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Abstract. Let ϵ1, . . . , ϵn be a sequence of independent Rademacher random variables.

Answering a question of Erdős from 1945, Beck proved in 1983 — using techniques

from harmonic analysis — that there is a constant c > 0 such that for any unit vectors

v1, . . . , vn ∈ R2, we have

P
[
||ϵ1v1 + . . .+ ϵnvn||2 ≤

√
2
]
≥ c

n
.

We give a new, elementary proof of this result using a simple pairing argument that

might be of independent interest.

1. Introduction

Broadly speaking, Littlewood–Offord theory asks for estimates on the number of

subset sums of a given sequence V of vectors v1, . . . , vn that lie within a target set S.

This is equivalent to studying the probability that the random signed sum

σV = ϵ1v1 + ϵ2v2 + · · ·+ ϵnvn

lands within a given set, where the ϵi are independent Rademacher random variables

(i.e., independent random variables with P [ϵi = −1] = P [ϵi = +1] = 1/2). Littlewood

and Offord [8] originally considered the special case of this problem when each vi is

a complex number of norm at least one and showed that the probability that σV lies

within any open ball of radius one is at most O(n−1/2 log n). This result was sharpened

in seminal work of Erdős [3] who used Sperner’s theorem to prove that this probability

is at most
(

n
⌊n/2⌋

)
2−n, which is sharp when vi = 1 for all 1 ≤ i ≤ n.

A large amount of work has since been done on extending these classical results, both

for ‘forward’ Littlewood–Offord problems like those described above, as well as ‘inverse’

Littlewood-Offord problems in the vein of Tao and Vu [12] (where one seeks a structural

characterization of the vectors V given that σV is likely to land in S). In addition to

being interesting questions in their own right, both types of problems have garnered

a great deal of attention due to their many applications in random matrix theory;

see, for example [5, 9, 11, 12]. Our focus here will be on ‘reverse’ Littlewood–Offord

problems that ask for lower bounds on the probability that σV lies within a given

target S. Notable examples of such problems include Komlós’s Conjecture [10] and

Tomaszewski’s Conjecture [4], the latter of which was recently resolved in breakthrough

work of Keller and Klein [6].
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Erdős [3] posed two natural conjectures in his original 1945 paper on the topic.

The first of these asked for an extension of his upper bound of
(

n
⌊n/2⌋

)
2−n for complex

numbers of norm at least 1 to vectors of norm at least 1 in arbitrary Hilbert spaces;

this was eventually resolved in full by Kleitman [7] (who further extended this bound to

arbitrary normed spaces). Erdős’ second conjecture, which asks for generally applicable

lower bounds, is a reverse Littlewood–Offord problem: is it always true that a random

signed sum of complex numbers of norm one is fairly likely to fall inside a closed unit

ball centred at the origin? More precisely, for xi ∈ C and ϵi ∈ {−1,+1}, he raised the

following problem:

Equivalently, this conjecture states that if V = (v1, . . . , vn) is a sequence of unit

vectors in R2, then P[∥σV ∥2 ≤ 1] = Ω(n−1). It was observed by Carnielli and Carolino [2]

that Erdős’ conjecture requires a minor adjustment (and is false as stated): assume

that n is even and consider v1 = (1, 0) and vi = (0, 1) for all i > 1. Each coordinate of

σV has absolute value at least 1, and thus σV has length at least
√
2.

In view of this counterexample, Carnielli and Carolino adjusted Erdős’ conjecture

by replacing 1 by
√
2. The main result of this paper is a new proof of this (adjusted)

conjecture.

Theorem 1.1. There exists an absolute constant c > 0 such that for any unit vectors

v1, . . . , vn ∈ R2 and independent Rademacher random variables ϵ1, . . . , ϵn, we have

P
[
∥ϵ1v1 + · · ·+ ϵnvn∥2 ≤

√
2
]
≥ c

n
.

Some time after we found a proof of Theorem 1.1, we discovered that this particular

conjecture was solved in the following strong form by Beck [1] in a somewhat obscure

(since it does not reference [3]) paper from 1983.

Theorem 1.2. For all d ≥ 2, there exists some cd > 0 such that for any unit vectors

v1, . . . , vn ∈ Rd and independent Rademacher random variables ϵ1, . . . , ϵn, we have

P
[
∥ϵ1v1 + . . .+ ϵnvn∥2 ≤

√
d
]
≥ cd

nd/2
.

