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Abstract. Ellis and the third author showed, verifying a conjecture of Frankl,

that any 3-wise intersecting family of subsets of {1, 2, . . . , n} admitting a transitive

automorphism group has cardinality o(2n), while a construction of Frankl demonstrates

that the same conclusion need not hold under the weaker constraint of being regular.

Answering a question of Cameron, Frankl and Kantor from 1989, we show that the

restriction of admitting a transitive automorphism group may be relaxed significantly:

we prove that any 3-wise intersecting family of subsets of {1, 2, . . . , n} that is regular

and increasing has cardinality o(2n).

1. Introduction

This paper is primarily concerned with intersecting families: for an integer r ≥ 2,

a family of sets A is said to be r-wise intersecting if any r of the sets in A have

nonempty intersection. There is by now a large body of work studying the extremal

properties of families of sets under various intersection requirements; we refer the reader

to the surveys [3, 13] for an overview. A common theme that arises when studying the

extremal properties of intersecting families is that the extremal constructions are often

highly asymmetric; indeed, this is the case with many of the classical results in the field,

such as the Erdős–Ko–Rado theorem [6] and the Ahlswede–Khachatrian theorem [1]

to name just two. It is therefore natural to ask what, if anything, changes when one

considers intersecting families subject to requirements of ‘symmetry’, and this is the

line of questioning that we pursue here.

For a positive integer n ∈ N, let us write [n] for the set {1, 2, . . . , n}, and Pn for the

power-set of [n]. We say that a family A ⊂ Pn is symmetric if the automorphism group

of A is transitive on [n], regular if every element of [n] belongs to the same number

of sets in A, and increasing if A is closed under taking supersets. We stress that the

families we shall study here will be non-uniform, i.e., their members need not all be

of the same size; for related work on uniform intersecting families, see the paper of

Ellis, Kalai and the third author [4] addressing the symmetric case, and the results of

Ihringer and Kupavskii [10] addressing the regular case.
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The family {x ⊂ [n] : |x| > n/2} is a symmetric 2-wise intersecting family containing

a positive fraction of all the sets in Pn. Ellis and the third author [5], verifying a

conjecture of Frankl [7], proved that symmetric r-wise intersecting families must be

significantly smaller when r ≥ 3; more precisely, they showed the following.

Theorem 1.1. If A ⊂ Pn is a symmetric 3-wise intersecting family, then |A| = o(2n).

On the other hand, a projective-geometric construction of Frankl [7] shows that there

exist regular 3-wise intersecting subfamilies of Pn containing a positive fraction of all

the sets in Pn, so the conclusion of Theorem 1.1 no longer holds when one considers

regular families instead of symmetric ones.

Here, we investigate the middle ground between symmetric and regular families

following Cameron, Frankl and Kantor [2]: they proved that if A ⊂ Pn is a 4-wise

intersecting family that is both regular and increasing, then |A| = o(2n), and asked

what one can say about regular 3-wise intersecting families. Our main result answers

this question by showing that the conclusion of Theorem 1.1 does hold for regular

families, provided again that they are increasing.

Theorem 1.2. If A ⊂ Pn is a 3-wise intersecting family that is both regular and

increasing, then |A| = o(2n).

Of course, Theorem 1.2 implies Theorem 1.1; to see this, note that if A ⊂ Pn is

a symmetric 3-wise intersecting family, then {y : x ⊂ y for some x ∈ A} is a 3-wise

intersecting family containing A that is both regular and increasing.

It is worth highlighting that in both [5] and the present work, Fourier analysis

plays a crucial, if invisible, role: indeed, the proof of Theorem 1.1 hinges on a sharp

threshold result of Friedgut and Kalai [9], while here, to prove the stronger assertion of

Theorem 1.2, we in turn rely on the somewhat heavier machinery of Friedgut’s junta

theorem [8]. The main new technical tool that we develop to prove Theorem 1.2 is a

lemma demonstrating the existence of threshold-type behaviour under some rather mild

conditions; this result (see Lemma 3.1) might be of some independent interest.

This paper is organised as follows. We collect the various tools we require in Section 2.

The proof of Theorem 1.2 follows in Section 3. We conclude in Section 4 with a brief

discussion of open problems.

2. Preliminaries

In this section, we briefly describe the notions and tools we shall require for our

arguments.

For 0 ≤ p ≤ 1, we write µp for the p-biased measure on Pn, defined by

µp({x}) = p|x|(1− p)n−|x|
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for all x ⊂ [n]. We abbreviate µ 1
2
by µ, and note that this is just the normalised

counting measure.

For a family A ⊂ Pn, we write I(A) = {x∩y : x, y ∈ A} for the family of all possible

intersections of pairs of sets from A. We require the following proposition from [5]; we

include a short proof for completeness.

Proposition 2.1. For any A ⊂ Pn, if µp(A) ≥ δ, then µp2(I(A)) ≥ δ2.

