Homework 14

4

Proposition 1. We have

$$
V(2, p)=\frac{p(p-1)}{p+1}
$$

Proof. The proof is by induction on p. First, we know that $V(2,1)=0$, which matches the formula. Now, assume that we know that

$$
V(2, p-1)=\frac{(p-1)(p-2)}{p}
$$

Recall that Boyce proves that

$$
V(1, p)=\frac{p^{2}}{p-1} .
$$

So, we have

$$
\begin{aligned}
V(2, p) & =\left(\frac{2}{p+2}\right)(-1+V(1, p))+\left(\frac{p}{p+2}\right)(1+V(2, p-1)) \\
& =\left(\frac{2}{p+2}\right)\left(-1+\frac{p^{2}}{p-1}\right)+\left(\frac{p}{p+2}\right)\left(1+\frac{(p-1)(p-2)}{p}\right) \\
& =\left(\frac{2}{p+2}\right)\left(\frac{p^{2}-p-1}{p-1}\right)+\left(\frac{p}{p+2}\right)\left(\frac{p^{2}-2 p+2}{p}\right) \\
& =\frac{2 p\left(p^{2}-p-1\right)+p(p+1)\left(p^{2}-2 p+2\right)}{p(p+1)(p+2)} \\
& =\frac{2 p^{3}-2 p^{2}-2 p+\left(p^{2}+p\right)\left(p^{2}-2 p+2\right)}{p(p+1)(p+2)} \\
& =\frac{2 p^{3}-2 p^{2}-2 p+p^{4}-2 p^{3}+2 p^{2}+p^{3}-2 p^{2}+2 p}{p(p+1)(p+2)} \\
& =\frac{p^{4}+p^{3}-2 p^{2}}{p(p+1)(p+2)} \\
& =\frac{p^{2}(p+2)(p-1)}{p(p+1)(p+2)} \\
& =\frac{p(p-1)}{p+1}
\end{aligned}
$$

as required.