While Theorem 1.1 is just a special case of Beck’s theorem, we believe that our new

proof has some independent value since, in particular, it uses elementary, geometric

methods which (in our opinion) are much simpler than the deep, harmonic-analysis

arguments used by Beck.

The rest of this paper is organised as follows. The high-level ideas that form the

basis of our arguments are encapsulated in a few key lemmas in Section 2, and the
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proof of Theorem 1.1 then follows in Section 3. We conclude with a discussion of open

problems in Section 4.

2. The Pairing Argument

For ease of notation, we henceforth write ∥ · ∥ for the Euclidean norm unless stated

otherwise. Also, given a sequence V = (v1, . . . , vn) of vectors, we exclusively use σV

to denote the random signed sum ϵ1v1 + · · ·+ ϵnvn. Although we will ultimately only

work in R2, we state our lemmas here in terms of Rd in general since this introduces no

extra complications in our argument.

To prove concentration of the random signed sum σV ∈ Rd around the origin, it is

natural to try and apply the second moment method (and Chebyshev’s inequality in

particular). As was formally worked out in [2], this approach easily shows that σV has

a constant probability of landing within a ball of radius roughly
√
n, after which a

pigeonholing argument implies that there is some ball of constant radius in which σV

lands with probability Ω(n−d/2). However, there is no guarantee with this approach

that this constant-radius ball is centered at the origin, and all of what we do in the

sequel is aimed at circumventing this obstacle.

We get around the obstacle described above by relating concentration estimates for

σV to concentration estimates for the difference of two independent copies of σV . This

reduction ultimately yields the following pairing lemma, the proof of which will be the

main goal of this section, establishing sufficiently strong concentration for the random

signed sum σV provided one can find a reordering of our vectors V = (v1, . . . , vn) such

that the norms of the consecutive differences v2i−1 − v2i are small.

Proposition 2.1. Let V = (v1, . . . , vn) be a sequence of unit vectors in Rd with n even

and r, α > 0 reals such that r2 ≥ α +
∑n/2

i=1 ∥v2i−1 − v2i∥2. Then

P[∥σV ∥ ≤ r] = Ωd,α,r

(
n−d/2

)
.

Before we can prove Proposition 2.1, we require a few definitions. Given a sequence

of vectors V = (v1, . . . , vn), we define its sequence of difference vectors δ(V ) by

δ(V ) = (v1 − v2, v3 − v4, . . . , v2⌊n/2⌋−1 − v2⌊n/2⌋),

i.e., δ(V ) consists of all the differences v2i−1 − v2i for 1 ≤ i ≤ ⌊n/2⌋. For a real number

a > 0 and a sequence of vectors V , we define

pa(V ) = P[∥σV ∥ ≤ a]

and we define qa(V ) to be the probability that two independent samples X,X ′ of σV

satisfy ∥X −X ′∥ ≤ a. The key ingredient for proving Proposition 2.1 is the following

lemma.
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Lemma 2.2. Let V = (v1, . . . , vn) be a sequence of vectors in Rd, let a, b > 0 be reals,

and set

V =

(
1

2
(v2i−1 + v2i)

)⌊n/2⌋

i=1

.

If n is even, then

pa+b(V ) ≥ qa(V ) · min
D⊆δ(V )

pb(D),

where D ranges over all subsequences of δ(V ). If n is odd and if every vector of V has

norm at most K , then

pa+b+K(V ) ≥ qa(V ) · min
D⊆δ(V )

pb(D).

Proof. The odd case follows immediately from the even case since the probability that

∥σV ∥ ≤ c + maxi ∥vi∥ is always at most the probability that ∥σV−{vn}∥ ≤ c, so we

assume in what follows that n is even.

We sample a random signed sum
∑

ϵivi as follows. First, sample i.i.d. uniform

random signs ϵ
(1)
i , ϵ

(2)
i for all i ≤ n/2. Define I to be the set of i ≤ n/2 for which

ϵ
(1)
i = ϵ

(2)
i , and sample i.i.d. uniform random signs ϵ

(3)
i for each i ∈ I. Define

σ(1) =

n/2∑
i=1

ϵ
(1)
i · 1

2
(v2i−1 + v2i)

σ(2) =

n/2∑
i=1

ϵ
(2)
i · 1

2
(v2i−1 + v2i)

σ(3) =
∑
i∈I

ϵ
(3)
i · (v2i−1 − v2i).

