
Applications of random algebraic constructions to

hardness of approximation

Boris Bukh, Karthik C. S., and Bhargav Narayanan

Abstract. In this paper, we show how one may (efficiently) construct the following

two types of extremal combinatorial objects whose existence was previously conjectural.

• Panchromatic graphs: For fixed k ∈ N, a k-panchromatic graph is, roughly

speaking, a balanced bipartite graph with one partition class equipartitioned into

k colour classes in which the common neighbourhoods of panchromatic k-sets of

vertices are much larger than those of k-sets that repeat a colour. The question

of their existence was raised by Karthik and Manurangsi in 2020.

• Threshold graphs: For fixed k ∈ N, a k-threshold graph is, roughly speaking,

a balanced bipartite graph in which the common neighbourhoods of k-sets of

vertices on one side are much larger than those of (k + 1)-sets. The question of

their existence was raised by Lin in 2018.

Our constructions utilise varieties cut out by (carefully chosen) random polynomials,

and the analysis of these constructions relies on machinery from algebraic geometry;

the technical tools developed to accomplish this may be of independent interest. As

applications of our constructions, we show the following conditional time lower bounds

on the parameterised set intersection problem where, given a collection of n sets over

universe [n] and a parameter k, the goal is to find k sets with the largest intersection.

• Assuming ETH, for any computable function F : N → N, no no(k)-time algorithm

can approximate the parameterised set intersection problem up to factor F (k).

This improves considerably on the previously best-known result under ETH due

to Lin, who ruled out any no(
√
k) time approximation algorithm for this problem.

• Assuming SETH, for every ε > 0 and any computable function F : N → N, no
nk−ε-time algorithm can approximate the parameterised set intersection problem

up to factor F (k). No result of comparable strength was previously known under

SETH, even for solving this problem exactly.

1. Introduction

Over the last five decades, a symbiotic relationship has developed between the areas

of extremal combinatorics and complexity theory (broadly construed); see the wonderful

book of Jukna [33] or one of the surveys of Alon [2, 3, 4] for various applications

of extremal combinatorial objects to proving lower bounds in theoretical computer
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science. In particular, this synergistic exchange with extremal combinatorics can be

explicitly seen in subareas such as circuit/formula lower bounds [8, 35], communication

complexity [15, 40, 28], error correcting codes [49, 7, 30], and derandomization [5, 46,

20, 16].

In this paper, our first goal is to prove the existence of certain extremal bipartite

graphs, namely threshold graphs and panchromatic graphs. The question of their

existence was motivated by applications in hardness of approximation, and our second

goal is to prove, using these graphs, conditional time lower bounds on the parameterised

set intersection problem. Our constructions will rely crucially on random polynomials,

and our third goal here is to prove various results, likely of independent interest, about

the common zeroes of random polynomials over finite fields. Before we can state our

results, it will help to have some background, to which we now turn.

Over the last few years, a new area in theoretical computer science, namely hardness of

approximation in P, has benefited significantly from some of the deep results in extremal

combinatorics. Hardness of approximation in P, roughly speaking, maybe treated as the

union of two subareas, namely, hardness of approximation in parameterised complexity

and hardness of approximation in fine-grained complexity.

In parameterised complexity, one studies the computational complexity of problems

with respect to multiple parameters of the input or output. For example, in the

k-SetIntersection problem, we are given a collection of n sets over the universe [n] and a

parameter k as input, and the goal is to find k sets in the collection which maximize

the intersection size. A problem with inputs of size n along with a parameter k is said

to be fixed parameter tractable if it can be solved by an algorithm running in time

T (k) · poly(n) for some computable function T . In many interesting cases, including

for the k-SetIntersection problem, assuming the W[1]̸=FPT hypothesis, it is possible

to show that no such algorithm exists i.e., that the problem is not fixed parameter

tractable. In light of this, one could then ask for approximation algorithms. In the

case of k-SetIntersection, the task would then be to design an approximation algorithm

running in time T (k) · poly(n) that can find k sets in the collection whose intersection

size is at least 1/F (k) of the intersection size of the optimal solution for some pair of

computable functions T and F . Inapproximability results in parameterised complexity

aim to typically rule out such algorithms (under the W[1]̸=FPT hypothesis) for various

classes of functions F ; a notion particularly relevant to this paper is that of total FPT

inapproximability, in which we rule out F (k)-approximation algorithms running in

T (k) · poly(n) time for all computable functions T and F . We refer the reader to the

textbooks [24, 22] for an excellent introduction to the area.

In fine-grained complexity, one aims to refine the Cobham–Edmonds thesis [25, 19]

by trying to understand the exact time required to solve problems in P, by basing their

conditional time lower bounds on several plausible (and popular) conjectures such as
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SETH and ETH. For example, k-SetIntersection can be näıvely solved by exhaustive

search, i.e., by computing the intersection sizes of all k-tuples of sets from the given

collection of n sets. Can we do any better? For instance, is there an algorithm running

in time no(k) that can solve k-SetIntersection? Or even less ambitiously, is there an

algorithm running in time nk−0.1 that can solve k-SetIntersection? The theory of fine-

grained complexity aims to rule out such algorithms, and inapproximability results

in this area aim to prove the same conditional time lower bounds, but now against

approximation algorithms.

A major difficulty addressed by results in hardness of approximation in P is that

of generating a gap, i.e., one must start with a hard problem with no gap (for which

the time lower bound is only against exact algorithms) and reduce it to a problem of

interest while generating a non-trivial gap in the process. One of the main approaches

to generate the aforementioned gap, and the motivation behind our construction of

threshold graphs, is the threshold graph composition (TGC) framework introduced in

the breakthrough work of Lin [42] to show the total FPT inapproximability of the

k-SetIntersection problem. This technique was later used to prove the first non-trivial

inapproximability result for the k-SetCover problem [17], and in the proof of the current

state-of-the-art inapproximability result for the same [43]. Moreover, the result on

the k-SetIntersection problem in [42] was used in [9] as the starting point to prove

inapproximability results for problems in coding theory such as the k-Minimum Distance

problem and the k-Nearest Codeword problem, and for lattice problems such as the

k-Shortest Vector problem and the k-Nearest Vector problem.

At a very high level, in TGC, we compose an instance of the input problem that has

no gap, with an extremal combinatorial object called a threshold graph, to produce a

gap instance of the desired problem. The two main challenges in using this framework

are to construct the requisite threshold graph, and to find the right way to compose

the input and the threshold graph. Our construction of threshold graphs will address

the first of these challenges.

Another key issue that often arises in proving conditional time lower bounds for

problems in P is the following. When trying to prove time lower bounds for a particular

problem, it is often natural (and sometimes seemingly necessary) to first prove the lower

bound for a coloured version of the same problem, and then reduce it to the uncoloured

version of the problem. For instance, if we would like to prove lower bounds based on

SETH for a problem Ψ, then it is almost always the case that we first divide the variable

set of size n (of the SAT formula arising from the SETH assumption) into k equal

parts and reduce the problem of deciding SAT to a problem in P where, given as input

k collections each containing 2n/k partial assignments to the subset of n/k variables

in that part, we would like to find one partial assignment from each collection that,

when stitched together, forms a full satisfying assignment to the original SAT instance.

3



From this problem (in P), if we would like to reduce to Ψ, it is often convenient (and

sometimes imperative) to first reduce to a k-coloured version of Ψ, and then reduce this

coloured version to Ψ itself. This final task is sometimes easy, such as for problems like

k-SetCover or k-OrthogonalVectors, but often non-trivial, such as for k-SetIntersection

or closest pair in a point-set. It is worth reiterating here that in the other direction,

reducing the uncoloured problem to its coloured version is almost always easy; typically,

one can reduce the uncoloured variant to its coloured counterpart via the celebrated

colour coding technique of Alon, Yuster and Zwick [6].

In [23, 37], the authors proposed the panchromatic graph composition (PGC) frame-

work to address this issue, and this serves as the motivation behind our construction

of panchromatic graphs. In particular, they outlined how these panchromatic graphs,

assuming they exist, can be composed with the coloured version of a problem to reduce

it to the uncoloured version of the same problem. Also, it is worth noting that the same

issue arises in proving time lower bounds against approximation algorithms as well, i.e.,

it is often easier to prove hardness of approximation results for coloured versions of

problems than for their uncoloured counterparts. With this in mind, it is desirable to

have panchromatic graphs with certain additional gap properties so that we can design

gap preserving reductions between problems. Our construction of panchromatic graphs

will address all of these challenges.

In summary, the role of extremal combinatorial objects in the existing literature

on hardness of approximation in P is twofold: threshold graphs are used in the TGC

framework to generate gaps in hard problem instances, and panchromatic graphs are

used in the PGC framework to reduce hard instances of coloured variants of various

computational problems to their uncoloured (computationally easier) counterparts.

1.1. Our contributions. Our contributions are primarily twofold. First, in Sec-

tion 1.1.1, we show how to efficiently construct threshold graphs and panchromatic

graphs; even the existence of such graphs was previously conjectural. Second, in Sec-

tion 1.1.2, we demonstrate some applications of these graphs (with panchromatic graphs

featuring more prominently) to prove tight conditional time lower bounds, under ETH

and SETH, for approximating k-SetIntersection.

