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Abstract. For a graph G, let f(G) be the largest integer k for which there exist two

vertex-disjoint induced subgraphs of G each on k vertices, both inducing the same

number of edges. We prove that f(G) ≥ n/2− o(n) for every graph G on n vertices.

This answers a question of Caro and Yuster from 2009.

1. Introduction

Given a graph G, can we guarantee that G contains two large, vertex-disjoint copies of

the same graph? It follows from Ramsey’s theorem that any graph on n vertices contains

two vertex-disjoint isomorphic induced subgraphs on Ω(log n) vertices; by considering

a random graph on n vertices, it is easy to check that this is also best-possible up to

constant factors.

What if, rather than asking for two isomorphic subgraphs, we ask for two subgraphs

that are the same with respect to one or more graph parameters? Caro and Yuster [6]

considered the question of finding two vertex-disjoint subgraphs of a given graph of the

same order which induce the same number of edges. For a graph G, let f(G) be the

largest integer k such that there are two vertex-disjoint induced subgraphs of G each

on k vertices, both inducing the same number of edges and let f(n) be the minimum

value of f(G) taken over all graphs on n vertices. Trivially, f(n) ≤ ⌊n/2⌋; also, as
shown by Ben-Eliezer and Krivelevich [4], equality holds (with high probability) for the

Erdős–Rényi random graphs G(n, p) for all 0 ≤ p ≤ 1.

There was a large gap between the best known upper and lower bounds for f(n).

From below, one can easily show using the pigeonhole principle that f(n) = Ω(n1/3).

As observed by Caro and Yuster, it is possible to improve this to f(n) = Ω(n1/2) using

a well-known result of Lovász determining the chromatic number of Kneser graphs. By

considering a carefully constructed disjoint union of cliques, each on an odd number of

vertices, Caro and Yuster showed that f(n) ≤ n/2− Ω(log log n).

As expected, one can say more about f(G) when G belongs to certain special graph

classes. For example, Axenovich, Martin and Ueckerdt [3] showed that f(G) ≥ ⌈n/2⌉−1
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when G is a forest; this is clearly best-possible. Indeed, it is possible to get quite close

to the trivial upper bound of n/2 when we restrict our attention to sparse graphs. In

their paper, Caro and Yuster showed, for any fixed α > 0, that if G is a graph on n

vertices, then f(G) ≥ n/2− o(n) provided G has at most n2−α edges (or non-edges).

Axenovich, Martin and Ueckerdt [3] later showed that the same holds for graphs with

at most o(n2/(log n)2) edges.

Our main aim in this paper is to narrow considerably the gap between the best known

upper and lower bounds for f(n), and thereby answer a question of Caro and Yuster [6].

Theorem 1.1. For every ε > 0, there exists a natural number N = N(ε) such that for

any graph G on n > N vertices, f(G) ≥ n/2− εn. Consequently,

n/2− o(n) ≤ f(n) ≤ n/2− Ω(log log n).

We remark that much research has been done on the family of induced subgraphs of

a graph. For example, call a graph k-universal if it contains every graph of order k as

an induced subgraph. Very crudely, if G is a k-universal graph with n vertices, then(
n

k

)
≥ 2(

k
2)

k!
,

so n ≥ 2(k−1)/2. As remarked in [5], almost all graphs with k22k/2 vertices are k-

universal, and the Paley graphs come close to providing examples which are almost

as good. Hajnal conjectured that if a graph only has a ‘small’ number of distinct

(non-isomorphic) induced subgraphs, then it contains a trivial (complete or empty)

subgraph with linearly many vertices. This was proved, shortly after the conjecture

was made, by Alon and Bollobás [1], and Erdős and Hajnal [8], the latter in a stronger

form. In [1] only a few parameters, like order, size and maximal degree, were used to

distinguish non-isomorphic graphs.

Erdős and Hajnal [9] then went much further: they realised that forbidding a single

graph as an induced subgraph severely constrains the structure of a graph. More

precisely, they made the major conjecture that for every graph H, there is a positive

constant γ(H) such that if a graph of order n does not contain H as an induced

subgraph, then the graph contains a trivial subgraph with at least nγ(H) vertices. In

spite of all the work on this conjecture, see [7, 11, 13] for instance, we are very far

from the desired bound.

Let us finally mention another interesting line of research about finding disjoint

isomorphic (not necessarily induced) subgraphs. Jacobson and Schönheim (see [10,

12]) independently raised the question of finding edge-disjoint isomorphic subgraphs.

Improving on results of Erdős, Pyber and Pach [10], it has been shown by Lee, Loh and

Sudakov [12] that every graph on m edges contains a pair of edge-disjoint isomorphic
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subgraphs with at least Ω((m logm)2/3) edges and that this is also best-possible up to

a multiplicative constant.

The rest of this paper is organised as follows. We give an overview of our approach

in Section 3, and then fill in the details and prove Theorem 1.1 in Section 4. There are

many natural questions about induced subgraphs which are close to Theorem 1.1 in

spirit; we conclude in Section 5 by mentioning some of these.

2. Preliminaries

Our objective in this section is to establish some notational conveniences and collect

together, for easy reference, some simple propositions that we shall make use of when

proving our main result.

2.1. Notation. It will be convenient to establish some notation for working with sets

of pairs. A pair {x, y} will always mean an unordered pair with x ≠ y, and a collection

of pairs P will always mean a set of disjoint pairs; for example, P = {{1, 2}, {3, 4}} is a

collection of pairs, but Q = {{1, 2}, {2, 3}} is not. For a collection of pairs denoted by

P , we shall write P for the underlying ground set of elements, i.e., P =
⋃

{x,y}∈P{x, y};
in other words, we reserve the corresponding upper case letter for the ground set. We

shall say that two collections of pairs P and Q are disjoint if P ∩Q = ∅; for example,

the collections P1 = {{1, 2}, {3, 4}} and Q1 = {{5, 6}, {7, 8}} are disjoint, while the

collections P2 = {{1, 2}, {3, 4}} and Q2 = {{1, 3}, {2, 4}} are not.

As usual, given a graph G = (V,E), we write d(v) and Γ(v) respectively for the

degree and for the neighbourhood of a vertex v in G. For a subset U ⊂ V , we write

G[U ] for the subgraph induced by U , e(U) for the number of edges of G[U ], and d(U)

for the sum of the degrees (in G) of the vertices of U . Given two disjoint subsets

A,B ⊂ V , we write e(A,B) for the number of edges with one endpoint each in A and

B.