Observe that σ(1) − σ(2) + σ(3) has the same distribution as σV ; this is easy to verify by

checking that each of the four possible signed sums of v2i−1, v2i are equally likely for

every i. Thus,

pa+b(V ) = P[∥σ(1) − σ(2) + σ(3)∥ ≤ a+ b]

= ED⊆δ(V )

[
P[∥σ(1) − σ(2) + σ(3)∥ ≤ a+ b | I = D]

]
≥ ED⊆δ(V )

[
P[∥σ(1) − σ(2)∥ ≤ a | I = D] · P[∥σ(3)∥ ≤ b | I = D]

]
≥ P[∥σ(1) − σ(2)∥ ≤ a] · min

D⊆δ(V )
P[∥σ(3)∥ ≤ b | I = D]

= qa(V ) · min
D⊆δ(V )

pb(D),

as desired. □

To get good bounds from Lemma 2.2, it then suffices to establish good lower bounds

on qa, and to show that the sequence V can be reordered in such a way that the
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vectors of δ(V ) are small. The former is a straightforward consequence of Chebyshev’s

inequality.

Lemma 2.3. If W = (w1, . . . , wn) is a sequence of n vectors in Rd of norm at most K ,

then qa(W ) = Ωd,a,K(n
−d/2) for any a > 0.

Proof. For each coordinate 1 ≤ i ≤ d, we have Var[(σW )i] ≤ K2n, so by Chebyshev’s

inequality, we have

P[|(σW )i| < 2dK
√
n] > 1− 1

2d
.

By taking a union bound over all d dimensions, we obtain

P[∥σW∥∞ < 2dK
√
n] >

1

2
.

Thus there is at least a 1/2 chance that σV falls into a cube centered at the origin

with side length 4dK
√
n. Such a cube can be covered by Od((K

√
n/a)d) subcubes

of diameter a, so we see that if σW and σW ′ are independently sampled from the

same distribution, the chance that they both fall into the same subcube is at least

Ωd((a/K
√
n)d), as desired. □

Since the vectors of W = (1
2
(w1 + w2), . . .) have norms no larger than the maximum

norm of W , we immediately get the following corollary.

Corollary 2.4. If W = (w1, . . . , wn) is a sequence of n vectors in Rd of norm at most

K , then qa(W ) = Ωd,a,K(n
−d/2) for any a > 0. □

Similarly, once we know that the vectors of a difference sequence δ(V ) are small on

average, we can apply the following with δ(V ) = W .

Lemma 2.5. If W = (w1, . . . , wn) is a sequence of vectors in Rd and b, c > 0 are real

numbers such that
∑n

i=1 ∥wi∥2 ≤ b2 − c, then for any subsequence D of W we have

pb(D) ≥ c/b2.

Proof. Observe that

E[∥σD∥2] = E

[〈∑
u∈D

ϵuu,
∑
u∈D

ϵuu

〉]
= E

[ ∑
u,u′∈D

ϵuϵu′⟨u, u′⟩

]

=
∑
u∈D

∥u∥2 ≤
n∑

i=1

∥wi∥2 ≤ b2 − c,

so by Markov’s inequality, we find

P[∥σD∥ ≤ b] = P[∥σD∥2 ≤ b2] ≥ 1− b2 − c

b2
=

c

b2
,

giving the result. □
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We now have all we need to prove Proposition 2.1.

Proof of Proposition 2.1. Applying Lemma 2.2 with a = α/3r and b = r − a (which is

positive since r2 ≥ α > α/3 = ar) gives

pr(V ) ≥ qa(V ) · min
D⊆δ(V )

pr−a(D).

By Corollary 2.4 and the fact that V consists of unit vectors, we get

qa(V ) = Ωd,a(n
−d/2) = Ωd,α,r(n

−d/2).

For the second term, we apply Lemma 2.5 with b = r − a and c = ra (which is valid

since (r − a)2 − ra ≥ r2 − 3ra = r2 − α) to get

pr−a(D) ≥ ra/(r − a)2 ≥ α/3r2

for all D. Putting these two estimates together gives the result. □

3. Proof of the main result

As noted earlier, the main obstacle in applying Lemma 2.2 to show concentration of

σV is to find an effective reordering of V so that the sequence δ(V ) = (v1 − v2, . . .) has

small norms. In the two-dimensional case, there is a natural way to do this, namely by

ordering the vectors by argument as they are arranged around the unit circle. For this,

given a unit vector v in R2, we write arg(v) to denote the unique θ with 0 ≤ θ < 2π

such that v = (cos(θ), sin(θ)).

