automatically produce LaTeX code, so this option need not be present.

NICEHBOX:

Applies to: ProvePeriodAndPrefix, WritePrefPerPaper,
WriteSelfContainedPaper, WriteSelfContainedPaperFromDBFile

Effect: No effect unless LATEX option also present (or LATEX mode automatically
employed). In that case, pieces of Nim sequences in theorms and proofs are made
multi-line if they get to long in an attempt to avoid overfull hboxes. Attaching a
number to the end of the word “NICEHBOX” (i.e. “NICEHBOXT75”) is allowed.
This will force the number of characters per line of sequence text to be close to
that number.

NODATE:



Applies to: WriteSelfContainedPaper, WriteSelfContainedPaperFromDBFile
Effect: If present, today’s date will not appear with the title and author of the paper.

NORESET:

Applies to: WriteSelfContainedPaperFromDBFile

Effect: If present, the DB file infile will not be reset before being scanned for sets
matching the filter. The argument stopcond will only be taken into consideration
if the NORESET option is present.

RANDOM:

Applies to: WriteSelfContainedPaper, WriteSelfContainedPaperFromDBFile

Effect: If present, not all sets in the list will have proofs written for them. Rather,
a random selection will have proofs written. This number is, by default, pro-
portional to the logarithm of the number of sets. Attaching a number to the
end of the word “RANDOM” (i.e. “RANDOM3”) is allowed. This will force the
number of proofs to equal that number. If both INSTRUCTIVE and RANDOM
are present, INSTRUCTIVE takes precedence. If exactly one of these defines a
number, that number will be used. If either of these appears more than once, or
if more than one number is defined, the behavior is undefined.

SORTED:

Applies to: WriteSelfContainedPaper, WriteSelfContainedPaperFromDBFile

Effect: If present, sets will be considered in colexicographic order (treated as if their
elements are in increasing order). If absent, sets will be considered in the order
they appear. This argument applies to both the summary and the proof order.
If either RANDOM or INSTRUCTIVE is present, then it only applies to the
summary, as the proofs will be sorted automatically.

STRING:

Applies to: WritePrefPerPaper, WriteSelfContainedPaper,
WriteSelfContainedPaperFromDBFile

Effect: Instead of writing the result to a file, return it as a string. The argument
outfile is then ignored.

SUMMARY:

Applies to: WriteSelfContainedPaper, WriteSelfContainedPaperFromDBFile

Effect: If present, includes a summary table of the subtraction sets, periods, and
prefixes in the paper.



SUMMNICEHBOX:

Applies to: WriteSelfContainedPaper, WriteSelfContainedPaperFromDBFile

Effect: Prefixes and periods in the summary table are made multi-line if they get
to long in an attempt to avoid overfull hboxes. Attaching a number to the end
of the word “SUMMNICEHBOX” (i.e. “SUMMNICEHBOX25") is allowed. This
will force the number of characters per line of sequence text to be close to that
number.

VERBOSE:

Applies to: ProvePeriodAndPrefix, WritePrefPerPaper,
WriteSelfContainedPaper, WriteSelfContainedPaperFromDBFile

Effect: Adds a lot of detail to proofs. Instead of the proof length being
O (period length + prefix length + constant) ,
it is now

O ((period length + prefix length) - constant) .

References

[1] E. R. Berlekamp, J. H. Conway, and R. K. Guy, Winning Ways for Your Mathematical Plays, Vol. 1, A.
K. Peters, 2001.

10