1.1.1. Constructions of panchromatic and threshold graphs. Here, we describe our main

combinatorial results that demonstrate the existence of the aforementioned extremal

bipartite graphs.

We start with panchromatic graphs.

Definition 1.1 (Panchromatic graphs; informal version of Definition 3.1). An (n, k, t, s)-

panchromatic graph is a bipartite graph G(A,B) where A is partitioned into k parts, say

A1, . . . , Ak, with |A1| = · · · = |Ak| = |B| = n satisfying the following pair of conditions.
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Completeness: For every k-set X ⊂ A for which Ai ∩ X ̸= ∅ for all i ∈ [k], the

number of common neighbours of X in B is at most t, and a positive fraction

(depending only on k) of such k-sets have exactly t common neighbours in B.

Soundness: For every k-set X ⊂ A for which Ai ∩X is empty for some i ∈ [k], the

number of common neighbours of X in B is at most s.

In [37], the authors studied panchromatic graphs when k = 2. Using (non-trivial)

density properties of Reed–Solomon codes and Algebraic-Geometric codes, they were

able to show that (n, 2, t, to(1))-panchromatic graphs exist for t = 2(logn)1−o(1)
, and can

be constructed efficiently. They then raised the natural question of existence for general

k, indicating that if such graphs exist, they could then potentially be used to prove

improved hardness and inapproximability results for k-SetIntersection. We resolve this

open problem from [37] and prove the following result.

Theorem 1.2 (Informal restatement of Theorem 3.3). For each k ∈ N and any integer

λ > 1, there exist (n, k, t, t/λ)-panchromatic graphs for infinitely many n ∈ N, where

t = t(k, λ) depends only on k and λ.

In [37], the authors note that their technique to construct panchromatic graphs is

limited to the case of k = 2, and remark that one needs to construct objects with

more structure than just maximum distance separable codes in a certain sense. Our

construction, detailed in Section 1.2.1, does just this, introducing new ideas that go

beyond standard coding-theoretic properties. On a different note, it is natural to ask

if the requirement in the completeness condition that a positive fraction (depending

on k) of k-sets have exactly t-sized common neighbourhoods can be strengthened to

demand the same of every such k-set. It turns out that our result is in fact best-

possible in the following sense: as n → ∞ and for any t = t(k), there do not exist

(n, k, t, t− 1)-panchromatic graphs in which a (1 − 1/t)-fraction of the panchromatic

k-sets have exactly t-sized common neighbourhoods; this may be shown using the

Kövári—Sós—Turán theorem and Hölder’s inequality, but we omit the details here.

Next, we turn our attention to threshold graphs.

Definition 1.3 (Threshold graphs; informal version of Definition 3.2). An (n, k, t, s)-

threshold graph is a bipartite graph G(A,B) with |A| = |B| = n satisfying the following

pair of conditions.

Completeness: For every k-set of vertices X ⊂ A, the number of common neighbours

of X in B is at least t.

Soundness: For every (k+1)-set of vertices X ⊂ A, the number of common neighbours

of X in B is at most s.

These graphs are closely related to constructions for Turán-type problems in extremal

graph theory. Indeed, if the completeness condition above is weakened to only require

5



that a positive fraction (depending on k) of k-sets X ⊂ A have at least t common

neighbours in B, then the celebrated norm-graphs of [39, 8] achieve these weakened

requirements.

Lin [42] raised the question of the existence of threshold graphs, and noted that

if threshold graphs exist, then there is a very short proof showing the total FPT

inapproximability of k-SetIntersection as follows. Starting with an instance H(V,E) of

the canonical W[1]-hard k-clique problem on n vertices, we combine it with a (n, k, t, s)-

threshold graph G(V,B) to yield an instance of
(
k
2

)
-SetIntersection with |E| sets on the

universe B, where for every edge e = (u, v) ∈ E, we include the element b ∈ B in the

set associated with this edge if and only if b is a common neighbour of u and v in G. It

then follows that if there is a k-clique in H, then there are
(
k
2

)
sets whose intersection

size is at least t, and if there is no k-clique in H, then every
(
k
2

)
sets have intersection

size at most s.

However, since the existence of threshold graphs was previously unknown, the

argument showing total FPT inapproximability of k-SetIntersection in [42] is rather

delicate. We resolve this open problem from [42] and show that threshold graphs exist,

obtaining a very short proof of the total FPT inapproximability of k-SetIntersection as

a byproduct.

Theorem 1.4 (Informal restatement of Theorem 3.4). For each k ∈ N and for infinitely

many n ∈ N, there exist (n, k, nΩ(1/k), kO(k))-threshold graphs.

The parameters in this result match the parameters obtainable via norm-graphs, but

crucially, our construction also achieves the stronger completeness property discussed

earlier. In fact, it is possible to improve the kO(k) above to 2O(k) using more involved

algebraic-geometry, but we avoid the extra complexity of that approach here.

1.1.2. Applications to the parameterise set intersection problem. Here, we describe our

conditional time lower bounds for the k-SetIntersection problem. In order to set the

context for the complexity of this problem, we briefly recall its complexity in the world

of NP.

In the world of complexity, SetIntersection is well-known as a notorious problem to

prove any kind of hardness of approximation result for; that said, there is a general belief

that it is a hard problem as no non-trivial polynomial time approximation algorithms

for this problem are known. However, to this date, even ruling out a PTAS under

the standard P ̸=NP hypothesis remains open! The best inapproximability result for

this problem is based on assuming that SAT problems of size n cannot be solved by

randomised algorithms in time 2nε
, under which Xavier [51] shows that there is no

polynomial time algorithm which can approximate SetIntersection up to factor nδ for

some δ = δ(ε) > 0. It is worth noting that this inapproximability result relies on the

highly non-trivial and celebrated quasi-random PCP construction of Khot [38].
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Given this context, it was truly a breakthrough when Lin [42], introducing some

novel techniques, proved the total FPT inapproximability of k-SetIntersection (under

W[1] ̸= FPT hypothesis). Of course, using our construction of threshold graphs, we now

have a very short proof of this powerful result.

Lin [42] further refined his inapproximability result and showed, assuming ETH, that

for sufficiently large k ∈ N, no randomised no(
√
k)-time algorithm can approximate

k-SetIntersection to a factor n1/Ω(
√
k). Clearly, this result is stronger than ruling out

F (k) approximation algorithms (for some function F ), but the running time lower

bound is far from tight. The following result, the first application of our constructions,

shows that we can improve on Lin’s result and obtain tight running time lower bounds

under ETH (albeit for weaker approximation factors).

Theorem 1.5 (Informal restatement of Theorem 6.4). Let F : N → N be any computable

function. Assuming ETH, for sufficiently large k ∈ N, no randomised no(k)-time

algorithm can approximate k-SetIntersection to a factor F (k).

In the world of fine-grained complexity, it is also of interest to prove, under stronger as-

sumptions than ETH, even tighter running time lower bounds than the no(k) bound above.

In particular, one would like to rule out nk−0.1-time algorithms for k-SetIntersection

under SETH, essentially showing that the näıve algorithm for k-SetIntersection is opti-

mal. To the best of our knowledge, prior to our work, it was not known if one could

even rule out exact algorithms for k-SetIntersection running in nk−0.1-time! We remedy

this situation; the following strong inapproximability result under SETH is the second

application of our constructions.

Theorem 1.6 (Informal restatement of Theorem 6.2). Let F : N → N be any computable

function. Assuming SETH, for every ε > 0 and integer k > 1, no randomised nk(1−ε)-

time algorithm can approximate k-SetIntersection to a factor F (k).

Both of these results are crucially reliant on our construction of panchromatic graphs.

It is worth noting that for the coloured variant of k-SetIntersection, one can easily show

tight running time lower bounds under ETH and SETH against exact algorithms, and

by using non-trivial gap creating techniques, these tight running time lower bounds

were extended to near polynomial factor approximation algorithms for the coloured

variant in [36]. The situation (for the coloured variant) is similar in the world of NP

as well; see [18]. Finally, we remark that by using the hardness of approximation

results in [36] under the k-SUM hypothesis, we can use the PGC framework to rule out

randomised nk(1/2−ε)-time approximation algorithms for k-SetIntersection, under the

k-SUM hypothesis, up to any factor F (k).

1.1.3. Reverse colour coding. We conclude this discussion of our results by briefly

highlighting a broader implication. For many computational problems, it is often
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natural to define and study a coloured variant. For some problems, the coloured variant

turns out to be even more natural; for example, any k-CSP (i.e., constraint satisfaction

problems of arity k) on k variables can be seen as a coloured version of the maximum

edge biclique problem. Establishing computational equivalences between coloured and

non-coloured variants of problems is thus a basic question worthy of exploration. As

noted earlier, for some problems, there is a straightforward equivalence between the

two versions. However, there are many important problems for which this equivalence

is nontrivial (and potentially not true). The celebrated colour coding technique of

Alon, Yuster and Zwick [6] provides an efficient way for a problem to be reduced to its

coloured variant. Our construction of panchromatic graphs (when combined with PGC,

as will be described in Section 1.2.2) now gives us a rather general method to reverse

the colour coding technique.