Lemma 3.1. Let V = (v1, . . . , vn+1) be unit vectors in R2 with v1 = (1, 0) and

vn+1 = (−1, 0) such that 0 = arg(v1) ≤ arg(v2) ≤ · · · ≤ arg(vn+1) = π. Then∑n
i=1 ∥vi − vi+1∥2 ≤ 4.

In fact, we will need the following generalization which recovers Lemma 3.1 by taking

V ′ = ((1, 0), (−1, 0)).

Lemma 3.2. Let V ′ = (v′1, . . . , v
′
m) be unit vectors in R2 with 0 = arg(v′1) ≤ arg(v′2) ≤

· · · ≤ arg(v′m) ≤ π. If V = (v1, . . . , vn+1) is a sequence of unit vectors in R2 which

contains V ′ as a subsequence and which satisfies 0 = arg(v1) ≤ arg(v2) ≤ · · · ≤
arg(vn+1) = arg(v′m), then

n∑
i=1

∥vi − vi+1∥2 ≤
m−1∑
i=1

∥v′i − v′i+1∥2.

Proof. Observe that the points vi all lie in the semicircle 0 ≤ arg(vi) ≤ π, so in any

triangle vivi+1vi+2 the angle at vi+1 is either obtuse or right. Thus,

∥vi − vi+1∥2 + ∥vi+1 − vi+2∥2 ≤ ∥vi − vi+2∥2.
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The result then follows by iteratively removing the terms that are in V but not V ′

(since the inequality above implies that this procedure can never decrease the sum∑
∥vi − vi+1∥2). □

With Lemma 3.1, we can already give a short proof of a slightly weakened version

of Theorem 1.1 when n is even. We emphasize that this result is not needed for our

main argument, but it does serve as a warm-up to our more general approach that

necessitates some more careful geometric estimates.

Proposition 3.3. For any r >
√
2, there exists an absolute constant c = c(r) > 0 such

that if V = (v1, . . . , vn) is a sequence of unit vectors in R2 with n even, then

P[∥σV ∥ ≤ r] ≥ c

n
.

Proof. After reordering the vectors of V and possibly replacing them with their negations,

we may assume v1 = (1, 0) and that 0 ≤ arg(v1) ≤ · · · ≤ arg(vn) ≤ π. Define

Ṽ = (ṽ1, . . . , ṽn) = (v2, v3, . . . , vn−1, vn,−v1) and note that σV and σṼ have the same

distribution.

Set vn+1 = (−1, 0). By applying Lemma 3.1 to V ∪ {vn+1}, we see that
∑n

i=1 ∥vi −
vi+1∥2 ≤ 4, and hence by the pigeonhole principle, either

n/2∑
i=1

∥v2i−1 − v2i∥2 ≤ 2, or

n/2∑
i=1

∥v2i − v2i+1∥2 =
n/2∑
i=1

∥ṽ2i−1 − ṽ2i∥2 ≤ 2.

Without loss of generality we will assume
∑n/2

i=1 ∥v2i−1 − v2i∥2 ≤ 2. In this case, the

result follows from Proposition 2.1 by taking α to be sufficiently small in terms of

r >
√
2 ≥

√√√√ n/2∑
i=1

∥v2i−1 − v2i∥2,

by taking α = 2
√
2(r −

√
2), for example.

□

In order to prove the optimal bound in Theorem 1.1, we will need some ‘stability

analysis’; we will break our analysis into two cases depending on whether V is ‘close to’

the extremal example (of having n/2 copies of two vectors (1, 0) and (0, 1)) or not. To

this end, we make the following definitions.

Definition 3.4. We say that two unit vectors v, x ∈ R2 are γ-close for some real

number γ if either the angle between v and x is at most γ radians or the angle between

−v and x is at most γ radians, and we say that the pair is γ-far otherwise. We say that

a sequence of unit vectors V = (v1, . . . , vn) is (2, γ)-close if there exist two unit vectors

x1, x2 such that every vi is γ-close to either x1 or x2, and we say that V is (2, γ)-far

otherwise.
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The following lemma supplies the main consequence of being (2, γ)-far that we require.

Lemma 3.5. For any γ > 0, if a sequence of vectors V is (2, γ)-far, then there exist

three vectors u1, u2, u3 from V such that every pair ui, uj with i ̸= j is γ-far.

Proof. Let u1 be an arbitrary vector of V . There must exist some vector u2 of V which is

γ-far from u1, as otherwise x1 = x2 = u1 would contradict V being (2, γ)-far. Similarly,

there must exist some u3 which is γ-far from both u1, u2, as otherwise x1 = u1 and

x2 = u2 would contradict V being (2, γ)-far. □

If V is (2, γ)-far, then we will use the three vectors guaranteed by Lemma 3.5 and

Lemma 3.2 to conclude that we can find a pairing of these vectors with pairwise distances

strictly smaller than two. To this end, we have the following lemma.

