Introduction to Maple ${ }^{1}$

Maple is a computer algebra system. It can do essentially everything a graphing calculator can do as well as much more. Additionally, computers have much more processing power than calculators, so Maple is much faster than a calculator when performing difficult computations. Today, you will discover how maple can be useful for arithmetic, algebra, calculus, and graphing.

Arithmetic

1. Type $2+3$; [RETURN] to add 2 and 3 . Try other numbers (including more than just two numbers). Also try subtraction (-), multiplication (*), and exponentiation (\sim).
2. Type 2/3; [RETURN] to divide 2 by 3 . What happens? Type evalf(\%); [RETURN]. What is the output now? What does the \% symbol do?
3. The Maple procedure for square root is sqrt. Try to get Maple to produce a decimal approximation of $\sqrt{5}$.

Algebra

1. Type (a+b)~5; [RETURN]. What happens? Type expand(\%); [RETURN]. What is the output now?
2. Type $\mathrm{a}:=1 ; \mathrm{b}:=2 ;[$ RETURN $]$ and then type $(\mathrm{a}+\mathrm{b})^{\wedge} 5 ;$ RETURN]. What happens now?
3. Type solve $\left(x^{\wedge} 2+2 x+1=0, x\right)$; [RETURN]. Try solving other equations this way. Try using the factor procedure to factor $x^{2}+2 x+1$ and other polynomials.

Calculus

1. Type $\operatorname{diff}(\mathrm{x} * \sin (\mathrm{x}), \mathrm{x})$; [RETURN] to differentiate the function $x \sin x$. Try differentiating other functions.
2. Type $\operatorname{int}(\sec (\mathrm{x}), \mathrm{x})$; [RETURN] to compute the antiderivative of $\sec x$. Try integrating other functions. Try computing definite integrals by replacing the x argument with an expression of the form $x=-1.1$ (e.g. to integrate from -1 to 1).

Graphing

1. Choose your favorite function of x. Graph it by typing $\operatorname{plot}(\mathrm{f}(\mathrm{x}), \mathrm{x})$; [RETURN] (where you replace $f(x)$ by your function). Try assigning a range to x like you did when computing a definite integral. What happens?

When you are done with these exercises, try working through the longer tutorials found at http://math.rutgers.edu/courses/251/maple_new/maple0.html.

[^0]
[^0]: ${ }^{1}$ This document created by Nathan Fox for Sections 16, 17, and 18 of Math 251 in Spring Semester 2014