1.2. Our techniques. Our main technical contribution is the construction of panchro-

matic graphs and threshold graphs which we describe in Section 1.2.1. We also provide

an overview of how these are used to prove Theorems 1.5 and 1.6 in Section 1.2.2

1.2.1. Constructions of Panchromatic and Threshold Graphs. To motivate our approach,

we start by explaining, briefly, why a natural first attempt at constructing threshold

graphs fails. It is natural to consider a random bipartite graph where each edge is

included independently with an appropriately chosen probability p. Indeed, it is easy

to see that such a construction can ensure that most k-sets of vertices on one side

have fewer common neighbours than most (k + 1)-sets. However, it is essentially

impossible to avoid some exceptional k-sets and (k + 1)-sets at the relevant edge density

p. Without getting into the details, the reason for this is simple: the size of the common

neighbourhoods in this probability space have long, smoothly-decaying tails, and since

there are many sets to consider, it is overwhelmingly likely that exceptional sets exist.

For more on this issue, we refer the reader to [10].

When it comes to panchromatic graphs, while there is no immediate natural candi-

date construction, it seems clear that assuming one wishes to construct such objects

randomly, one needs to introduce some level of correlation between different edges, while

simultaneously preserving enough independence to allow us to analyse the resulting

random graph, a delicate task from a purely probabilistic perspective.

It turns out that there is a natural way to circumvent all the obstacles outlined above,

namely, by considering random graphs in which adjacency is determined by a randomly

chosen algebraic variety. Concretely, our approach, which works over the finite field Fq

for any prime power q ∈ N, is as follows.

(1) We construct threshold graphs as follows. We build A by independently sampling

qk+1 random polynomials of degree d from Fq[X1, . . . , Xk+1] for a suitable d =
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d(k). Then, with B = Fk+1
q , we define a bipartite graph G between A and B by

joining f ∈ A to x ∈ B if f(x) = 0.

(2) To construct panchromatic graphs, we proceed as follows. First, we indepen-

dently choose random polynomials w1, . . . , wk of degree D from Fq[X1, . . . , Xk]

for a suitable D = D(k). Next, for i ∈ [k], we take Ai to be a set of qk random

polynomials of the form wi + p, where each such p is an independently sampled

random polynomial of degree d from Fq[X1, . . . , Xk] for a suitable d = d(k).

Finally, with B = Fk
q , we define a bipartite graph G between A and B by joining

f ∈ A to x ∈ B if f(x) = 0.

While the random algebraic graphs above are quite easy to describe, their analysis is

far from simple; in particular, to prove our main results, we shall rely on the Lang–Weil

estimate [41], which is a consequence of the Riemann hypothesis for function fields

(but see [47] for a relatively elementary proof). Along the way, we shall prove a several

results about the zero sets of random polynomials over finite fields that may be of

independent interest. An illustrative example is the following probabilistic analogue of

Bézout’s theorem over finite fields.

Theorem 1.7 (Informal restatement of Theorems 4.3 and 4.4). For k, d ∈ N and

a prime power q ∈ N, let Z be the (random) number of common roots over Fk
q of k

independently chosen k-variate random Fq-polynomials of degree d. Then, as q → ∞,

we have

P[Z = dk] ≥ 1 − o(1)

(dk)!
,

as well as

P[Z > dk] = O(q−d).

To place these techniques in context, it is worth mentioning that the first traces of this

random algebraic method go back some way, to work of Matoušek [44] in discrepancy

theory, but it is the variant originating in [10] and developed further in [11, 21] that we

shall build upon in this paper.

1.2.2. Hardness of Approximating k-SetIntersection. The common starting point for

Theorems 1.5 and 1.6 is the Unique k-MaxCover problem defined in [36]. We refrain from

defining it here, but it is immediate from its definition that it can be easily reformulated

as the coloured version of k-SetIntersection, hereafter panchromatic k-SetIntersection. In

panchromatic k-SetIntersection, we are given k collections, each consisting of n subsets

of the universe [n], and the goal is to choose one set from each collection such that their

intersection size is maximise. From [36], it follows that assuming SETH (respectively

ETH), there is no nk−ε-time (respectively no(k)-time) algorithm that can approximate

panchromatic k-SetIntersection to an F (k) factor for any computable function F .
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It is easier to describe the PGC technique in terms of graphs, so we reformulate the

panchromatic k-SetIntersection problem as follows: given a bipartite graph H(X, Y )

where X = X1⊔· · ·⊔Xk corresponds to the k collections of sets and Y corresponds to the

universe (so |X1| = · · · = |Xk| = |Y | = n), the goal is to find (x1, . . . , xk) ∈ X1×· · ·×Xk

which has the largest sized common neighbourhood in Y . We also consider a (n, k, t, t/λ)-

panchromatic graph G(X,B) as guaranteed by our Theorem 1.2. Now, given G and

H as above, the PGC technique, roughly speaking, boils down to analyzing the graph

H∗(X, Y ×B) where if (x, b) ∈ Xi ×B is an edge in G and (x, y) ∈ Xi × Y is an edge

in H, then we have the edge (x, (y, b)) ∈ Xi × Y ×B in H∗.

In the completeness case, if the maximum panchromatic common neighbourhood

size in H was r, then the same set of vertices would have a common neighbourhood of

size t · r in H∗, whereas in the soundness case, if the maximum panchromatic common

neighbourhood size in H was s, then the maximum common neighbourhood size is at

most t ·s in H∗. From the soundness of the panchromatic graph, we know that if we pick

k vertices in X not all from different colour classes, then their common neighbourhood

is of size at most (t/λ) · |Y |. The results we desire then follow by setting λ appropriately,

and importantly noting that |Y | = O(r) in the hard instances given by [36]; recall that

the common neighbourhood problem on H∗ where we ignore the colour classes is the

k-SetIntersection problem.

Our composition technique using panchromatic graphs strictly improves on the

techniques introduced in [23, 37]. The PGC technique described above also improves

the inapproximability results of [37], albeit only in the lower order terms, and also

simplifies their hardness of approximation proof for the monochromatic maximum inner

product problem.

1.3. Organization of Paper. In Section 2, we formally define the problems and

hypotheses of interest in this paper. In Section 3, we carefully define panchromatic

and threshold graphs and state our main results about them. In Section 4, we prove

some important intermediate results that will be used to analyze our constructions

of panchromatic and threshold graphs. In Section 5, we give the construction of

panchromatic graphs and threshold graphs. In Section 6, we prove our fine-grained

inapproximability results for k-SetIntersection. Finally, in Section 7 we highlight a few

important open problems and research directions.

2. Preliminaries

Here, we formally define all the problems and hypotheses used in the paper. First,

we define the k-SAT problem and then define the two popular fine-grained hypotheses

concerning this problem.
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k-SAT problem. In the k-SAT problem, we are given a CNF formula φ over n variables

x1, . . . , xn where each clause contains at most k literals. Our goal is to decide if there

exist an assignment to x1, . . . , xn which satisfies φ.

In this paper, we require a fine-grained notion (of algorithms) in the complexity class

RP and a fine-grained notion of reverse unfaithful random (RUR) reductions [1, 45].

An FPT notion of such algorithms and reductions was introduced in [9] and the notion

of randomised fine-grained reduction was introduced in [13]. A promise problem Π is a

pair of languages (ΠYES,ΠNO) such that ΠYES ∩ ΠNO = ∅. A Monte Carlo algorithm

A is said to be a (one-sided) randomised algorithm for a (promise) problem Π if the

following hold.

Yes: For all x ∈ ΠYES, Pr[A(x) = 1] ≥ 1/2.

No: For all x ∈ ΠNO, Pr[A(x) = 0] = 1.

Moreover, we say that A runs in time T if the running time of A on every randomness

is upper bounded by T .

We start by recalling the exponential time hypothesis (ETH); see [31, 32, 50], for

example.

Hypothesis 2.1 (Exponential time hypothesis (ETH)). There exists ϵ > 0 such that

no (randomised) algorithm can solve 3-SAT on n variables in time O(2ϵn); moreover,

this holds even when restricted to formulae in which each variable appears in at most

three clauses.

We will also recall a stronger hypothesis called the strong exponential time hypothesis

(SETH); see [31, 32], for example.

Hypothesis 2.2 (Strong exponential time hypothesis (SETH)). For every ε > 0, there

exists k = k(ε) ∈ N such that no (randomised) algorithm can solve k-SAT on n variables

in time O(2(1−ε)n); moreover, this holds even when the number of clauses is at most

c(ε)n where c(ε) denotes a constant that depends only on ε.

In this paper, we prove tight running time lower bounds for k-SetIntersection (with

definitions to follow) assuming ETH by providing a fine-grained RUR reduction from

3-SAT to k-SetIntersection, such that YES instances of 3-SAT map to YES instances

of k-SetIntersection with high probability and NO instances of 3-SAT always map

to NO instances of k-SetIntersection. Using standard techniques, fine-grained RUR

reductions can be used to transform a Monte Carlo one-sided randomised algorithm

for k-SetIntersection into a Monte Carlo one-sided randomised algorithm for SAT (for

example, see [9]). Our SETH based lower bounds are proved similarly, except now

relying on k-SAT instead.