Lemma 3.6. Let V ′ = (v′1, v
′
2, v

′
3, v

′
4) be a sequence of unit vectors in R2 such that

(1) 0 = arg(v′1) ≤ arg(v′2) ≤ arg(v′3) ≤ arg(v′4) = π, and

(2) V ′ is (2, γ)-far for some 0 < γ ≤ π/2.

Then
3∑

i=1

∥v′i − v′i+1∥2 ≤ 4− 8 sin3(γ/2).

Here, and throughout this section, we use the fact that if u, v are unit vectors at

angle θ from each other, then

∥u− v∥ = 2 sin(θ/2).

Proof. By Lemma 3.5 we know that every pair of vectors besides v′1, v
′
4 are γ-far. As

noted above, if θi is the angle between v′i and v′i+1, then ∥v′i − v′i+1∥2 = 2 sin2(θi/2).

Moreover, because θ1 + θ2 + θ3 = π, a standard trigonometric identity implies that

3∑
i=1

∥v′i − v′i+1∥2 =
3∑

i=1

4 sin2(θi/2) = 4(1− 2 sin(θ1/2) sin(θ2/2) sin(θ3/2)).

Because each v′i, v
′
i+1 is γ-far, we have that γ ≤ θi ≤ π−γ, giving the desired result. □

The lemmas above are enough to prove Theorem 1.1 whenever V is (2, γ)-far, so it

remains to deal with the case that V is (2, γ)-close. This is easy to do in the following

special case; here, we emphasize that our exact choices of 1/2 and arcsin(0.1) are not

particularly important.

Lemma 3.7. Let V = (v1, . . . , vn) be a sequence of unit vectors in R2 with n even and

0 < γ ≤ arcsin(0.1). If there exists unit vectors x1, x2 and an even integer m such that

every vi with i ≤ m is γ-close to x1 and every vi with i > m is γ-close to x2, then

P[∥σV ∥ ≤ 1/2] = Ω(n−1).
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Proof. Possibly by taking negations of vectors, we may assume that every vi with i ≤ m

has angle at most γ with x1, and possibly by rotating and reordering the first m vectors,

we may further assume that 0 = arg(v1) ≤ · · · ≤ arg(vm) ≤ 2γ. Applying a trivial

bound alongside Lemma 3.2 with V ′ = (v1, vm) gives

m/2∑
i=1

∥v2i−1−v2i∥2 ≤
m−1∑
i=1

∥vi−vi+1∥2 ≤ ∥v1−vm∥2 = 4 sin2(arg(vm)/2) ≤ 4 sin2(γ) ≤ 0.1.

By the same argument, we may negate and reorder the vi with i > m so that

n/2∑
i=m/2+1

∥v2i−1 − v2i∥2 ≤ 0.1,

so in total we have
n/2∑
i=1

∥v2i−1 − v2i∥2 ≤ 0.2.

Since r = 1/2 satisfies r2 = 1/4 > 0.2, Proposition 2.1 implies the result by taking

α = 0.01, for example. □

Lemma 3.7 solves (in a strong sense) the problem when V is (2, γ)-close and an even

number of vectors are close to each of x1, x2. If instead an odd number of vectors are

close to each of x1, x2, then we will prove the result by selecting two vectors u1, u2 near

x1, x2 respectively, applying Lemma 3.7 on V −{u1, u2}, and then adding signed copies

of u1, u2 back to σV−{u1,u2}. The following geometric lemma will be necessary in order

for this scheme to work.

Lemma 3.8. Given unit vectors u, u′ ∈ R2 and any vector w ∈ R2 with ∥w∥ ≤ 1/2,

there is a choice of signs ϵ, ϵ′ ∈ {−1,+1} such that ∥w + ϵu+ ϵ′u′∥ ≤
√
2.

Proof. Possibly by replacing u′ with its negation, we may assume that the angle β ≤ π

between u and u′ is at least π/2, and possibly by rotating our vectors, we may assume

without loss of generality that u = (cos(β/2), sin(β/2)) and u′ = (cos(β/2),− sin(β/2)).