Proof. Let x and y be two random elements of Pn drawn independently according to

the distribution µp. It is then clear that x ∩ y has distribution µp2 , so we have

µp2(I(A)) = P(x ∩ y ∈ I(A)) ≥ P(x, y ∈ A) = µp(A)2,

proving the proposition. □

We shall require the notions of influences and juntas. First, given A ⊂ Pn, we say

that an element i ∈ [n] is pivotal for A at x ∈ Pn if exactly one of x and x △ {i}
lies in A, and for 0 ≤ p ≤ 1, we define the total influence Ip(A) of A at p to be the

expected number of pivotal elements for A at a random set x ∈ Pn drawn according

to the distribution µp. The following fundamental formula was originally observed

independently by Margulis [11] and Russo [14].

Proposition 2.2. If A ⊂ Pn is increasing, then

d

dp
µp(A) = Ip(A)

for all 0 < p < 1. □

Next, for J ⊂ [n], a family A ⊂ Pn is said to be a J-junta if the membership of

a set in A is determined by its intersection with J , or in other words, if x ∈ A and

x ∩ J = y ∩ J for some y ∈ Pn, then this implies that y ∈ A. The following result due

to Friedgut [8] will be our main tool.

Theorem 2.3. For each C > 0 and 0 < ε < 1, there exists K > 0 such that the

following holds for all ε ≤ p ≤ 1− ε and n ∈ N. For any A ⊂ Pn with Ip(A) ≤ C , there

exists a set J ⊂ [n] with |J | ≤ K and a J-junta B ⊂ Pn such that µp(A△B) ≤ ε. □

Finally, we say that two families A,B ⊂ Pn are cross-intersecting if x ∩ y ≠ ∅ for all

x ∈ A and y ∈ B. We need the following simple fact also used in [5].

Proposition 2.4. If A,B ⊂ Pn are cross-intersecting, then

µp(A) + µ1−p(B) ≤ 1

for any 0 ≤ p ≤ 1.
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Proof. Since A and B are cross-intersecting, it is clear that A ⊂ Pn \ B̃, where B̃ =

{[n] \ x : x ∈ B}. Therefore,

µp(A) ≤ µp(Pn \ B̃) = 1− µp(B̃) = 1− µ1−p(B). □

3. Proof of the main result

Our proof of Theorem 1.2 borrows ideas from both [2] and [5]. Before turning to the

proof, let us briefly explain what is lost, relative to the argument in [5], by dropping the

requirement of symmetry: for a family A ⊂ Pn that is both symmetric and increasing,

a result of Talagrand [15] guarantees that the total influence Ip(A) is large whenever

µp(A) is bounded away from both 0 and 1, which ensures, by Proposition 2.2, that the

derivative of µp(A) with respect to p is also large under these circumstances; this is no

longer the case when one considers regular families as opposed to symmetric ones. A

replacement for this fact, the main new ingredient here, is the following lemma asserting

a somewhat weaker version of this threshold behaviour under milder conditions.

Lemma 3.1. For any ε, δ > 0, the following holds for all sufficiently large n ∈ N. If
A ⊂ Pn is both regular and increasing, and µ(A) ≥ δ, then µ 1

2
+ε(A) ≥ 1− ε.

Proof. In what follows, we fix η = εδ/(2 + δ) and additionally suppose that n is

large enough for all our estimates to hold; in particular, constants suppressed by the

asymptotic notation may depend on ε and δ but, of course, not on n.

Since µ(A) = µ 1
2
(A) ≥ δ and µ 1

2
+ε(A) ≤ 1, it follows from Proposition 2.2 that there

exists q ∈ [1/2, 1/2 + ε] such that Iq(A) ≤ 1/ε. Theorem 2.3 now implies that there

exists J ⊂ [n] with |J | = K and a J-junta B ⊂ Pn such that µq(A△B) ≤ η, where K

is a constant depending only on ε and δ.

Let us set up some notation before we proceed. For i ∈ [n], let Ai denote the family

of those sets in A containing i, and for y ⊂ J , define the fibre A(y) of A over y by

A(y) = {x \ y : x ∈ A and x ∩ J = y}.

Also, let B′ be the family on J determining B, i.e., x ∈ Pn belongs to B if and only if

x ∩ J belongs to B′.

We first note that as A is regular, the sets Ai are all roughly half as large as A; a

similar observation is used in [2].

Claim 3.2. For each i ∈ [n], we have µ(A)/2 ≤ µ(Ai) ≤ µ(A)/2 +O(1/
√
n).