We shall also use the following less common terminology and notation. For any two

vertices x, y ∈ V , we write δ(x, y) for the degree difference between x and y, namely the

quantity | d(x)− d(y)|. We say that two vertices x and y disagree on a vertex v ≠ x, y

if v is adjacent to exactly one of x and y; otherwise x and y agree on v. For any two

vertices x, y ∈ V , the difference neighbourhood Γ(x, y) of x and y is the set of vertices

v ̸= x, y on which x and y disagree; we write ∆(x, y) for the size of the difference

neighbourhood, so that δ(x, y) ≤ ∆(x, y). If two vertices x and y agree on every vertex

v ̸= x, y, we say that the pair {x, y} is a clone pair. When the graph G in question is

not clear from the context, we shall, for example, write δ(x, y,G) to denote the degree

difference between x and y in G.
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We say that a graph G is splittable if there is a partition V = A∪B of its vertex set into

two sets A and B of equal size with e(A) = e(B); in this case, we call (A,B) a splitting

of G. Note that e(A) = e(B) if and only if d(A) = d(B), since d(A) = 2e(A) + e(A,B).

Our conventions for asymptotic notation are largely standard; however, we feel

obliged to point out that we write ok→∞(1) to denote a function (of k) that goes to 0

as k → ∞, and that when we write, say Ωk(.), we mean that the constant suppressed

by the asymptotic notation is allowed to depend on (but is completely determined by)

the parameter k. For the sake of clarity of presentation, we systematically omit floors

and ceilings whenever they are not crucial.

2.2. Preliminary observations. We shall make use of the following simple observation

repeatedly when constructing a splitting.

Proposition 2.1. Given positive real numbers x1, x2, . . . , xt in the interval [a, b] with

0 ≤ a ≤ b, we may, for every y ∈ [−ta, ta], choose signs ζi ∈ {−1,+1} such that

|y +
∑

ζixi| ≤ b. □

The following first moment bound will prove useful; it is easily checked that the

bound is the best-possible.

Proposition 2.2. Let X be a random variable such that X ≤ N and E[X] ≥ Np. Then

P
(
X ≥ E[X]

2

)
≥ p

2− p
. □

We will also need the following two easy propositions.

Proposition 2.3. Given x1, x2, . . . , xt in the interval [0, a], a positive real b and a

natural number N , we may find ⌊t/N⌋ − ⌈a/b⌉ disjoint subsets of {x1, x2, . . . , xt}, each
of size N , such that |xi − xj| ≤ b for any xi and xj belonging to the same subset.

Proof. Suppose that x1 ≤ x2 ≤ · · · ≤ xt. Let i0 = 1 and define ij to be the smallest

index such that xij > xij−1
+ b and consider the sets Sj = {xij , xij+1, . . . , xij+1−1}. Since

x1 ≥ 0 and xt ≤ a, there are at most ⌈a/b⌉ such sets. Now, by discarding at most

N numbers from each Sj if necessary, we can assume that N divides |Sj| for each

j. We now partition each Sj into subsets of size N . Clearly, |xi − xj| ≤ b for any

xi and xj belonging to the same subset. The number of elements we have discarded

is at most N⌈a/b⌉. So the number of subsets of size N we are left with is at least

⌊t/N⌋ − ⌈a/b⌉. □

Remark. We shall often apply Proposition 2.3 to the degrees of a subset of vertices of a

graph; we consequently obtain disjoint groups of vertices such that the degree difference

of any two vertices in the same group is suitably bounded.
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Proposition 2.4. Let x, y and z be three vertices and U some subset of vertices of a

graph G. Then some two of the vertices x, y and z disagree on at most two thirds of

the vertices of U .

Proof. Any vertex v ∈ U belongs to at most two of the three difference neighbourhoods

Γ(x, y), Γ(y, z) and Γ(z, x). The claim follows by averaging. □

2.3. Binomial random variables. We will need some easily proven statements about

binomial random variables. We collect these here. As usual, for a random variable

with distribution Bin(N, p), we write µ(= Np) for its mean and σ2(= Np(1− p)) for

its variance.

The first proposition we shall require is an easy consequence of the fact that e−2x ≤
1− x ≤ e−x for all 0 ≤ x ≤ 1/2.

Proposition 2.5. Let X be a random variable with distribution Bin(N, p), with p ≤ 1/2.

Then for every 1 ≤ k ≤ N ,

exp(−2µ)(µ/k)k ≤ P(X = k) ≤ exp(−µ)(2eµ/k)k.

Also, exp(−2µ) ≤ P(X = 0) ≤ exp(−µ). □

We shall make use of the following standard concentration result which first appeared

in a paper of Bernstein and was later rediscovered by Chernoff and Hoeffding; see [2]

for example.

Proposition 2.6. Let X be a random variable with distribution Bin(N, p). Then

P(|X −Np| > t) ≤ 2 exp

(
−2t2

N

)
. □

Proposition 2.7. Let X be a random variable with distribution Bin(N, p). Then

P(X is even) =
1

2
(1 + (1− 2p)N). □

Proposition 2.8. Let X1 and X2 be two independent random variables both with

distribution Bin(N, p). Then

P(X1 = X2) = oσ→∞(1).

In particular, when p ≤ 1/2, P(X1 = X2) = oµ→∞(1). □

Proposition 2.9. Let X1 and X2 be two independent random variables with distributions

Bin(N1, p) and Bin(N2, p) respectively, with p ≥ 1/2. Then

P(|X1 −X2| < |N1 −N2|1/3) = o|N1−N2|→∞(1). □
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Proposition 2.10. Let X1 and X2 be two independent random variables with distribu-

tions Bin(N1, p) and Bin(N2, p) respectively, with p ≥ 1/2. Suppose N1 ≤ N , N2 ≤ N

and |N1 −N2| ≤ cN1/2 for some absolute constant c. Then

P(|X1 −X2| > N2/3) = O

(
exp

(
−N1/3

5

))
. □

3. Overview of our strategy

To prove Theorem 1.1, we need to show that if ε > 0 and n is sufficiently large, then

any graph G on n vertices contains two disjoint subsets of vertices of the same size, each

of cardinality at least (1/2− ε)n, which induce the same number of edges. Equivalently,

we need to show that it is possible to transform G into a splittable graph by deleting

at most 2εn vertices from G. Recall that a graph is splittable if and only if there is a

partition of its vertex set into two sets of equal size such that the sums of the degrees

of the vertices in the two sets are equal.

We shall show that there is a probability 0 < p ≤ ε (depending on G) such that if we

delete vertices from G with probability p, then the resulting graph H is splittable with

positive probability.

To show that this random subgraph H is splittable, we shall exhibit a large collection

of ‘gadgets’ in H. Given 0 ≤ a ≤ b, by an [a, b]-gadget, we mean a pair of vertices {x, y}
such that a ≤ δ(x, y) ≤ b; a gadget, in other words, is just a pair of vertices whose

degree difference we can control.

Once we have found sufficiently many suitable gadgets in H, we construct a splitting

of H as follows: we use Proposition 2.1 to decide, one-by-one for each gadget, which way

round to assign the vertices of the gadget to the sides of the splitting. The following

lemma makes this idea precise.