Let K = ∥w∥ ≤ 1/2 so that w = (K cos(θ), K sin(θ)) for some θ. Possibly by

replacing w with its negation, we may assume that −π/2 ≤ θ ≤ π/2, and without loss

of generality, we may assume that 0 ≤ θ ≤ π/2. Consider the vectors

w1 = w − u− u′ = (K cos(θ)− 2 cos(β/2), K sin(θ)),

w2 = w − u+ u′ = (K cos(θ), K sin(θ)− 2 sin(β/2)),

and observe that to prove the lemma, it suffices to show that at least one of these

vectors has norm at most
√
2. For this, we observe that

∥w1∥2 + ∥w2∥2 = [K2 + 4 cos2(β/2)− 4K cos(θ) cos(β/2)]

+ [K2 + 4 sin2(β/2)− 4K sin(θ) sin(β/2)]
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= 2K2 + 4− 4K cos(θ − β/2) ≤ 4,

where the last inequality relies on the fact that K ≤ 1/2 ≤ 1/
√
2, |θ − β/2| ≤ π/4 for

0 ≤ θ ≤ π/2, and π/4 ≤ β/2 ≤ π/2. This implies that ∥wt∥ ≤
√
2 for some t ∈ {1, 2},

proving the result. □

We can now prove Theorem 1.1 in the case when n is even.

Theorem 3.9. There exists an absolute constant c > 0 such that if V = (v1, . . . , vn) is

a sequence of unit vectors in R2 with n even, then

P
[
∥σV ∥ ≤

√
2
]
≥ c

n
.

Proof. The first half of this proof will parallel that of Proposition 3.3, and as such we

omit some of the redundant details in this case. Let V = (v1, . . . , vn) be a sequence

of unit vectors in R2 with n even, and for concreteness, let γ = arcsin(0.1) ≤ π/2

(though this exact value is not very important). We break our argument into two cases

depending on whether V is (2, γ)-close or not.

First, we suppose that V is (2, γ)-far. In this case, the following claim implies that

we can apply Proposition 2.1 with r =
√
2 and α = 0.00001 to get the desired result.

Claim 3.10. It is possible to reorder and negate some of the vectors of V so that

n/2∑
i=1

∥v2i−1 − v2i∥2 ≤ 1.9995.

Proof. By Lemma 3.5, there exist u1, u2, u3 in V which are each γ-far from each other,

and possibly by reordering, negating, and rotating these vectors, we can assume v1 =

u1 = (1, 0) and that 0 ≤ arg(v1) ≤ · · · ≤ arg(vn) ≤ π. Letting vn+1 = −v1 = (−1, 0)

and applying Lemma 3.2 with V ′ = (v1, u2, u3, vn+1) shows that
n∑

i=1

∥vi − vi+1∥2 ≤ 4− 8 sin3(γ/2) ≤ 2 · 1.9995.

The claim follows from the pigeonhole principle by either considering V or Ṽ =

(v2, v3, . . . , vn,−v1). □

Next, suppose that V is (2, γ)-close. This in particular means that there exists

unit vectors x1, x2 and some 1 ≤ m ≤ n such that, possibly after reordering the

vectors V , we have that vi is γ-close to x1 for all i ≤ m and vi is γ-close to x2 for all

i > m. If m is even, then the result follows from Lemma 3.7, so we can assume that

m is odd. Let V ′ be the subsequence of V obtained by removing vm and vn. In this

case V ′ satisfies the conditions of Lemma 3.7 with x1, x2 and m − 1, so we conclude

that P[∥σV ′∥ ≤ 1/2] = Ω(n−1). Observe that conditional on σV ′ lying in this range,

the probability that σV = σV ′ + ϵmvm + ϵnvn has norm at most
√
2 is at least 1/4
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by Lemma 3.8, so we again conclude that P[∥σV ∥ ≤
√
2] = Ω(n−1), completing the

proof. □

We will now deduce the case of odd n from the even case, for which we need the

following geometric result.

Proposition 3.11. If V = (v1, . . . , vn) is a sequence of unit vectors in R2 with n ≥ 3,

then (at least) one of the following statements holds.

(a) There exists some i such that for all j, either

arg(vi) ≤ arg(vj) ≤ arg(vi) + 7π/24,

or

arg(vi) ≤ arg(−vj) ≤ arg(vi) + 7π/24.

(b) There exist distinct i, j, k such that for any w ∈ R2 with ∥w∥ ≤
√
2, there exist

signs ϵi, ϵj, ϵk ∈ {−1,+1} such that ∥w + ϵivi + ϵjvj + ϵkvk∥ ≤
√
2.

We note again that the exact value of 7π/24 is not crucial here; we simply need some

number strictly smaller than π/3 and slightly larger than π/4.