Proof. The first inequality follows from the fact that A is increasing, so it suffices to

verify the second. Let Z be a set drawn uniformly at random from A, and for i ∈ [n],

let Zi be the indicator of the event {i ∈ Z}. We shall rely on the properties of the
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binary entropy H(·) of a random variable; see [12] for the basic notions. It follows from

the sub-additivity of entropy that H(Z) ≤
∑n

i=1H(Zi). Clearly, we have

H(Z) = log2 |A| = n+ log2(µ(A)) ≥ n+ log2 δ,

and, writing ϑ for the common value of |Ai|/|A| for all i ∈ [n], we also have

H(Zi) = −ϑ log2 ϑ− (1− ϑ) log2(1− ϑ)

for each i ∈ [n]. It is now easy to verify from the sub-additivity estimate above that

ϑ = 1/2 +O(1/
√
n), proving the claim. □

Next, we observe that all the fibres of A have roughly the same size as well. Let us

write σp for the p-biased measure on the power set of J and τp for the p-biased measure

on the power set of [n] \ J , so that µp = σp × τp, and again, we abbreviate σ 1
2
and τ 1

2

by σ and τ respectively.

Claim 3.3. For all y ⊂ J , we have τ(A(y)) = µ(A) + o(1).

Proof. We note that

µ(A) =
∑
y⊂J

σ(y)τ(A(y)),

and that σ(y) = 2−K for all y ⊂ J . For any i ∈ y ⊂ J , we have A(y \ {i}) ⊂ A(y)

because A is increasing, so

τ(A(y)) ≥ τ(A(y \ {i})).

Since |J | = K = O(1), to prove the claim, it clearly suffices to show that for any

i ∈ y ⊂ J , we have

τ(A(y)) ≤ τ(A(y \ {i})) + o(1);

indeed, this would imply that

τ(A(y)) = τ(A(∅)) + o(|y|) = τ(A(∅)) + o(1)

for each y ⊂ J , and the claim would follow.

Fix i ∈ J , and note that

µ(Ai) =
∑
i∈y⊂J

σ(y)τ(A(y)),

so we have

µ(Ai)− µ(A)/2 = 2−K−1
∑
i∈y⊂J

(τ(A(y))− τ(A(y \ {i}))).

We know from Claim 3.2 that µ(Ai)−µ(A)/2 = O(1/
√
n), so for each y ⊂ J containing

i, we have

τ(A(y))− τ(A(y \ {i})) = O(1/
√
n),

as required. □
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We may now complete the proof of the lemma. Recall that we earlier fixed q ∈
[1/2, 1/2 + ε] and a J-junta B ⊂ Pn such that µq(A△B) ≤ η, and defined B′ to be the

family on J determining B.
First, note that

µq(A△B) =
∑
y∈B′

σq(y)(1− τq(A(y))) +
∑
y ̸∈B′

σq(y)(τq(A(y))).

Since A is increasing, we see from Claim 3.3 that τq(A(y)) ≥ τ(A(y)) ≥ δ/2 for all

y ⊂ J . Therefore, since µq(A△B) ≤ η, we see that∑
y ̸∈B′

σq(y) ≤ 2η/δ,

which implies that

µq(B) =
∑
y∈B′

σq(y) ≥ 1− 2η/δ.

Again, since µq(A△B) ≤ η and η = εδ/(2 + δ), it follows that

µ 1
2
+ε(A) ≥ µq(A) ≥ 1− 2η/δ − η = 1− ε,

proving the lemma. □

Armed with Lemma 3.1, we may now prove Theorem 1.2; the proof below by and

large follows the argument in [5], with Lemma 3.1 serving as a substitute for the sharp

threshold result used there.

Proof of Theorem 1.2. We need to show for any fixed δ > 0, that for all but finitely

many n ∈ N, if A ⊂ Pn is a 3-wise intersecting family that is both regular and increasing,

then µ(A) < δ; hence, suppose for a contradiction that n is sufficiently large and that

A ⊂ Pn is a family as just described with µ(A) ≥ δ.

Let us fix ε = min{1/4, δ2/2}. First, since A is increasing, we know from Lemma 3.1

that

µ 3
4
(A) ≥ µ 1

2
+ε(A) ≥ 1− ε > 1− δ2.

Next, by Proposition 2.1, we have

µ 1
4
(I(A)) ≥ δ2.

Finally, since A is a 3-wise intersecting family, A and I(A) are cross-intersecting, so

we conclude from Proposition 2.4 that

µ 3
4
(A) ≤ 1− µ 1

4
(I(A)) ≤ 1− δ2,

yielding a contradiction, and establishing the result. □
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4. Conclusion

The best bound for Theorem 1.2 that we may read out of the argument here is rather

poor on account of our reliance on the junta theorem; it would therefore be interesting

to improve this. Concretely, it would be good to decide if any 3-wise intersecting family

A ⊂ Pn that is both regular and increasing must satisfy

log2 |A| ≤ n− cnδ,

where c, δ > 0 are universal constants; as evidenced by the constructions in [5], a bound

of this type would be the best one could hope for. We ought to point out that we do

not yet know how to prove an estimate of the above form even for symmetric 3-wise

intersecting families; what is known however is that such an estimate does hold for

symmetric 4-wise intersecting families, as was shown by Cameron, Frankl and Kantor [2].
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