Next, we recall the MaxCover problem introduced in [14] which turned out to be the

centrepiece of many results in parameterise inapproximability.
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k-MaxCover problem. A k-MaxCover instance Γ consists of a bipartite graph G =

(V ⊔W,E) where V is partitioned into V = V1 ⊔ · · · ⊔ Vk and W is partitioned into

W = W1 ⊔ · · · ⊔ Wℓ. We refer to the Vi’s and Wj’s as left super-nodes and right

super-nodes of Γ respectively. A solution to k-MaxCover is called a labeling, which is a

subset of vertices v1 ∈ V1, . . . , vk ∈ Vk. We say that a labeling v1, . . . , vk covers a right

super-node Wi, if there exists a vertex wi ∈ Wi which is a common neighbour of all of

v1, . . . vk. We denote by MaxCover(Γ) the maximal fraction of right super-nodes that

can be simultaneously covered, i.e.,

MaxCover(Γ) =
1

ℓ

(
max

labeling v1,...,vk
|{i ∈ [ℓ] | Wi is covered by v1, . . . vk}|

)
.

Given an instance Γ(G, r, s) of the k-MaxCover problem as input, the task of distin-

guishing between the following two cases.

Completeness: MaxCover(Γ) ≥ r.

Soundness: MaxCover(Γ) ≤ s.

We also define the unique MaxCover problem, which is just the MaxCover problem with

the following additional structure: for every labeling S ⊂ V and any right super-node

Wi, there is at most one vertex in Wi which is a common neighbour of all vertices nodes

in S.

Next, we define the two central computational problems of interest in this paper,

namely, k-SetIntersection and its coloured variant, panchromatic k-SetIntersection.

k-SetIntersection problem. A k-SetIntersection instance Γ consists of a collection C of

n subsets of a universe U (typically [n]) and integer parameters r > s. Given such an

input Γ(C, r, s), the goal is to distinguish between the following two cases.

Completeness: There exist k sets Si1 , . . . , Sik in C such that∣∣∣∣ ∩j∈[k]Sij

∣∣∣∣ ≥ r.

Soundness: For every k-tuple of sets (Si1 , . . . , Sik) in C, we have∣∣∣∣ ∩j∈[k]Sij

∣∣∣∣ ≤ s.

The panchromatic k-SetIntersection problem is the following coloured version of the

k-SetIntersection problem.

Panchromatic k-SetIntersection problem. A panchromatic k-SetIntersection instance

Γ consists of k collections C1, . . . , Ck each containing n subsets of a universe U and

integer parameters r > s. In the panchromatic k-SetIntersection problem, given input

Γ(C1, . . . , Ck, r, s), the goal is to distinguish between the following two cases.

12



Completeness: There exist k sets Si1 , . . . , Sik in C1 × · · · × Ck such that∣∣∣∣ ∩j∈[k]Sij

∣∣∣∣ ≥ r.

Soundness: For every k-tuple of sets (Si1 , . . . , Sik) in C1 × · · · × Ck, we have∣∣∣∣ ∩r∈[k]Sir

∣∣∣∣ ≤ s.

An important quantity associated with an instance Γ of panchromatic k-SetIntersection,

the monochromatic number z(Γ) of Γ, is defined by

z(Γ) = max
X⊂C1∪···∪Ck

|X|=k

∣∣∣∣∣ ⋂
S∈X

S

∣∣∣∣∣
The following connection between the unique k-MaxCover problem and the panchro-

matic k-SetIntersection problem will prove useful.

Proposition 2.3. Every unique MaxCover instance

Γ(V = V1 ⊔ · · · ⊔ Vk,W = W1 ⊔ · · · ⊔Wℓ, E, r, s)

is also a panchromatic k-SetIntersection instance Γ′(C1, . . . , Ck, r′, s′) over universe U
with monochromatic number z where we have

(1) |U| = |W |,
(2) |Ci| = |Vi| for all i ∈ [k],

(3) r′ = rℓ,

(4) s′ = sℓ, and

(5) z ≤ |W |.

Proof. For every w ∈ W , we create a universe element uw ∈ U . For every v ∈ Vi, we

create a set Sv ∈ Ci, and we include uw in Sv if there is an edge between w and v in

Γ. Note that w is a common neighbour of (v1, . . . , vk) ∈ V1 × · · ·Vk if and only if uw is

in ∩i∈[k]Svi . Furthermore, note that since Γ is an instance of unique k-MaxCover, the

quantity ℓ ·MaxCover(Γ) is simply the maximum number of common neighbours of any

k vertices in V subject to picking one vertex from each Vi; the result follows. □

3. Extremal bipartite graphs

Here, we define panchromatic and threshold graphs a little more carefully, and also

state precisely what our constructions accomplish.

We start with panchromatic graphs.
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Definition 3.1 ((n,m, k, t, s, p)-panchromatic graph). A bipartite graph G(A,B) where

A is partitioned into k parts A1, . . . , Ak with |A1| = · · · = |Ak| = n and |B| ≤ m

satisfying the following pair of conditions.

Completeness: For every k-set X ⊂ A for which Ai ∩ X ̸= ∅ for all i ∈ [k], the

number of common neighbours of X in B is at most t, and a p-fraction of such

k-sets have exactly t common neighbours in B.

Soundness: For every set X ⊂ A of size k for which Ai ∩X is empty for some i ∈ [k],

the number of common neighbours of X in B is at most s.

Next, we turn to threshold graphs.

Definition 3.2 ((n,m, k, t, s, p)-threshold graph). A bipartite graph G(A,B) with

|A| = n and |B| ≤ m satisfying the following pair of conditions.

Completeness: For a p-fraction of k-sets of vertices X ⊂ A, the number of common

neighbours of X in B is at least t.

Soundness: For every (k+1)-set of vertices X in A, the number of common neighbours

of X in B is at most s.

We show that both types of graphs may be constructed with reasonable dependencies

between the various parameters involved. Both constructions are easy to describe, with

the edge sets of the graphs in question coming from the varieties cut out by (carefully

chosen) random polynomials; the analysis of these constructions is far from trivial

however, and relies on some amount of machinery from algebraic geometry.

For panchromatic graphs, we have the following result which, in particular, ensures

that such graphs exist.

Theorem 3.3. For each k ∈ N and any integer λ > 1, there is a strictly increasing

sequence {ni ∈ N}i∈N such that for every i ∈ N, there exists a distribution Dk,λ,ni
over

bipartite graphs on (k + 1)ni vertices with the following properties.

(1) A graph can be sampled from Dk,λ,ni
in Ok(n2

i ) time using Ok(ni log ni) random

coins.

(2) For G ∼ Dk,λ,ni
, writing D = λ(k2 + 2), we have

P
(
G is a (ni, ni, k,D

k, Dk/λ, (4(Dk)!)−1)-panchromatic graph
)
≥ (4(Dk)!)−1.

Moreover, for every n ∈ N, there exists i ∈ N such that n ≤ ni ≤ 2kn.

For threshold graphs, we have the following analogous result, which again, in particu-

lar, ensures that such graphs exist.

Theorem 3.4. For each k ∈ N, there is a strictly increasing sequence {ni ∈ N}i∈N
such that for every i ∈ N, there exists a distribution Dk,ni

over bipartite graphs on 2ni

vertices with the following properties.
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(1) A graph can be sampled from Dk,ni
in Ok(n2

i ) time using Ok(ni log ni) random

coins.

(2) For G ∼ Dk,ni
, writing d = (k + 1)2 + 1, we have

P
(
G is a (ni, ni, k, n

1/(k+1)
i /2, dk+1, 1)-threshold graph

)
≥ 1 − o(1).

Moreover, for every n ∈ N, there exists i ∈ N such that n ≤ ni ≤ 2kn.

4. Zero sets of Random Polynomials

The aim of this section is to collect together the requisite tools from algebraic geometry

that we require to prove Theorems 3.3 and 3.4. While we have attempted to keep the

presentation self-contained for the most part, some of the arguments (unavoidably)

assume some familiarity with algebraic geometry; for more background, we refer the

reader to [48, 26].

A variety over an algebraically closed field F is a set of the form

V = {x ∈ Fk
: f1(x) = · · · = ft(x) = 0}

for some collection of polynomials f1, . . . , ft : F
k → F; when we wish to make these

polynomials explicit, we write V (f1, . . . , ft) for V . A variety is said to be irreducible if

it cannot be written as the union of two proper subvarieties. The dimension dimV of a

variety V is then the maximum integer d such that there exists a chain of irreducible

subvarieties of V of the form

∅ ⊊ V0 ⊊ V1 ⊊ V2 ⊊ · · · ⊊ Vd ⊂ V,

where V0 consists of a single point. The degree of an irreducible variety of dimension d is

the number of intersection points of the variety with d hyperplanes in general position,

and for an arbitrary variety V , we define its degree deg V to be the sum of the degrees

of its irreducible components.

We need Bézout’s theorem in the following form; for a proof, see [26], for example.