Proof. Our proof rests on the following technical geometric claim analogous to Lemma 3.8.

Claim 3.12. If u, u′ ∈ R2 are unit vectors at an angle β satisfying π/2 ≤ β ≤ 17π/24,

then for any w′ ∈ R2 of norm at most
√
3, there exist ϵ, ϵ′ ∈ {−1,+1} such that

∥w′ + ϵu+ ϵ′u′∥ ≤
√
2.

Proof. Possibly by rotating our vectors, we may assume without loss of generality that

u = (cos(β/2), sin(β/2)) and u′ = (cos(β/2),− sin(β/2)). Let K = ∥w′∥ ≤
√
3 so that

w′ = (K cos(θ), K sin(θ)) for some θ. Possibly by replacing w′ with its negation we

may assume −π/2 ≤ θ ≤ π/2, and without loss of generality, we may assume that

0 ≤ θ ≤ π/2. Consider the pair of vectors

w1 = w′ − u− u′ = (K cos(θ)− 2 cos(β/2), K sin(θ)),

w2 = w′ − u+ u′ = (K cos(θ), K sin(θ)− 2 sin(β/2)),

and observe that for the claim it suffices to show that at least one of these vectors has

norm at most
√
2.

First, consider the case that K ≤ 2 cos(θ − β/2). As in the argument in Lemma 3.8,

we have by our assumption on K that

∥w1∥2 + ∥w2∥2 = 2K2 + 4− 4K cos(θ − β/2) ≤ 4,

and hence ∥wt∥2 ≤ 2 for some t ∈ {1, 2} as desired.

11



Now, assume that K > 2 cos(θ − β/2); in this case, we shall show ∥w1∥ ≤
√
2.

Because K ≤
√
3, our assumed inequality implies |θ − β/2| > π/3. Note that we can

not have θ > β/2 + π/3 since β/2 ≥ π/4 and θ ≤ π/2, so we must have

0 ≤ θ < β/2− π

3
≤ π

48
,

with this last step using β ≤ 17π/24. For any such θ and π/2 ≤ β ≤ 17π/24 and

K ≤
√
3 ≤ 1.76, we have

∥w1∥2 = K2 + 4 cos2(β/2)− 4K cos(θ) cos(β/2)

≤ K2 + 4 cos2
(π
4

)
− 4K cos

( π

48

)
cos

(
17π

48

)
≤ K2 + 2− 1.76K ≤ 2,

proving the claim. □

We also need the following observation.

Claim 3.13. If (a) does not hold, then there exists some i, j such that the (shortest)

angle between vi and both of vj,−vj is at least 7π/24.

Proof. If this were not the case, then we can assume, possibly after replacing some

vectors with their negations, that every vector has angle at most 7π/24 with v1, and

possibly by rotating all of our vectors, we can assume arg(v1) = 7π/24. If we let vi
be such that arg(vi) = mink arg(vk) and vj be such that arg(vj) = maxk arg(vk), then

we must have arg(vj) ≥ arg(vi) + 7π/24 (since otherwise (a) would hold for i by the

definition of i, j). We also have

arg(vj) ≤ 7π/24 + arg(v1) ≤ 14π/24 + arg(vi) ≤ π + arg(vi)

by the assumption on v1, which implies that the angle between vi and vj is arg(vj)−
arg(vi) ≥ 7π/24. Similarly, because arg(vj) ≤ 7π/24 + arg(v1) ≤ π we find that

arg(−vj) = π + arg(vj). This implies that π ≤ arg(−vj)− arg(vi) ≤ π + 14π/24, which

implies that the angle between −vj and vi is 2π − arg(−vj) + arg(vi) ≥ π − 14π/24 ≥
7π/24 as desired. □

We now complete the proof. Assume that (a) does not hold and let i, j be as in

Claim 3.13, and let k be any index not equal to i, j. We claim that (b) holds with this

choice of i, j, k. Let w ∈ R2 be an arbitrary vector of norm at most
√
2. Observe that

there exists some ϵk ∈ {−1, 1} such that w′ = w + ϵkvk has norm at most
√
3; indeed,

this follows by taking any ϵk such that w and ϵkvk have angle at most π/2 between

them. Possibly by replacing vj with its negation, we may assume that the (shortest)

angle β between vi and vj satisfies β ≥ π/2, and by our choice of i, j, we must have

β ≤ 17π/24 (as otherwise, the angle between vi and −vj would be at most 7π/24).