Lemma 3.1. Let H be a graph on an even number of vertices and suppose that we can

partition V (H) into disjoint collections of pairs P1,P2, . . . ,Pk such that the pairs in Pi

are [ai, bi]-gadgets, where 0 ≤ a1 ≤ b1 and 0 < ai ≤ bi for 2 ≤ i ≤ k. If bi−1 ≤ ai|Pi|
for each 2 ≤ i ≤ k, then V (H) can be partitioned into two sets A,B of the same size

such that | d(A)− d(B)| ≤ bk. In particular, if bk = 1, then H is splittable.

Proof. We show by induction on i that it is possible to partition the vertices of the

gadgets in P1, . . . ,Pi into two sets Ai and Bi of equal size such that | d(Ai)−d(Bi)| ≤ bi.

The lemma follows by taking A = Ak and B = Bk.

We set b0 = 0 and A0 = B0 = ∅, so the claim is trivially true when i = 0. So suppose

that i ≥ 1 and that we have constructed Ai−1 and Bi−1. Denote the [ai, bi]-gadgets in

Pi by (xj, yj), where d(xj) ≥ d(yj) for 1 ≤ j ≤ |Pi|. Using the fact that bi−1 ≤ ai|Pi|, it
follows from Proposition 2.1 that there is a choice of signs ζj ∈ {−1,+1} for 1 ≤ j ≤ |Pi|
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such that ∣∣(d(Ai−1)− d(Bi−1)) +
∑
j

ζjδ(xj, yj)
∣∣ ≤ bi.

Given ζj as above, we construct Ai and Bi from Ai−1 and Bi−1 as follows: for each

1 ≤ j ≤ |Pi|, we add xj to Ai−1 and yj to Bi−1 if ζj = 1, and yj to Ai−1 and xj to Bi−1

if ζj = −1. The claim follows.

If bk = 1, notice that we have a partition of V (H) into two sets A and B of equal

size such that | d(A)− d(B)| ≤ 1. As d(A) + d(B) is the sum of all the vertex degrees,

we conclude that d(A) = d(B) since d(A)− d(B) must be even. □

Lemma 3.1 tells us that a graph is splittable if we can find the right gadgets in the

graph. The majority of the work in proving Theorem 1.1 is in showing that it is possible

to find a good collection of gadgets.

4. Proof of the main result

We now try and make the intuition presented in Section 3 precise. We shall show

that if ε > 0 and n is sufficiently large, it is possible to transform any graph G on n

vertices into a splittable graph by deleting at most 2εn vertices from G. Before we

begin, we remark that the various constants suppressed by the asymptotic notation

throughout the proof are allowed to depend on ε. We shall use c1, c2, . . . to represent

small constants depending on ε and C1, C2, . . . for large constants depending on ε. All

our estimates will hold when n is sufficiently large.

Proof of Theorem 1.1. Let ε > 0 be fixed. By deleting an arbitrary vertex of G if

necessary, assume that n = |V (G)| is even. Let β = β(ε) be a small constant whose

value we shall fix at the end of the argument in Case 1.

Call a pair of vertices {x, y} a ‘large’ pair if δ(x, y) ∈ [n1/3, βn]. Let c1 = ε/2. We

distinguish two cases depending on how many disjoint large pairs we can find in G. We

first deal with the case when G contains many disjoint large pairs.

Case 1: G contains c1n disjoint large pairs of vertices. In this case, we shall

show that G has an induced subgraph H of even order on at least (1− 2ε)n vertices

that contains

(1) a collection SH of [1, 1]-gadgets of size Ω(n/ log n),

(2) a collection MH of [1, n2/3]-gadgets of size at least 2βn, and

(3) a collection LH of [n1/9, 2βn]-gadgets of size Ω(n)

such that the collections SH , MH , and LH are disjoint. It is straightforward to

check that such a graph H is splittable using Lemma 3.1. Indeed, pair up the vertices

V (H)\(LH∪MH∪SH) arbitrarily; any such pair is a [0, n]-gadget, so we have a partition

of V (H) into disjoint collections of [0, n]-gadgets, [n1/9, 2βn]-gadgets, [1, n2/3]-gadgets
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and [1, 1]-gadgets. The sizes of these collections satisfy the conditions of Lemma 3.1 if

n is sufficiently large and it follows that H is splittable.

We shall now show that G does indeed contain such an induced subgraph H. We

shall construct H by deleting vertices from G at random.

To avoid notational clutter, in the rest of the argument in Case 1, we shall write large-

gadget for an [n1/9, 2βn]-gadget, medium-gadget for a [1, n2/3]-gadget and one-gadget

for a [1, 1]-gadget.

Let L be a collection of c1n large pairs of vertices of G. The pairs in L will be the

candidates for the large-gadgets we hope to find in H. Our next task is to find a large

collection M of ‘medium’ pairs and a reasonably large collection S of ‘small’ pairs;

the collections M and S will provide the candidate pairs for the medium-gadgets and

one-gadgets that we would like to find in H.

Now, |V \ L| = (1 − 2c1)n; recall that in our notation, L denotes the underlying

ground set of L. If we find more than (1/2− ε)n disjoint clone pairs {x, y} in G[V \L],
we are done. Indeed, we can delete all the other (≤ 2εn) vertices not in any of these

clone pairs to get a splittable graph: we split this graph by assigning different vertices

of each clone pair to different halves of the partition. So we may assume that we can

find a set V ′ ⊂ V \L of vertices of G such that any two vertices of V ′ disagree on some

vertex of V \ L and |V ′| ≥ (2ε− 2c1)n ≥ εn.

Let C1 = 4/ε and let c2 = ε/12. We now apply Proposition 2.3 to the degrees of the

vertices of V ′; by our choice of C1 and c2, we see that we can find c2n disjoint groups of

three vertices from V ′ such that δ(x, y) ≤ C1 for any two vertices x and y in the same

group. By Proposition 2.4, from each of these triples, we may choose a pair of vertices

{x, y} such that ∆(x, y) ≤ 2n/3. Write P for this collection of c2n pairs.

For 0 ≤ i ≤ log n − 1, let Pi be the collection of those pairs {x, y} in P such that

∆(x, y) ∈ [2i, 2i+1). There are two possibilities that we need to consider. It might be

that no collection Pi contains too many pairs; we deal with this case next. The case

where one of these collections contains many pairs is easier; we deal with this scenario

later with a modification of the argument that follows.

Let C2 ≥ 4 be a (large) constant depending on ε; we shall fix the value of C2 later in

the proof at the end of Case 1A. Also, let c3 = c2/3C2 ≤ c2/12.

Case 1A: None of the collections P0,P1, . . . ,Plogn−1 contains c3n pairs. It is

clear that at least one of the collections P0,P1, . . . ,Plogn−1 contains at least c2n/ log n

pairs. Let k be the smallest index such that |Pk| ≥ c3n/ log n and let us define our

collection of small pairs S by setting S = Pk. We now define our collection of medium

pairs M by setting

M = Pk+C2 ∪ · · · ∪ Plogn−1.