Lemma 4.1. For a collection of polynomials f1, . . . , fk : Fk → F, if the variety

V = {x ∈ Fk
: f1(x) = · · · = fk(x) = 0}

has dimV = 0, then

|V | ≤
k∏

i=1

deg(fi).

Moreover, for a collection of polynomials f1, . . . , ft : F
k → F, the variety

V = {x ∈ Fk
: f1(x) = · · · = ft(x) = 0}

has at most
∏t

i=1 deg(fi) irreducible components.
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In what follows, we let q be a prime power and work with polynomials over Fq, where

Fq is the finite field of order q. All varieties below are over A, where A = Fq is the

algebraic closure of Fq, unless explicitly specified otherwise.

We let Fq[X1, . . . , Xk]≤d be the subset of Fq[X1, . . . , Xk] of polynomials in k variables

of degree at most d, i.e., the set of linear combinations over Fq of monomials of the form

Xa1
1 . . . Xak

k with
∑k

i=1 ai ≤ d. Let us note that one may sample a uniformly random

element of Fq[X1, . . . , Xk]≤d by taking the coefficients of the monomials above to be

independent random elements of Fq.

The first lemma we state estimates the probability of a randomly chosen polynomial

passing through each of m distinct points; see [10, 21] for similar statements.

Lemma 4.2. Suppose that q >
(
m
2

)
and d ≥ m − 1. Let f be a uniformly random

k-variate polynomial chosen from Fq[X1, . . . , Xk]≤d.

(1) If x1, . . . , xm are m distinct points in Fk
q , then

P (f(xi) = 0 for all i = 1, . . . ,m) = q−m.

(2) If x1, . . . , xm are m distinct points in Ak, then

P (f(xi) = 0 for all i = 1, . . . ,m) ≤ q−m.

Proof. We prove the first statement below, and later outline the proof of the second

statement.

Let xi = (xi,1, . . . , xi,k) for each i = 1, . . . ,m. We choose elements a2, . . . , ak ∈ Fq

such that xi,1 +
∑k

j=2 ajxi,j is distinct for all i = 1, . . . ,m. To see that this is possible,

note that there are exactly
(
m
2

)
equations

xi,1 +
k∑

j=2

ajxi,j = xi′,1 +
k∑

j=2

ajxi′,j,

each with at most qk−2 solutions (a2, . . . , ak). Therefore, since the total number of

choices for (a2, . . . , ak) is qk−1 and qk−1 > qk−2
(
m
2

)
, we can make an appropriate choice.

We now consider Fq[Z1, . . . , Zk]≤d, the set of polynomials of degree at most d in

the variables Z1, . . . , Zk, where Z1 = X1 +
∑k

j=2 ajXj and Zj = Xj for all 2 ≤ j ≤ k.

Since this change of variables is an invertible linear map, Fq[Z1, . . . , Zk]≤d is identical to

Fq[X1, . . . , Xk]≤d. It will therefore suffice to show that a randomly chosen polynomial

from Fq[Z1, . . . , Zk]≤d passes through all of the points z1, . . . , zm corresponding to

x1, . . . , xm with probability exactly q−m. For this, we will use the fact that, by our

choice above, zi,1 ̸= zi′,1 for any 1 ≤ i < i′ ≤ m.

For any f in Fq[Z1, . . . , Zk]≤d, we may write f = g+h, where h contains all monomials

of the form Zj
1 for j = 0, 1, . . . ,m − 1 and g contains all other monomials. For any

fixed choice of g, there is, by Lagrange interpolation, exactly one choice of h with
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coefficients in Fq such that f(zi) = 0 for all i = 1, . . . ,m, namely, the unique polynomial

of degree at most m − 1 which takes the value −g(zi) at zi,1 for all i = 1, 2, . . . ,m,

where uniqueness follows from the fact that the zi,1 are distinct. Since this is out of a

total of qm possibilities, we see that the probability of f passing through all of the zi is

exactly q−m, as required.

For the second statement, we may argue identically, now working over A and noting

that the unique polynomial of degree at most m− 1 which takes the value −g(zi) at

zi,1 for all i = 1, 2, . . . ,m may now have coefficients in A as opposed to Fq, whence we

get an inequality as opposed to the equality in the first statement. □

The next result we prove allows us to upper bound the size of the Fq-variety cut out

by multiple random polynomials.

Theorem 4.3. Fix t, k ∈ N with t ≤ k, and fix positive integers d1, . . . , dt ∈ N.

Independently for each i ∈ [t], sample fi from Fq[X1, . . . , Xk]≤di uniformly at random.

Then

P (dimV (f1, . . . , ft) > k − t) ≤ Ctq
−min(d1,...,dt) (1)

for some constant Ct = Ct(d1, . . . , dk) > 0. In particular, if t = k, then

P

(∣∣V (f1, . . . , fk) ∩ Fk
q

∣∣ > k∏
i=1

di

)
≤ Cq−min(d1,...,dk)

for some constant C = C(d1, . . . , dk) > 0.

Proof. For terminology not defined here, and standard facts about dimension that we

call upon without proof, see the first and sixth chapter of [48].

To establish (1) it suffices show that

P (dimV (f1, . . . , ft−1, ft) > k − t | dimV (f1, . . . , ft−1) = k − t + 1) ≤ q−dt

t−1∏
i=1

di (2)

since (1) follows from (2) by induction on t.

Now, sample polynomials f1, . . . , ft−1, and assume that the variety U = V (f1, . . . , ft−1)

is of dimension d− t + 1. By Lemma 4.1, U has at most d1 · · · dt−1 components, which

we name U1, . . . , Um. Note that since dimUi ≤ dimU = d− t+ 1, and Ui is intersection

of t− 1 hypersurfaces, each Ui is of dimension exactly d− t + 1. For each Ui, pick dt
distinct points xi,1, . . . , xi,dt on Ui.

Since ft is a random polynomial of degree dt, from Lemma 4.2 we infer that

P (Ui ⊂ V (ft)) ≤ P (ft(xi, j) = 0 for all j = 1, . . . , dt) ≤ q−dt
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for each 1 ≤ i ≤ m. Hence, by the union bound

P (dimV (f1, . . . , ft−1, ft) > k − t) ≤
m∑
i=1

P (Ui ⊂ V (ft)) ≤ q−dt

t−1∏
i=1

di.

proving (2), and hence (1).

If t = k, then

P

(∣∣V (f1, . . . , fk) ∩ Fk
q

∣∣ > k∏
i=1

di

)
≤ P

(
|V (f1, . . . , fk)| >

k∏
i=1

di

)
≤ P(dimV (f1, . . . , fk) > 0)

≤ Ckq
−min(d1,...,dk),

where the first inequality is trivial, the second is a consequence of Lemma 4.1, i.e.,

Bézout’s theorem, and the third is just (1) for t = k. □

Finally, we need a way to lower bound the size of the Fq-variety cut out by multiple

random polynomials, and the following result gives us what we need. While the

arguments thus far have been mostly elementary, this result relies on some nontrivial

rigidity properties of varieties over finite fields.

Theorem 4.4. Fix positive integers k, d1, . . . , dk ∈ N. Independently for each i ∈ [k],

sample fi from Fq[X1, . . . , Xk]≤di uniformly at random. Then

P

(∣∣V (f1, . . . , fk) ∩ Fk
q

∣∣ =
k∏

i=1

di

)
≥ 1 − cq−1/2(∏k

i=1 di

)
!

for some constant c = c(d1, . . . , dk) > 0.

Proof. For terminology not defined here, and standard results that we quote without

proof, see the first three chapters of [48].

We set ri =
(
k+di
k

)
for 1 ≤ i ≤ k, write r⃗ = (r1, . . . , rk) and |r⃗| for r1 + · · · + rk.

For 1 ≤ i ≤ k, we identify Ari with A[X]≤di , i.e., the space of polynomials in k

variables of degree at most di with coefficients in A. For brevity, we write Ar⃗ in place

of Ar1 × · · · × Ark (and Fr⃗
q in place of Fr1

q × · · · × Frk
q ), and to distinguish the space

where we evaluate our polynomials from these spaces of polynomials themselves, we set

Y = Ak.

Also, for f = (f1, . . . , fk) ∈ Ar⃗, we abbreviate the variety V (f1, . . . , fk) ⊂ Y by V (f).

Now, set t = d1 · · · dk and call f ∈ Fr⃗
q good if the variety V (f) is zero-dimensional and

has t distinct points that are defined over Fq. In this language, note that we are trying

to show, for large q, that roughly 1/t! of all the points in Fr⃗
q are good. To this end, we

set

W = {(f , y1, . . . , yt) ∈ Ar⃗ × Y t : yj ∈ V (f) for all j = 1, . . . , t},
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and deduce the result from the following claim.

Claim 4.5. Suppose that (f∗,y∗) is a simple point of W such that f∗ is good and the

coordinates of y∗ = (y∗1, . . . , y
∗
t ) are all distinct, and that for generic f , the variety V (f)

is zero-dimensional of degree t. Then there are at least

1 − cq−1/2

t!
q|r⃗|

good points in Fr⃗
q, for some constant c = c(d1, . . . , , dk) > 0.

Proof. Since (f∗,y∗) is simple, the irreducible component of W containing it is unique.