Applying Claim 3.12 with u = vi, u
′ = vj gives signs with the desired property, finishing

the proof. □
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We now have all that we require to prove Theorem 1.1.

Proof of Theorem 1.1. Let V = (v1, . . . , vn) be a sequence of unit vectors in R2 with1

n ≥ 2. The result holds if n is even by Theorem 3.9, so we may assume that n ≥ 3 is

odd.

First, consider the case that Proposition 3.11(a) applies to V , and possibly by rotating

and reordering our vectors we can assume 0 = arg(v1) ≤ · · · ≤ arg(vn) ≤ 7π/24. By

Lemma 3.2, we have

n−1∑
i=1

∥vi − vi+1∥2 ≤ ∥v1 − vn∥2 ≤ 2 sin2

(
7π

48

)
≤ 1/2.

By Proposition 2.1, we then have that ∥σV−{vn}∥ ≤ 1 occurs with probability Ω(n−1), and

conditional on this event, we have with probability at least 1/2 that ∥σV−{vn}+ ϵnvn∥ ≤√
2 (since σV−{vn} and ϵnvn will be at angle at least π/2 from each other with probability

at least 1/2), proving the result in this case.

Next, assume that Proposition 3.11(b) applies for some i, j, k, and let V ′ = V −{vi−
vj−vk}. By Theorem 3.9 we have ∥σV ′∥ ≤

√
2 with probability Ω(n−1), and conditional

on this event, we have by Proposition 3.11(b) that ∥σV ′ + ϵivi + ϵjvj + ϵkvk∥ ≤
√
2

with probability at least 1/8, proving the result in this case and hence completing the

proof. □

As an aside, we note that our approach here can be used to obtain results for the

reverse Littlewood–Offord problem in Rd in general. In particular, similar geometric

arguments can be used to show that for every d ≥ 2, there exist absolute constants

r, c > 0 depending only on d such that such that for any unit vectors v1, . . . , vn ∈ Rd and

independent Rademacher random variables ϵ1, . . . , ϵn, we have P[||ϵ1v1 + . . .+ ϵnvn||2 ≤
r] ≥ n−d2/4.. However, we do not know how to use these ideas to obtain the same tight

results of (Beck’s) Theorem 1.2.

4. Conclusion

In this paper we gave a new proof of an old conjecture of Erdős by showing that if

v1, . . . , vn ∈ R2 are unit vectors, then with probability Ω(n−1), their random signed sum

has norm at most
√
2. The radius

√
2 is best possible here for even n by considering the

case vi = (1, 0) for an odd number of i and vi = (0, 1) otherwise, but as far as we know

the following stronger bound might hold for odd n, matching the original conjecture of

Erdős.

1We leave the n = 1 case as an exercise to the reader.
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Conjecture 4.1. There exists an absolute constant c > 0 such that for any unit vectors

v1, . . . , vn ∈ R2 with n odd and independent Rademacher random variables ϵ1, . . . , ϵn,

we have

P [∥ϵ1v1 + . . .+ ϵnvn∥2 ≤ 1] ≥ c

n
.

Our present proof of Theorem 1.1 admits a bit of slack when n is odd and can be

adjusted to prove P[∥σV ∥ ≤ r] = Ω(n−1) for some r <
√
2, though it seems new ideas

are needed to get all the way down to r = 1. The order of magnitude of Ω(n−1) in

Theorem 1.1 is best possible, but exactly determining the implicit constant seems to be

an intriguing problem in discrete geometry.

Question 4.2. For n ≥ 1, let V range over all sequences of n unit vectors in R2. If

r > 0, how does the function

f(r) = lim inf
n→∞

inf
V

P[∥σV ∥ ≤ r]n

behave? In particular, is f(r) always an integer multiple of 4/π?

Theorem 1.1 shows that f(r) > 0 if and only if r ≥
√
2. Note that the ‘in particular’

part of this question would hold if the minimizer of the probability always consisted of

roughly n/2 copies of (1, 0) and (0, 1). For the specific case of r =
√
2 we believe the

following even stronger statement holds.

Conjecture 4.3. For all n sufficiently large, there exists some t ≤ n such that for any

unit vectors v1, . . . , vn ∈ R2 and independent Rademacher random variables ϵ1, . . . , ϵn,

we have

P
[
||ϵ1v1 + . . .+ ϵnvn||2 ≤

√
2
]
≥ P

[
||ϵ1v′1 + . . .+ ϵnv

′
n||2 ≤

√
2
]
,

where v′i = (1, 0) for i ≤ t and v′i = (0, 1) for i > t.
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