Since k is minimal and c3 ≤ c2/12, we see that |M| ≥ c2n/2.
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We shall now restrict our attention to the collections S, M and L; note that they

are disjoint. We shall make use of the following facts about these collections.

(1) S contains c3n/ log n pairs of vertices {x, y} with δ(x, y) ≤ C1, ∆(x, y) ∈
[2k, 2k+1), and ∆(x, y) ≤ 2n/3.

(2) M contains c2n/2 pairs of vertices {x, y} such that δ(x, y) ≤ C1, and ∆(x, y) ≥
2k+C2 .

(3) L contains c1n pairs of vertices {x, y} with δ(x, y) ∈ [n1/3, βn].

(4) For any pair of vertices {x, y} in S or M, there exists at least once vertex in

V \ L on which x and y disagree.

We are now in a position to describe how we intend to construct a splittable graph

from G. We shall delete vertices from G independently with a fixed probability. We shall

show that with positive probability, many of the small pairs from S form one-gadgets

in the resulting graph, many of the medium pairs from M form medium-gadgets, and

many of the large pairs from L form large-gadgets in the resulting graph.

Fix p = min{ε, 2−k}. We now delete vertices from G independently with probability

p. Let H be the resulting graph. We shall show that with probability Ω(1), the graph

H is splittable and contains at least (1− 2ε)n vertices; this clearly implies the result

we are trying to prove.

Note that for a graph to be splittable, it must necessarily contain an even number of

vertices. With this in mind, let E be the event that an even number of vertices have

been deleted, in other words, E is the event that |V (H)| is even. By Proposition 2.7,

we see that P(E) ≥ 1/2. We now analyse what happens to the degree differences of the

pairs in S, M and L in the graph H.

One-gadgets. We first show that many of the pairs in S form one-gadgets in H.

Lemma 4.1. For any pair {x, y} ∈ S ,

P({x, y} is a one-gadget in H |E) ≥ f(ε, C1) > 0.

The crucial fact about Lemma 4.1 is that the lower bound on the probability is

independent of C2.

Proof of Lemma 4.1. Let A = Γ(x) \ (Γ(y) ∪ {y}) and B = Γ(y) \ (Γ(x) ∪ {x}). Thus,
δ(x, y) = ||A| − |B|| and ∆(x, y) = |A|+ |B|. Note that since x and y disagree on at

least one vertex of V \ L, it cannot be the case that both A and B are empty. Suppose

without loss of generality that |A| ≥ |B| and that in particular, A ̸= ∅.

Let E1 be the event that both x and y are not deleted, E2 the event that no vertices

are deleted from B, E3 the event that exactly |δ(x, y)− 1| vertices are deleted from A,

and E4 the event that the number of vertices deleted from V \ (A∪B ∪ {x, y}) has the
same parity as |δ(x, y)−1|. It is obvious that the family {E1, E2, E3, E4} is independent
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since these events correspond to disjoint sets of vertices, and it is easy to check that

P({x, y} is a 1-gadget in H |E) ≥
4∏

i=1

P(Ei).

To complete our proof of the claim, we shall bound the factors on the right one by

one. Clearly, P(E1) ≥ (1− ε)2.

We trivially have |A|, |B| ≤ 2k+1. Furthermore |A|, |B| ≥ 2k−1 − C1/2, since 0 ≤
δ(x, y) ≤ C1. Also, we know that ε2−k ≤ p ≤ 2−k. To bound P(E2), first note that

p|B| ≤ 2. Now, P(E2) = P(Bin(|B|, p) = 0), so by Proposition 2.5, P(E2) ≥ exp (−4).

We now bound P(E3). Clearly, p|A| ≤ 2. If 2k ≥ 2C1, then |A| ≥ 2k−2, so p|A| ≥ ε/4.

If 2k ≤ 2C1, then p ≥ ε2−k ≥ ε/2C1, so p|A| ≥ ε/2C1 since |A| ≥ 1. Consequently,

min{ε/4, ε/2C1} ≤ p|A| ≤ 2.

Now, P(E3) = P(Bin(|A|, p) = |δ(x, y) − 1|). Using the above estimates for p|A| and
the fact that 0 ≤ δ(x, y) ≤ C1 in Proposition 2.5, we see that P(E3) = Ωε,C1(1).

Finally, since ∆(x, y) ≤ 2n/3, it follows that |V \(A∪B)| ≥ n/3, so by Proposition 2.7,

P(E4) ≥ 1/6 for all sufficiently large n. The claim follows. □

From Lemma 4.1 and Proposition 2.2 we see that, conditional on E, the number of

one-gadgets in H from S is Ω(n/ log n) with probability at least f(ε, C1)/2; furthermore,

and crucially, we note that this lower bound on the probability is independent of C2.

Medium-gadgets. We next shift our attention to the pairs in M.

Lemma 4.2. For any pair {x, y} ∈ M,

P(1 ≤ δ(x, y,H) ≤ n2/3 | x, y ∈ V (H)) = 1− oC2→∞(1)− o(1).

Proof. Let N1 = |Γ(x) \ (Γ(y) ∪ {y})| and let N2 = |Γ(y) \ (Γ(x) ∪ {x})| and suppose

without loss of generality that N1 ≥ N2. Note that δ(x, y) = |N1−N2| ≤ C1. LetX1 and

X2 be independent random variables with distributions Bin(N1, 1−p) and Bin(N2, 1−p)

respectively. Observe that δ(x, y,H) has the same distribution as |X1 −X2|.
We condition on x, y ∈ V (H). Let E1 be the event that δ(x, y,H) = 0. Clearly,

P(E1) = P(X1 = X2). Let E2 denote the event that δ(x, y,H) ≥ n2/3. It is enough to

show that P(E1 ∪ E2) = oC2→∞(1) + o(1).

For any fixed values of p and N2, it is not hard to check that P(X1 = X2) attains

its maximum when N1 = N2; clearly, P(X1 = X2) =
∑N2

i=0 P(X1 = i)P(X2 = i) and the

required conclusion follows from Cauchy–Schwarz inequality. Thus P(E1) is bounded

above by the probability of two independent random variables with the distribution

Bin(N2, 1− p), or equivalently Bin(N2, p), being equal. Now, N2 ≥ 2k+C2−1 −C1/2 and

p ≥ ε2−k. So, pN2 ≥ ε2C2−1 − 2−k+1 which, since k ≥ 0, means that pN2 ≥ ε2C2−1 − 2.
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As ε is fixed, we note that pN2 can be made arbitrarily large by choosing C2 large

enough. Since p ≤ 1/2, by Proposition 2.8, we see that P(E1) = oC2→∞(1).