Let W1 be the irreducible component of W containing (f∗,y∗) and note that dimW1 =

dimW . Since the variety V (f) is generically zero-dimensional of degree t, the fibres

Wf = {y ∈ Y t : (f ,y) ∈ W} of W are generically finite, whence we get dimW1 =

dimW = |r⃗|.
Let {W1, . . . ,Wm} be the orbit of W1 under the action of the Frobenius endomorphism.

Since W is defined over Fq, and hence invariant under this action, each such Wi is an

irreducible component of W . Note that (f∗,y∗) ∈ Wi for each i ∈ [m], so if m > 1, this

contradicts the uniqueness of the component containing (f∗,y∗). Thus, m = 1, i.e., W1

is defined over Fq.

Since (f∗,y∗) ∈ W1, the variety W1 is not contained in

U =
⋃
i ̸=j

{(f ,y) : yi = yj}.

Hence, W1∩H is a proper subvariety of W1, and therefore contains OdegW1(q
|r⃗|−1) points

by the Schwartz–Zippel lemma for varieties [12, Lemma 14]. Since W1 is defined over Fq

and is irreducible over A, the Lang–Weil estimate [41] implies that W1 contains at least

qdimW1
(
1 −OdegW1(q

−1/2)
)

points defined over Fq. Hence, W1 \H contains at least

q|r⃗|
(
1 −OdegW1(q

−1/2) −OdegW1(q
−1)
)

= q|r⃗|
(
1 −OdegW1(q

−1/2)
)

points defined over Fq as well. Since each good point f corresponds to exactly t! points

of W1 \H defined over Fq, the result follows. □

To finish, it remains to show that the simplicity and genericity hypotheses in Claim 4.5

are satisfied.

For 1 ≤ i ≤ k, pick an arbitrary set Ai ⊂ Fq of size di. Define f∗ = (f ∗
1 , . . . , f

∗
k ) by

setting f ∗
i =

∏
a∈Ai

(Xi − a) for 1 ≤ i ≤ k and let y∗ be the vector of length d1 · · · dk
whose coordinates are all the elements of A1 × · · · × Ak.

19



To prove that (f∗,y∗) is simple, consider the tangent space of W at (f∗,y∗), which we

denote T∗W . An element (δf , δy) ∈ Ar⃗ × Y t is in T∗W if it is a solution to the system

of equations

δfi(y
∗
j ) +

∂fi
∂xi

(y∗j )(δyj)i = 0

for all i ∈ [k] and j ∈ [t]. From these equations, it is clear that for every δf ∈ Ar⃗ there is a

unique δy such that (δf , δy) is in the tangent space. Hence dimT∗W = dimAr⃗ = dimW ,

so it follows that (f∗,y∗) is simple.

Next, the statement that for generic f , the variety V (f) (is zero-dimensional and)

has at most t = d1 · · · dk points is the generalise Bézout’s theorem. The construction of

(f∗,y∗) above shows that V (f) generically has at least t points as well.

We have established the hypotheses under which Claim 4.5 applies; the result follows.

□

5. Constructions of panchromatic graphs and threshold graphs

Here, we shall use the algebraic machinery we have developed to give the proofs of

Theorems 3.3 and 3.4

5.1. Panchromatic graphs. First, we give the construction of panchromatic graphs

using random polynomials.

Proof of Theorem 3.3. Let q be a prime power, and let Fq be the finite field of order

q. We shall assume that k ∈ N and λ > 1 are fixed, and that q is sufficiently large as

a function of k. Finally, let us fix d = k2 + 2, D = λd and n = qk. In the rest of the

proof, all asymptotic notation will be in the limit of q → ∞.

We shall construct a panchromatic graph between two sets A and B as follows. First,

choose polynomials w1, . . . , wk ∈ Fq[X1, . . . , Xk]≤D independently and uniformly at

random. Next, for i ∈ [k], let Ai be a set of n vertices each associated with a polynomial

wi + p, where p ∈ Fq[X1, . . . , Xk]≤d is chosen uniformly at random and independently

for each vertex; note here that the distribution of the resulting polynomial wi + p is

also uniform on Fq[X1, . . . , Xk]≤D. Let A be the disjoint union ⊔k
i=1Ai, and set B = Fk

q ,

so that |A| = kqk and |B| = qk. Finally, let G be the (random) graph between A and B

where a polynomial f ∈ A is joined to a point x ∈ B if f(x) = 0. We shall show that

G has the requisite properties with probability at least (4(Dk)!)−1.

First, we count the number of k-sets U = {f1, f2, . . . , fk} with fi ∈ Ai for which the

size of the common neighbourhood N(U) in G exceeds Dk. For such a set U , observe

that N(U) is the set of Fq-solutions of k polynomials from Fq[X1, . . . , Xk]≤D chosen

independently and uniformly at random, so by Theorem 4.3, we have

P(|N(U)| > Dk) = O(q−D).
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Writing Z1 for the number of such k-sets, we get

E[Z1] = O
(
nkq−D

)
= O

(
qk

2

q−λ(k2+2)
)

= O(q−2) ≤ 1/q. (3)

Next, we count the number of k-sets U = {f1, f2, ...., fk} with fi ∈ Ai for i ∈ [k]

for which size of the common neighbourhood N(U) in G is exactly Dk. As above, for

such a set U , observe that |N(U)| is distributed as the number of Fq-solutions of k

polynomials from Fq[X1, . . . Xk]≤D chosen independently and uniformly at random, so

by Theorem 4.4, we have

P(|N(U)| = Dk) ≥ (2(Dk)!)−1.

Writing Z2 for the number of such k-sets, we get

E[Z2] ≥ nk(2(Dk)!)−1. (4)

Finally, we count the number of k-sets U ⊂ A with Ai∩U being empty for some i ∈ [k]

for which the size of the common neighbourhood N(U) in G exceeds dDk−1 = Dk/λ.

For such a set U , observe that |N(U)| is distributed as the number of Fq-solutions of

a collection of k random polynomials. To understand the distribution of this random

collection of polynomials, for each i ∈ [k] for which U ∩ Ai ̸= ∅, we pick one element

U ∩ Ai and subtract that from every other element of U ∩ Ai; observe that by doing

so, we get a set {g1, . . . , gk} of independent random polynomials, each uniform over

either Fq[X1, . . . Xk]≤d or Fq[X1, . . . , Xk]≤D, and at least one of which is uniform over

Fq[X1, . . . Xk]≤d. Since |N(U)| is then number of Fq-solutions of {g1, . . . , gk}, we deduce

from Theorem 4.3 that

P(|N(U)| > dDk−1) = O(q−d).

Writing Z3 for the number of such k-sets, we get

E[Z3] = O
(
(kn)kq−d

)
= O

(
qk

2

q−k2−2
)

= O(q−2) ≤ 1/q. (5)

We combine (3), (4) and (5) as follows. Clearly, E[Z1 + Z3] = o(1), so by Markov’s

inequality, both Z1 and Z2 are zero with probability 1 − o(1). Finally, since Z2 is

trivially at most nk and E[Z2] ≥ nk(2(Dk)!)−1, it is easily checked that

P
(
Z2 ≥ nk(4(Dk)!)−1

)
≥ (2(Dk)!)−1.

By the union bound, we see that G is a (n, n, k,Dk, Dk/λ, (4(Dk)!)−1)-panchromatic

graph with probability at least (4(Dk)!)−1, completing the proof. □

5.2. Threshold graphs. Next, we give the construction of threshold graphs, once

again using random polynomials.
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Proof of Theorem 3.4. As before, let q be a prime power, and let Fq be the finite field

of order q. We shall assume that k ∈ N is fixed, and that q is sufficiently large as a

function of k. Let d = (k + 1)2 + 1 and n = qk+1. We shall construct a threshold graph

between two sets A and B both of size qk+1. In the rest of the proof, all asymptotic

notation will be in the limit of q → ∞.

We construct A by sampling qk+1 random polynomials from Fq[X1, . . . , Xk+1]≤d

uniformly and independently, set B = Fk+1
q , and define a (random) bipartite graph G

between A and B by joining f ∈ A to x ∈ B if f(x) = 0. We shall show that G has the

requisite properties with probability 1 − o(1).

First, we consider the soundness properties of G. Fix a set U ⊂ A of size k + 1.

The size of its common neighbourhood N(U) in G is distributed as the number of

Fq-solutions of k + 1 polynomials from Fq[X1, . . . Xk+1]≤d chosen independently and

uniformly at random, so by Theorem 4.3, we have

P(|N(U)| > dk+1) = O(q−d).

Call a set of k + 1 vertices of G bad if their common neighbourhood has more than dk+1

vertices. The number Z1 of bad (k + 1)-sets then satisfies

E[Z1] = O

((
n

k + 1

)
q−d

)
= O

((
qk+1

k + 1

)
q−(k+1)2−1

)
= O(q−1) = o(1). (6)

Next, we turn to the completeness properties of G. Fix a set U ⊂ A of size k. For

v ∈ B, put I(v) = 1 if f(v) = 0 for all f ∈ U , and I(v) = 0 if f(v) ̸= 0 for some f ∈ U .