Clearly, P(E2) = P(|X1 −X2| ≥ n2/3). Applying Proposition 2.10 to X1 and X2, we

conclude that P(E2) = O(exp(−n1/3/5)). □

Let M′ be the collection of those pairs {x, y} ∈ M such that both x and y survive

in H. Since the family of events {x, y ∈ V (H)} is a family of mutually independent

events for different pairs {x, y} ∈ M and since P(x, y ∈ V (H)) ≥ (1 − ε)2, it follows

from Proposition 2.6 that P(|M′| < (1− ε)2|M|/2) = exp(−Ω(n)).

Consequently, from Lemma 4.2, it follows that for any pair {x, y} ∈ M,

P
(
1 ≤ δ(x, y,H) ≤ n2/3

∣∣∣ {x, y} ∈ M′, |M′| > (1− ε)2|M|
2

)
= 1− oC2→∞(1)− o(1).

Thus by Proposition 2.2, conditional on |M′| > (1− ε)2|M|/2, the number of medium-

gadgets from M′ in H is at least |M′|/3 with probability 1− oC2→∞(1)− o(1). Thus,

the number of medium-gadgets in H is at least (1 − ε)2|M|/6 with probability (1 −
exp(−Ω(n)))(1− oC2→∞(1)− o(1)), which is still 1− oC2→∞(1)− o(1).

Thus, conditional on the event E, the number of medium-gadgets in H from M is

Ω(n) with probability 1− oC2→∞(1)− o(1).

Large-gadgets. We finally consider the pairs of vertices in L. Recall that every
pair {x, y} ∈ L is such that δ(x, y) ∈ [n1/3, βn], where β is a (small) constant whose

value we have yet to fix. (Indeed, the value of β has so far played no role in our

calculations.)

Lemma 4.3. For any pair {x, y} ∈ L,

P(n1/9 ≤ δ(x, y,H) ≤ 2βn | x, y ∈ V (H)) = 1− o(1).

Proof. We condition on x, y ∈ V (H). Let E1 be the event that δ(x, y,H) < n1/9. Since

δ(x, y) ≥ n1/3, it follows immediately from Proposition 2.9 that P(E1) = o(1).

Let E2 be the event that δ(x, y,H) > 2βn. Let A = Γ(x) \ (Γ(y) ∪ {y}) and

B = Γ(y) \ (Γ(x) ∪ {x}), and let X1 and X2 be random variables that denote the

the number of vertices from A and B respectively which survive in H. Clearly, the

distributions of X1 and X2 are Bin(|A|, 1− p) and Bin(|B|, 1− p) respectively.

If E2 were to occur, i.e., it were the case that |X1−X2| > 2βn, then this would imply

that either |X1−(1−p)|A|| ≥ βn/2 or |X2−(1−p)|B|| ≥ βn/2, since (1−p)||A|−|B|| ≤
δ(x, y) ≤ βn. It follows that P(E2) = o(1) since the probability of either of the above

two possibilities is exp (−Ω(n)) by Proposition 2.6. □
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Arguing as in the case of medium-gadgets, we see from Lemma 4.3 that conditional

on the event E, the number of large-gadgets in H from L is Ω(n) with probability

1− o(1).

Constructing a splitting. We now have a reasonably clear picture of what the

degree differences in H of the pairs of vertices in S, M and L look like. In summary,

conditional on E, we have demonstrated that in H, we can find

(1) a collection SH of Ω(n/ log n) one-gadgets with probability f(ε, C1)/2,

(2) a collection MH of Ω(n) medium-gadgets with probability 1− oC2→∞(1)− o(1),

and

(3) a collection LH of Ω(n) large-gadgets with probability 1− o(1)

such that the collections SH ,MH and LH are disjoint.

Thus by choosing C2 to be a sufficiently large constant depending on ε, by the union

bound, we find all of the above with probability Ω(1) conditional on E, provided n

is sufficiently large. Also, the expected number of vertices deleted is at most εn, so

by Proposition 2.6, the probability that we have deleted more than 2εn vertices is

exp (−Ω(n)).

Consequently, we see thatH, with probability Ω(1), has the aforementioned collections

of gadgets, and furthermore, also has an even number of vertices and at least (1− 2ε)n

vertices. We are done if we can guarantee that 2βn ≤ |MH |; this is possible if we

choose β = β(ε) to be a suitably small constant because |MH | = Ω(n).

We now consider the case where one of the sets Pi contains many pairs.

Case 1B: One of the sets P0,P1, . . . ,Plogn−1 contains c3n pairs. This case is

easier to deal with than the previous one. We shall argue exactly as before; however we

shall have no need of medium-gadgets and it will suffice to consider one-gadgets and

large-gadgets alone.

Let k be any index such that |Pk| ≥ c3n (while we chose k to be minimal previously,

any index k such that |Pk| ≥ c3n will do in this case). As before, we set p = min{ε, 2−k}
and S = Pk. We now delete vertices from G independently with probability p. Let H

be the resulting graph; as before, we condition on deleting an even number of vertices.

We claim that H is splittable with probability Ω(1).

It is not hard to check that Lemma 4.1 and Lemma 4.3 hold in this case as well. We

conclude that we can delete an even number of vertices from G to obtain a graph H

with |V (H)| ≥ (1− 2ε)n in such a way that in H, we can find

(1) a collection SH of Ω(n) one-gadgets, and

(2) a collection LH of Ω(n) large-gadgets
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such that SH and LH are disjoint. As before, it follows from Lemma 3.1 that H is

splittable when n is sufficiently large provided 2βn ≤ |SH |; this is possible if we choose

β = β(ε) to be a suitably small constant because |SH | = Ω(n).

Thus, for all sufficiently small β (so as to satisfy the conditions from both Case 1A

and 1B), we see that we are done if G contains many disjoint large pairs. Note that we

have now fixed the value of β. We now deal with the case G does not contain many

disjoint large pairs.

Case 2: G does not contain c1n disjoint large pairs. In this case, we shall show

that G has an induced subgraph H of even order on at least (1− 2ε)n vertices such

that V (H) may be partitioned into

(1) a collection SH of [1, 1]-gadgets of size Ω(n/ log n), and

(2) a collection MH of [0, n2/3]-gadgets.

In the rest of the argument in Case 2, we shall, as before, call [1, 1]-gadgets one-

gadgets and we call [0, n2/3]-gadgets (as opposed to [1, n2/3]-gadgets as we did earlier)

medium-gadgets.

It is easily seen from Lemma 3.1 that H is splittable if n is sufficiently large. We

construct our splitting by starting with the pairs in MH - we can use these pairs to

construct a partition such that sums of the degrees of the vertices of the two halves

of the partition differ by at most n2/3. We then use the the pairs in SH to reduce the

difference to at most one; we are done by parity considerations.

We now show how to find such a subgraph H. We start by describing how to find

pairs of vertices which will be the candidates for the medium-gadgets we hope to find

in H.