For 1 ≤ m ≤ d and distinct v1, . . . , vm ∈ B, we have

P (I(v1) · · · I(vm) = 1) =
∏
f∈U

P (f(vj) = 0 for all j = 1, . . . ,m) = q−mk,

where the first equality is by independence, and the second is by Lemma 4.2. Small

moments of the random variable Z = |N(U)| are now easily computed: for 1 ≤ m ≤ d,

we have

E [Zm] = E

[(∑
v∈B

I(v)

)m]

= E

[ ∑
v1,...,vm∈B

I(v1) · · · I(vm)

]
=

∑
v1,...,vm∈B

E[I(v1) · · · I(vm)]

=
m∑
r=1

(
qk+1

r

)
Mr,mq

−rk, (7)
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where Mr,m is the number of surjective functions from an m-element set onto an r-

element set. Combining (7) with standard identities for the Stirling numbers of the

second kind, we get that

E
[
(Z − E[Z])d

]
= O(q) and E[Z] = q,

whence it follows that

P(Z < q/2) ≤ P(|Z − E[Z]| < q/2) ≤
E
[
(Z − E[Z])d

]
(q/2)d

= O
(
q1−d

)
.

Call a set of k vertices of G bad if their common neighbourhood has fewer than q/2

vertices. The number Z2 of bad k-sets then satisfies

E[Z2] = O

((
n

k

)
q1−d

)
= O

((
qk+1

k

)
q−(k+1)2

)
= O(q−1−k) = o(1). (8)

Combining (6) and (8), we see that

E[Z1 + Z2] = o(1);

it follows from Markov’s inequality that Z1 + Z2 = 0 (and hence Z1 = Z2 = 0) with

probability 1−o(1), so G is a (qk+1, qk+1, k, q/2, dk+1, 1)-threshold graph with probability

1 − o(1), completing the proof. □

We remark in passing that a quantitatively weaker version of Theorem 3.4 that utilises

less randomness can alternately be proved by building a bipartite graph between two

copies of Fk+1
q by choosing a single random polynomial f in 2k + 2 variables of degree

2k2 and joining pairs of points x, y ∈ Fk+1
q for which f(x, y) = 0; however, the analysis

of this construction relies on more machinery (and in particular, on the Lang–Weil

estimate), and furthermore, yields ineffective parameter dependencies.

6. Time lower bounds for k-SetIntersection

Armed with our graph constructions, we are now ready to prove the formal versions

of Theorems 1.5 and 1.6. However, before we jump into these proofs, we need to lay

out the PGC framework.

6.1. Panchromatic graph composition. Given a panchromatic problem and a

panchromatic graph, we would like to compose them in some way such that we obtain

a monochromatic version of the panchromatic problem having the property that every

optimal solution of the monochromatic version can be traced back to an optimal solution

of the panchromatic version. When we talk about the PGC technique, we use it as an

umbrella term for this composition operation; typically, the composition is a product

operation, as below for the k-SetIntersection problem.
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Theorem 6.1 (Panchromatic graph composition). There is an algorithm that given as

input

(1) an instance Γ(C1, . . . , Ck, r, s) of panchromatic k-SetIntersection over universe U
with monochromatic number z = z(Γ), and

(2) an (n,m,k,t,w,p)-panchromatic graph H(A = A1 ⊔ · · · ⊔ Ak, B) with |Aj| = |Cj|
for all j ∈ [k],

then outputs an instance Γ′(C ′, rt,max(st, zw)) of k-SetIntersection over universe U ′

such that the following hold.

Size: |C ′| = |C1| + · · · + |Ck| and |U ′| = |U||B|.
Completeness: If there exists a k-tuple of sets (Si1 , . . . , Sik) in C1 × · · · × Ck such that∣∣∣∣∣∣

⋂
j∈[k]

Sij

∣∣∣∣∣∣ ≥ r,

then with probability p, there exist k sets S ′
i1
, . . . , S ′

ik
in C ′ such that∣∣∣∣∣∣

⋂
j∈[k]

S ′
ij

∣∣∣∣∣∣ ≥ rt.

Soundness: If for every k-tuple of sets (Si1 , . . . , Sik) in C1 × · · · × Ck we have∣∣∣∣∣∣
⋂
j∈[k]

Sij

∣∣∣∣∣∣ ≤ s,

then for every k sets S ′
i1
, . . . , S ′

ik
in C ′ we have∣∣∣∣∣∣

⋂
j∈[k]

S ′
ij

∣∣∣∣∣∣ ≤ max(st, zw).

Running Time: The reduction runs in Õ(|C ′||U ′|) time.

Proof. We set U ′ = U × B, and for every j ∈ [k], take πj : Cj → Aj to be a uniformly

random one-to-one mapping. Additionally, for every j ∈ [k], let ζj : Cj → 2U ′
be a

function which maps a set in Cj to a subset of U ′ in C ′ in the following way: for every

S ∈ Cj, we include (u, b) ∈ U ×B in ζj(S) if and only if u ∈ S and (πj(S), b) ∈ E(H).

First, let us suppose that there exists a k-tuple of sets (Si1 , . . . , Sik) in C1 × · · · × Ck
such that ∣∣∣∣∣∣

⋂
j∈[k]

Sij

∣∣∣∣∣∣ ≥ r.
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Consider the k-tuple of vertices (π1(Si1), . . . , πk(Sik)) in A1 × · · · ×Ak. Since π1, . . . , πk

were picked independently and uniformly at random, the aforementioned k-tuple of

vertices in A is uniformly random, and thus from the completeness of the panchromatic

graph, there exists, with probability p, a set of t vertices in B, denoted by B′, which

are all common neighbours of (π1(Si1), . . . , πk(Sik)). For u ∈ ∩j∈[k]Sij and b ∈ B′, we

clearly have (u, b) ∈ ζj(Sij), or in other words,∣∣∣∣∣∣
⋂
j∈[k]

ζj(Sij)

∣∣∣∣∣∣ ≥ r|B′| ≥ rt.

Next, let us suppose that for every k-tuple of sets (Si1 , . . . , Sik) in C1 × · · · × Ck, we

have ∣∣∣∣∣∣
⋂
j∈[k]

Sij

∣∣∣∣∣∣ ≤ s.

For the sake of contradiction, let there be k sets S ′
i1
, . . . , S ′

ik
in C ′ such that∣∣∣∣∣∣

⋂
j∈[k]

S ′
ij

∣∣∣∣∣∣ > max(st, zw).

By our construction of C ′, there exists ℓj ∈ [k] and Sij ∈ Cℓj such that ζℓj (Sij ) = S ′
ij

for

every j ∈ [k]. Let D = {ℓj | j ∈ [k]}.

First, suppose that |D| = k. From the completeness of the panchromatic graph, we

see that the set of common neighbours of (πℓ1(Si1), . . . , πℓk(Sik)) in B, denoted by B′,

is of size at most t. It follows that∣∣∣∣∣∣
⋂
j∈[k]

S ′
ij

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣
⋂
j∈[k]

Sij

∣∣∣∣∣∣ · |B′| ≤ st,

which is a contradiction. Next, suppose that |D| < k. By the soundness of the

panchromatic graph, the set of common neighbours of (πℓ1(Si1), . . . , πℓk(Sik)) in B,

denoted by B′, is of size at most w. It follows that∣∣∣∣∣∣
⋂
j∈[k]

S ′
ij

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣
⋂
j∈[k]

Sij

∣∣∣∣∣∣ · |B′| ≤ zw,

where z is the monochromatic number of Γ, again leading to a contradiction.

Finally, from the construction of Γ′, the claim on the runtime follows immediately;

this completes the proof. □
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6.2. SETH-based Time Lower Bound. In this subsection, we prove the following

result.

Theorem 6.2. Let F : N → N be any computable increasing function. Assuming SETH,

for every ε > 0 and integer k > 1, no randomised O(nk(1−ε))-time algorithm can decide

every instance Γ(C, r, r/F (k)) of k-SetIntersection over universe [n1+o(1)] with |C| = n.

Our proof builds on the following SETH based lower bound for gap k-MaxCover

proved in [36].

Theorem 6.3. Let F : N → N be any computable increasing function. Assuming SETH,

for every ε > 0 and integer k > 1, no randomised O(nk(1−ε))-time algorithm can decide

every instance Γ(G = (V ⊔W,E), 1, 1/F (k)) of Unique k-MaxCover, even when

(1) V = V1 ⊔ · · · ⊔ Vk with |Vj| = n for all j ∈ [k], and

(2) W = W1⊔· · ·⊔Wℓ with |Wi| = Ok,ε(1) for all j ∈ [ℓ], where ℓ = (log n)Ok(1). □

We are now ready for the proof of Theorem 6.2.

Proof of Theorem 6.2. The case k = 2 was already proved in [37], so we assume that

k > 2. Fix F : N → N as in the theorem, and suppose, for some fixed ε > 0, that there

is a randomised O(nk(1−ε))-time algorithm that can decide every instance Γ(C, r, r/F (k))

of k-SetIntersection over universe [n1+o(1)] with |C| = n. We claim that this algorithm

can be used to solve every instance Γ′(G = (V ⊔W,E), 1, 1/F (k)) of k-MaxCover in

time O(nk(1−ε/2)) where

(1) V = V1 ⊔ · · · ⊔ Vk with |Vj| = n for all j ∈ [k], and

(2) W = W1 ⊔ · · · ⊔Wℓ with |Wi| = Ok,ε(1) for all j ∈ [ℓ], where ℓ = (log n)Ok(1),

contradicting Theorem 6.3.