Let L be a maximal collection of large pairs in G. Note that since L is maximal,

we have either δ(x, y) < n1/3 or δ(x, y) > βn for any two vertices x, y ∈ V \ L. As

βn > 2n1/3 for all sufficiently large n, there is a partition V \ L = K1 ∪K2 ∪ · · · ∪Km

into ‘clumps’ Ki with m ≤ 1/β in such a way that δ(x, y) < n1/3 for any x, y ∈ Ki and

δ(x, y) > βn if x ∈ Ki and y ∈ Kj with i ̸= j.

We ignore the way in which vertices are originally paired in L and focus on the

ground set L. By Proposition 2.3, we can find from L, at least |L|/2 − n1/2 disjoint

pairs {x, y} such that δ(x, y) ≤ n1/2; call this collection of pairs Q.

Let F be the graph obtained from G as follows. Delete every vertex of L \Q. Delete

one vertex from every clump K which contains an odd number of vertices. Having done

this, delete a clump K (i.e., delete all the vertices of K) if |K| ≤ n1/2.

Note that the vertex set of F consists of the surviving clumps, each of which has even

size and cardinality at least n1/2, and the (possibly empty) set of pairs Q. Since we had

at most 1/β clumps initially, we have deleted O(n1/2) vertices in total from G to obtain
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F . Hence, for any two vertices x, y ∈ V (F ), |δ(x, y, F )− δ(x, y,G)| = O(n1/2). Hence,

if either x and y both belong to the same (surviving) clump or if the pair {x, y} is in

Q, then δ(x, y, F ) = O(n1/2). Let us say that two vertices x, y ∈ V (F ) are proximate if

either both x and y belong to the same clump in F or if {x, y} ∈ Q; these proximate

pairs of vertices will be our candidates for medium-gadgets in H.

We now show how to find pairs of vertices which will be the candidates for the

one-gadgets we hope to find in H. We shall henceforth work with F as opposed to

G. We shall write V for V (F ) and all degrees and degree differences, unless specified

otherwise, will be with respect to F .

Since |L| ≤ c1n = εn/2 and since we have only deleted O(n1/2) vertices so far, note

that |V \Q| ≥ (1− 3ε/2)n for n sufficiently large.

If we find at least (1/2 − ε)n disjoint clone pairs {x, y} in F [V \ Q], we are done.

So we may assume that we can find a set V ′ ⊂ V \ Q of vertices of F with |V ′| ≥
(2ε− 3ε/2)n = εn/2 such that any two vertices of V ′ disagree on some vertex in V \Q.

We claim that if C3 is sufficiently large (as a function of β), then we can find from

any subset of C3 vertices of V ′, two vertices x and y such that for each clump K, the

number of vertices of K on which x and y disagree is at most 2|K|/3. To see this,

suppose that we have found C3 vertices such that any two of them x and y disagree

on more than two thirds of some clump Kx,y. Applying Ramsey’s theorem (with 1/β

colours) to the complete graph on these C3 vertices where the edge between x and y is

labelled by the clump Kx,y, we see that we can find a monochromatic triangle provided

C3 is large enough. But by Proposition 2.4, out of any three vertices, at least two

disagree on at most two thirds of the vertices of K. We have a contradiction.

Choose C3 as described above and set C4 = 4C3/ε and c4 = β/2C4. By Proposition 2.3,

we can find from V ′, at least n/C4 disjoint groups of size C3 such that that δ(x, y) ≤ C4

for any two vertices x and y in the same group. From each of these n/C4 groups of size

C3, choose a pair of vertices {x, y} such that x and y disagree on at most two thirds of

every clump. Choose a clump K∗ such that at least a β fraction of these pairs {x, y}
are such that x and y disagree on at least one vertex in K∗; this is possible because

any two vertices of V ′ disagree on V (F ) \Q and consequently, on at least one clump

and furthermore, there are at most 1/β clumps. Let P be this collection of pairs which

all disagree on at least one vertex in K∗; clearly, |P| ≥ βn/C4 = 2c4n.

We shall proceed as in Case 1 by pigeonholing the pairs in P into different boxes

based on the size of their difference neighbourhoods, but with one important difference.

Note that while any two vertices in the same clump have a small (O(n1/2)) degree

difference, we can only guarantee that two vertices of Q have small (O(n1/2)) degree

difference if the pair belongs to Q. Consequently, when we later delete vertices at

random, we shall either delete both vertices of a pair in Q or retain both; hence, we
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shall treat a pair of vertices in Q as a single vertex when it comes to pigeonholing the

pairs in P . This is made precise below.

Let FQ be the multigraph without loops obtained from F by contracting every

pair {x, y} in Q (we ignore the loops that might arise). Note that there are at most

two parallel edges between any two vertices of FQ unless both vertices correspond to

contracted pairs from Q, in which case there are at most four parallel edges between

them. In FQ, we say that two vertices x and y disagree on a vertex v ̸= x, y if the

number of edges between v and x is not equal to the number of edges between v and

y. For 0 ≤ i ≤ log n− 1, let Pi be the collection of those pairs {x, y} in P such that

∆(x, y, FQ) ∈ [2i, 2i+1), where ∆(x, y, FQ) is the number of vertices of FQ on which x

and y disagree.

As before, let k be any index such that |Pk| ≥ 2c4n/ log n; take S = Pk and set

p = min{ε, 2−k}.
In summary, S consists of pairs {x, y} such that

(1) x and y disagree on at most two thirds of every clump,

(2) x and y disagree on at least one vertex of K∗,

(3) δ(x, y) ≤ C4, and

(4) ∆(x, y, FQ) ∈ [2k, 2k+1).

Furthermore, since δ(x, y) ≤ C4 = o(n1/2) for any {x, y} ∈ S, both members of any

pair in S must belong to the same clump.

Consider the partition S = So ∪ Se where So is the set of those pairs {x, y} ∈ S such

that δ(x, y) is odd. Recall that |S| ≥ 2c4n/ log n, so one of So or Se contains more

than c4n/ log n pairs. At this point, we need slightly different arguments depending on

whether we have more pairs with odd degree difference or even degree difference in S.
Case 2A: S contains many odd pairs. We first consider the case where

|So| ≥ c4n/ log n. We shall delete vertices from F as follows. We pick vertices of

FQ independently with probability p. For every vertex of FQ that we pick, we delete

(as appropriate) either the corresponding vertex or both vertices of the corresponding

pair of vertices from Q in FQ. Let H be the resulting graph. Our aim is to show that

H is splittable with probability Ω(1).

Earlier, we conditioned on deleting an even number of vertices from G. In this case,

we need a little more. Let E∗ be the event that an even number of vertices were deleted

from each clump. By Proposition 2.7, we see that P(E∗) ≥ (1/2)1/β. Note that a

consequence of E∗ is that |V (H)| is even.
One-gadgets. First, we shall show that many of the pairs in So become one-gadgets

in H.
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Lemma 4.4. For any pair {x, y} ∈ So,

P({x, y} is a one-gadget in H |E∗) = Ω(1).

Proof. In FQ, let A be the set of those vertices v ≠ x, y such that number of edges

between v and x is more than the number of edges between v and y and let B be

defined analogously by interchanging x and y. Let A = A1 ∪ A2 where A1 and A2 are

respectively those vertices v in A such that the number of edges between v and x is

one, respectively two, more than the number of edges from v to y; define B1 and B2

analogously.

The proof follows that of Lemma 4.1. Clearly,

2k ≤ |A1|+ |A2|+ |B1|+ |B2| < 2k+1.

Furthermore, δ(x, y) = ||A1|+ 2|A2| − |B1| − 2|B2||, so

−C4 ≤ |A1|+ 2|A2| − |B1| − 2|B2| ≤ C4.

Using the above two inequalities, it is not hard to check that

max{|A1|, |A2|},max{|B1|, |B2|} ≥ 2k−3 − C4/4.

Since δ(x, y) is odd, suppose without loss of generality that d(x) > d(y). Let E1 be

the event that both x and y are not picked to be deleted, E2 the event that no vertices

are picked from B, E3 the event that X1 + 2X2 = δ(x, y) − 1 where X1 and X2 are

the number of vertices picked from A1 and A2 respectively, and E4 the event that the

number of vertices picked from K \ (A∪B ∪ {x, y}) has the same parity as the number

of vertices picked from K ∩ (A∪B∪{x, y}) for every clump K. The collection of events

{E1, E2, E3} is clearly independent, and it is easy to check that

P({x, y} is a one-gadget |E∗) ≥ P(E1)P(E2)P(E3)P(E4|E1, E2, E3).

Clearly, P(E1) ≥ (1−ε)2. As in Lemma 4.1, note that p|B| ≤ 2, so by Proposition 2.5,

P(E2) ≥ exp (−4).

We now bound P(E3). First suppose that 2k−3 − C4/4 > C4. Recall that δ(x, y) is

odd. If |A2| ≥ |A1|, we consider the event that (δ(x, y)− 1)/2 vertices are picked from

A2 and no vertices are picked from A1 in FQ; as in Lemma 4.1, we see that p|A2| = Θ(1),

so this event occurs with probability Ω(1). Hence, E3 occurs with probability Ω(1). If

|A1| > |A2|, we consider the event that δ(x, y) − 1 vertices are picked from |A1| and
no vertices are picked from A2 and note that this event occurs with probability Ω(1);

hence, E3 occurs with probability Ω(1).

If, on the other hand, 2k−3 − C4/4 ≤ C4, then clearly k = Θ(1)l hence, p, |A1|, |A2|
are all Θ(1). In this case, we consider the event that t = min{(δ(x, y) − 1)/2, |A2|}
vertices are picked from A2 and δ(x, y) − 1 − 2t vertices are picked from A1. Now,

|A1| + 2|A2| ≥ δ(x, y) since we assumed that d(x) > d(y), so |A1| ≥ δ(x, y) − 1 − 2t.
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Also, as noted above, p, |A1|, |A2| are all Θ(1). So this event occurs with probability

Ω(1). Hence, the event E3 occurs with probability Ω(1).

Since x and y disagree on at most two thirds of every clump and since every clump

has size at least n1/2, it follows from Proposition 2.7 that P(E4|E1, E2, E3) ≥ (1/6)1/β

for all sufficiently large n. □

Let SH be the set of pairs from So that form one-gadgets in H. From Lemma 4.4 and

Proposition 2.2, we see that conditional on E∗, |SH | ≥ E[|SH |]/2 = Ω(n/ log n) with

probability Ω(1).

Medium-gadgets. We now show that the degree difference of any pair of vertices

which are proximate in F cannot become too large in H.

Lemma 4.5. Conditional on E∗ and |SH | ≥ E[|SH |]/2, the probability that there exist

x, y ∈ V (H) which are proximate in F and satisfy δ(x, y,H) > n2/3 is o(1).

Proof. Recall that for any two vertices x and y which are proximate in F , δ(x, y) =

O(n1/2). For such a pair of vertices x and y, note by Proposition 2.10 that

P(δ(x, y,H) > n2/3 | x, y ∈ V (H)) = O(exp(−n1/3/5)).

Consequently, since we have conditioned on an event with probability Ω(1), the proba-

bility that there exist some vertices x, y ∈ V (H) such that x and y are proximate and

δ(x, y,H) > n2/3 is O(n2 exp(−n1/3/5)) = o(1). □

Constructing a splitting. We now describe how to construct a splitting of H.

Let QH be the set of pairs from Q that survive in H. For a clump K in F , let KH

denote the set (K \ SH) ∩ V (H). Clearly, V (H) is the disjoint union of SH , QH and

the clumps KH . Note that conditional on E∗, the size of KH is even for every clump

K since both members of any pair in SH must necessarily belong to the same clump.

Since each KH has even cardinality, we may group the vertices of each KH into pairs.

Pair up the vertices in each KH arbitrarily; let MH be the collection consisting of

these pairs and the pairs in QH . Clearly, every pair of vertices in MH are proximate in

F and by Lemma 4.5, the probability that there exists some pair {x, y} ∈ MH with

δ(x, y,H) > n2/3 is o(1).

The expected number of vertices deleted from F is at most εn and the number

of vertices deleted from G to obtain F is O(n1/2). Hence, by Proposition 2.6, the

probability that we have deleted more than 2εn vertices from G is exp (−Ω(n)).

We conclude that there exists an induced subgraph H of G such that |V (H)| ≥
(1− 2ε)n, and with the further property that V (H) may be partitioned into

(1) a collection SH of one-gadgets of size Ω(n/ log n), and

(2) a collection MH of medium-gadgets.
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It follows from Lemma 3.1 that H is splittable and we are done.

Case 2B: S contains many even pairs. Now we consider the case where |Se| ≥
c4n/ log n.

Note that since we intend to delete either both vertices of a pair in Q or neither, it

might be the case that it is impossible to make the parity of the degree difference of a

pair in Se odd in H. Consequently, in this case, we will need to work with [2, 2]-gadgets,

or two-gadgets for short, in addition to one-gadgets. With the exception of this slight

change of tack to account for parity considerations, the argument is quite similar to the

one in the previous case, and we only sketch it.

Let c5 be a (small) constant depending on ε; the value of c5 will be chosen later,

following the statement of Lemma 4.6.

Recall that every pair of vertices in Se disagree on some vertex in the clump K∗.