Fix an instance Γ′(G = (V ⊔W,E), 1, 1/F (k)) of k-MaxCover as above. By applying

Proposition 2.3 to Γ′, we obtain an instance

Γ′′(C1, . . . , Ck, ℓ, ℓ/F (k))

of panchromatic k-SetIntersection over a universe of size Oε((log n)Ok(1)) with monochro-

matic number bounded above by ck,εℓ for some ck,ε depending only on k and ε.

Put m =
√
n, λ = ck,εF (k), D = λ(k2 + 2), and choose i∗ ∈ N in Theorem 3.3 such

that m ≤ ni∗ ≤ 2km.

We sample w = Ω̃(4(Dk)!) many graphs G1, . . . , Gw from Dk,λ,ni∗ in time Ok(n). By

Theorem 3.3, we know that with high probability one of these graphs, say G∗, is a

panchromatic graph with parametrisation

(ni∗ , ni∗ , k,D
k, Dk/λ, (4(Dk)!)−1),
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and we can find it in time wnk+1
i∗ = Ok(nk/2+1). We arbitrarily delete ni∗ −m vertices

in each colour class of G∗ to make it a panchromatic graph with parametrisation

(m,ni∗ , k,D
k, Dk/λ, (4(Dk)!)−1).

For every i ∈ [k], arbitrarily equipartition Ci into C1
i , . . . , Cm

i . For every (t1, . . . , tk) ∈
[m]k, we consider the instance

Γ′′
(t1,...,tk)

(Ct1
1 , . . . , C

tk
k , ℓ, ℓ/F (k))

of panchromatic k-SetIntersection obtained from Γ′′ above; each such instance is also

clearly defined over a universe of size Oε((log n)Ok(1)) and has monochromatic number

bounded above by ck,εℓ. For each such (t1, . . . , tk) ∈ [m]k, we apply Theorem 6.1 to

Γ′′
(t1,...,tk)

using G∗ to thus obtain an instance

Γ(t1,...,tk)(C, ℓD
k, (ℓDk)/F (k))

of k-SetIntersection over a universe U , with |U| = m(log n)Ok(1) and |C| = mk, in time

Õ(n1+o(1)).

In summary, if Γ′ is complete, then there exists (t1, . . . , tk) ∈ [m]k such that Γ′′
(t1,...,tk)

is also complete, and consequently, as is Γ(t1,...,tk). On the other hand, if Γ′ is sound,

then for every (t1, . . . , tk) ∈ [m]k, Γ′′
(t1,...,tk)

is also sound, and consequently, as is Γ(t1,...,tk).

Thus, this reduction shows that we can decide Γ′ by testing all the instances Γ(t1,...,tk).

The total runtime of the resulting algorithm is

O
(
nk/2 ·

(
nk(1−ε)/2 + n1+o(1)

)
+ nk/2+1

)
= O

(
nk(1− ε

2
)
)
,

yielding the desired contradiction. □

6.3. ETH-based Time Lower Bound. In this subsection, we prove the following

result.

Theorem 6.4. Let F : N → N be any computable increasing function. Assuming ETH,

for sufficiently large k ∈ N, no randomised no(k)-time algorithm can decide an instance

Γ(C, r, r/F (k)) of k-SetIntersection over universe [n1+o(1)] with |C| = n.

Our proof builds on the following ETH based lower bound for gap k-MaxCover proved

in [36].

Theorem 6.5. Let F : N → N be any computable increasing function. Assuming ETH,

for sufficiently large k ∈ N, no randomised no(k)-time algorithm can decide an instance

Γ(G = (V ⊔W,E), 1, 1/F (k)) of Unique k-MaxCover, even when

(1) V = V1 ⊔ · · · ⊔ Vk with |Vj| = n for all j ∈ [k], and

(2) W = W1 ⊔ · · · ⊔Wℓ with |Wi| = Ok(1) for all j ∈ [ℓ], where ℓ = (log n)Ok(1). □

We are now ready for the proof of Theorem 6.4.
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Proof of Theorem 6.4. Fix F : N → N as in the theorem, and suppose that there is

a randomised no(k)-time algorithm that can decide every instance Γ(C, r, r/F (k)) of

k-SetIntersection over universe [n1+o(1)] with |C| = n. Notice that such an algorithm can

immediately yields a search algorithm that finds a witness in the YES case by making

nk calls to the decision algorithm. We claim that this search algorithm can be used

to solve every instance Γ′(G = (V ⊔W,E), 1, 1/F (k)) of k-MaxCover in time O(no(k))

where

(1) V = V1 ⊔ · · · ⊔ Vk with |Vj| = n for all j ∈ [k], and

(2) W = W1 ⊔ · · · ⊔Wℓ with |Wi| = Ok,ε(1) for all i ∈ [ℓ], where ℓ = (log n)Ok(1),

contradicting Theorem 6.5. The proof mirrors that of Theorem 6.2, so stop with an

outline.

Fix an instance Γ′(G = (V ⊔W,E), 1, 1/F (k)) of k-MaxCover as above. By applying

Proposition 2.3 to Γ′, we obtain an instance

Γ′′(C1, . . . , Ck, ℓ, ℓ/F (k))

of panchromatic k-SetIntersection over a universe of size (log n)Ok(1) with monochromatic

number bounded above by ckℓ for some constant ck depending only on k.

Put λ = ckF (k), D = λ(k2 + 2), and choose i∗ ∈ N in Theorem 3.3 such that

n ≤ ni∗ ≤ 2kn. We sample w = Ω̃(4(Dk)!) many graphs G1, . . . , Gw from Dk,λ,ni∗ in

time Ok(n2). By Theorem 3.3, we know that with high probability, one of these graphs

is a panchromatic graph with parametrisation

(ni∗ , ni∗ , k,D
k, Dk/λ, (4(Dk)!)−1);

In each of these graphs, we arbitrarily delete ni∗ − n vertices in each colour class so

that one of these graphs is now guaranteed to be panchromatic (with high probability)

with parametrisation

(n, ni∗ , k,D
k, Dk/λ, (4(Dk)!)−1).

For each Gi, we apply Theorem 6.1 to Γ′′ using Gi. If Gi is a panchromatic graph

with the right parametrisation, then we obtain an instance Γ(C, ℓDk, (ℓDk)/F (k)) of

k-SetIntersection over a universe U , with |U| = n(log n)Ok(1) and |C| = nk, in time

O(n2+o(1)), and solving this instance Γ allows us to solve Γ′. On the other hand,

if Gi is not a suitable panchromatic graph, then we still obtain some instance Γ of

k-SetIntersection, and while our hypothetical search algorithm would output a witness

if we are in the YES case of Γ, this would not yield any meaningful solution to Γ′, and

consequently, we can discard such instances Γ. □

7. Conclusion

We finish with a discussion of some open problems that we think are particularly

deserving of attention.
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Closest pair. In [37], the authors constructed panchromatic graphs (for k = 2) with

various parameters, and used these to prove conditional hardness of approximation

results for the closest pair problem, where we are given a set of n points in Rd and

would like to find the closest pair of points in the ℓp-metric. Using these, the authors

showed that assuming SETH, no algorithm running in n1.5−δ time can approximate the

closest pair problem to factor (1 + ε), where δ = δ(ε) > 0. If there exist (n,m, 2, t, t(1−
ε), 1/no(1))-panchromatic graphs with m = no(1) and t = Ω(m), then this would prove

subquadratic time inapproximability for the closest pair problem; do such panchromatic

graphs exist?

Biclique. Using a more intricate composition technique and weaker objects than our

threshold graphs, Lin [42] showed that the k-Biclique problem is W[1]-hard; in the

k-Biclique problem, we are given a balanced bipartite graph on n vertices, and our goal

is to determine if it contains a Kk,k. Lin further showed that under ETH, no no(
√
k) time

algorithm can decide k-Biclique. If there exist (n, n, k, t, t − 1, 1/n)-threshold graphs

with t = O(k), then we would obtain a tight time lower bound for k-Biclique under

ETH; do such threshold graphs exist?

Derandomisation. In this paper, we provide distributions from which we can efficiently

sample panchromatic and threshold graphs. Since these graphs seem to be widely useful

building blocks, a natural derandomisation question presents itself: can we find explicit

constructions of panchromatic and threshold graphs?

Applications of threshold graphs. Norm-graphs have various applications in the-

oretical computer science such as proving lower bounds for span-programs [8, 27],

rectifier networks [34] and circuit lower bounds [35]. In each of these cases, our thresh-

old graph constructions match the lower bounds obtained by using norm-graphs. Are

there applications where the stronger completeness property of our threshold graph

constructions can prove useful? Additionally, can our constructions yield (semi-explicit)

rigid matrices? If yes, this would serve as a very interesting follow-up to [29].
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