Suppose there exists a vertex v ∈ K∗ such that c5n/ log n pairs from Se all disagree on

v. In this case, we may complete the proof as follows. Let Sv ⊂ Se be the collection

of pairs in Se that disagree on v. We shall delete vertices from F as follows. We first

delete v and then delete one other vertex uniformly at random from K∗. Following this,

we proceed as before by picking vertices of FQ independently with probability p and

then deleting the corresponding vertices or pairs of vertices from Q in F . Let H be the

resulting graph. Note that when we delete v, the degree difference of every pair in Sv

changes parity and becomes odd. When we then delete another vertex uniformly at

random from K∗, the parity of the degree difference of a pair in Sv is unaltered with

probability at least 1/3 since every pair in S disagree on at most two thirds of any

clump. Arguing as in Lemma 4.4, for any pair in Sv, we see that the probability that

this pair forms a one-gadget in H, conditional on deleting an even number of vertices

from every clump, is Ω(1) (albeit with a smaller constant than in Case 2A). Since

|Sv| ≥ c5n/ log n, we can conclude the proof exactly as in the case where S contains

many odd pairs.

Hence, we may assume that for every vertex v ∈ K∗, the number of pairs in Se that

disagree on v is at most c5n/ log n. We delete vertices from F as before by picking

vertices of FQ independently with probability p and then deleting the corresponding

vertices or pairs of vertices from Q in G. Let H be the resulting graph.

As before, let E∗ be the event that an even number of vertices were deleted from each

clump. The proof of Lemma 4.4, with minor modifications for the change in parity,

yields a proof of the following lemma.

Lemma 4.6. For any {x, y} ∈ Se, P({x, y} is a two-gadget in H |E∗) = Ω(1). □

Let SH be the collection of pairs from Se that form two-gadgets inH. From Lemma 4.6

and Proposition 2.2, we see that there exists a small positive constant c6 such that,

conditional on E∗, |SH | ≥ c6n/ log n with probability Ω(1). Let us now fix c5 = c6/4.
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Constructing a splitting. As before, let QH be the collection of pairs from Q
that survive in H and for each clumpK in F , let us writeKH for the set (K\SH)∩V (H).

We have shown that with probability Ω(1), the graph H is such that

(1) |KH | is even for every clump K, and

(2) |SH | ≥ c6n/ log n.

Consider any pair {x, y} ∈ SH and note that in F , x and y disagree on at most two

thirds of any clump; in particular, x and y agree on at least a third of K∗. Consequently,

the probability that x and y disagree on every vertex of K∗
H is exp (−Ω(n1/2)). Hence,

with probability 1 − o(1), for every {x, y} ∈ SH , there exists some vertex in K∗
H on

which x and y agree.

Next, it follows from Lemma 4.5 that with probability 1 − o(1), any two vertices

x, y ∈ V (H) which are proximate satisfy δ(x, y,H) ≤ n2/3. Finally, the probability

that we have deleted more that 2εn− 2 vertices of total from G is, by Proposition 2.6,

exp (−Ω(n)). It follows that with probability Ω(1), the graph H, in addition to

possessing the aforementioned properties, also has the following properties.

(3) For every {x, y} ∈ SH , there exists some vertex in K∗
H on which x and y agree.

(4) For any x, y ∈ V (H) such that x and y are proximate in F , δ(x, y,H) ≤ n2/3.

(5) |V (H)| ≥ (1− 2ε)n+ 2.

With a view of making the graph H splittable, we alter H as follows. Fix a pair

(x∗, y∗) ∈ SH and a vertex v ∈ K∗ on which x∗ and y∗ disagree. We know that there is a

vertex u ∈ K∗
H on which x∗ and y∗ agree. Delete u from H. If v ∈ V (H), delete v from

H and if v /∈ V (H), add v back. After these alterations, note that H still has an even

number of vertices. Note also that now, |V (H)| ≥ (1− 2ε)n and δ(x∗, y∗, H) ∈ {1, 3}.
Before we altered H, at most c5n/ log n pairs in SH disagreed on any vertex in K∗; the

alterations above change the degree differences of at most 2c5n/ log n = c6n/2 log n pairs

in SH . Hence, H contains a collection SH of least c6n/2 log n− 1 pairs of vertices {x, y}
such that δ(x, y,H) = 2 and a pair (x∗, y∗) such that δ(x∗, y∗, H) ∈ {1, 3}. Furthermore,

all the vertices of V (H) \ (SH ∪ {x∗, y∗}) may be grouped into pairs {x, y} such that

δ(x, y,H) ≤ n2/3 + 2; let MH denote this collection of pairs.

It is now easy to check that H is splittable using the argument used to prove

Lemma 3.1. Indeed, we can use pairs in MH to construct a partition such that sums of

the degrees of the vertices of the two halves of the partition differ by at most n2/3 + 2.

For n sufficiently large, we can then reduce the difference to at most two by using

all but one of the pairs in SH . Finally, using the one remaining pair in SH and the

pair (x∗, y∗), we can reduce the difference to at most one; we are done constructing a

splitting of H by parity considerations. This completes the proof of Theorem 1.1. □
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5. Conclusion

We have shown that f(n) ≥ n/2− o(n). In fact, it should be possible to read out a

bound of f(n) ≥ n/2− n/(log log n)c from our proof for some absolute constant c > 0;

we chose not to include a proof of this fact to keep the presentation simple, and because

we do not believe that such a bound is close to the truth. While we have managed to

pin down f up to its first order term, there is still a large gap between the upper and

lower bounds for n/2− f(n).

Problem 5.1. What is the asymptotic behaviour of n/2− f(n)?

We know that n/2− f(n) = Ω(log log n) and n/2− f(n) = o(n); we suspect that the

truth lies closer to the lower bound and that in particular, n/2− f(n) = o(nε) for every

ε > 0. Indeed, it is not inconceivable that n/2− f(n) = Θ(log n).

It is natural to generalise the problem to the case where we have more than one

type of edge, or ask for more than two disjoint subgraphs. For any r, l ∈ N, given an

edge colouring ∆ of the complete graph on n vertices with r colours, let g(∆) be the

largest integer k for which we can find l disjoint subsets V1, V2, . . . , Vl of [n], each of

cardinality k, such that for each 1 ≤ i ≤ r, the number of edges induced by Vj of colour

i is the same for every 1 ≤ j ≤ l. Let g(n, r, l) be the minimum value of g(∆) taken

over all edge colourings of the complete graph on n vertices. In particular, note that

g(n, 2, 2) = f(n). We conjecture that g(n, r, 2) = n/2− o(n) and more generally, ask

the following question.

Problem 5.2. For r, l ∈ N, what is the asymptotic behaviour of g(n, r, l)?

Finally, we mention a question about digraphs that we find particularly appealing.

Given a digraph D on n vertices, let h(D) denote the largest integer k for which there

exist disjoint subsets A,B ⊂ V such that |A| = |B| = k and the number of directed

edges from A to B is equal to the number of directed edges from B to A. Let h(n) be

the minimum value of h(D) taken over all digraphs on n vertices.

Problem 5.3. Determine h(n).
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