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Abstract. Given a random binary picture Pn of size n, i.e., an n × n grid filled

with zeros and ones uniformly at random, when is it possible to reconstruct Pn from

its k-deck, i.e., the multiset of all its k × k subgrids? We demonstrate ‘two-point

concentration’ for the reconstruction threshold by showing that there is an integer

kc(n) ∼ (2 log n)1/2 such that if k > kc, then Pn is reconstructible from its k-deck

with high probability, and if k < kc, then with high probability, it is impossible

to reconstruct Pn from its k-deck. The proof of this result uses a combination of

interface-exploration arguments and entropic arguments.

1. Introduction

Reconstruction problems, at a very high level, ask the following general question:

is it possible to uniquely reconstruct a discrete structure from the ‘deck’ of all its

substructures of some fixed size? The study of such problems dates back to the graph

reconstruction conjectures of Kelly and Ulam [9, 11, 23], and analogous questions for

various other families of discrete structures have since been studied; see [1, 17, 18, 19] for

examples concerning other objects such as hypergraphs, abelian groups, and subsets of

Euclidean space. The line of inquiry that we pursue here concerns reconstructing typical,

as opposed to arbitrary, structures in a family of discrete structures. Such questions,

best phrased in the language of probabilistic combinatorics, often have substantially

different answers compared to their extremal counterparts; see [4, 22], for instance.

Our aim in this paper is to investigate a two-dimensional reconstruction problem,

namely that of reconstructing random pictures. Before we describe the precise question

we study, let us motivate the problem at hand. Perhaps the most basic one-dimensional

reconstruction problem concerns reconstructing a random binary string from the multiset

of its substrings of some fixed size, a problem intimately connected to that of shotgun-

sequencing DNA sequences; on account of its wide applicability, this question has

been investigated in great detail, as in [2, 15] for instance. A natural analogue of the

aforementioned one-dimensional problem concerns reconstructing a random binary grid

(or picture, for short) from the multiset of its subgrids of some fixed size; this is the

question that will be our focus here. While shotgun-reconstruction of random strings is
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Figure 1. A picture of size 3 and its 2-deck.

a well-studied problem, there has been renewed interest — originating from the work of

Mossel and Ross [13] — in generalizations of this problem like the one considered here;

see [8, 10, 14, 21] for some recent examples.

Writing [n] for the set {1, 2, . . . , n}, a picture of size n is an element of {0, 1}[n]2

viewed as a two-coloring of an n × n grid using the colors 0 and 1. The k-deck of a

picture P of size n, denoted Dk(P ), is the multiset of its k×k colored subgrids of which

there are precisely (n− k + 1)2; see Figure 1 for an illustration. We say that a picture

P is reconstructible from its k-deck if Dk(P
′) = Dk(P ) implies that P ′ = P . Writing

Pn for a random picture of size n chosen uniformly from the set of all pictures of size

n, our primary concern is then the following question raised by Mossel and Ross [13]:

when is Pn reconstructible from its k-deck with high probability? More specifically, is

there a threshold value for k such that in the supercritical regime, Pn is reconstructible

with high probability and in the subcritical regime Pn is not reconstructible with high

probability? It was previously determined by Mossel and Ross [13] (under the dual

perspective of coloring lattice vertices rather than faces) that the threshold lies between√
(1− ϵ) log n and

√
(1 + ϵ)4 log n, and Ding and Liu [7] subsequently narrowed down

the location of the threshold to (
√

(1− ϵ)2 log n,
√

(1 + ϵ)2 log n). We note that these

results also hold in higher dimensions. We shall give a nearly complete answer to this

question. Let kc(n) be the nearest integer value to
√

2 log2 n. Writing R(n, k) for the

event that the random picture Pn is reconstructible from its k-deck, our main result is

as follows.

Theorem 1.1. As n → ∞, we have

P(R(n, k)) →

{
0 if k < kc(n), and

1 if k > kc(n)

In other words, Theorem 1.1 shows that the ‘reconstruction threshold’ of a random

picture is concentrated on at most two consecutive integers. The two results contained
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in the statement of Theorem 1.1 are proved by rather disparate methods: the ‘0-

statement’ follows from entropic considerations, while the ‘1-statement’ is proved by an

interface-exploration argument, a technique more commonly seen in percolation theory.

The definition of kc(n) ensures that n
2/2k

2 → ∞ if k < kc(n) while kn2/2k
2−k → 0 if

k > kc(n), which is the main way we will use the definition of kc(n) in our arguments.

Let us briefly mention that a related, but somewhat different, two-dimensional

question about reconstructing ‘jigsaws’ was raised by Mossel and Ross [13]. Following

work of Bordenave, Feige, and Mossel [5] and Nenadov, Pfister, and Steger [16], the

coarse asymptotics of the reconstruction threshold in this setting were independently

established by Balister, Bollobás, and the first author [3] and by Martinsson [12]. In

contrast, our main result establishes fine-grained asymptotics of the reconstruction

threshold in the (somewhat different) setting considered here.

This paper is organized as follows. We give the short proof of the 0-statement

in Theorem 1.1 in Section 2. The bulk of the work in this paper is in the proof of

the 1-statement in Theorem 1.1 which follows in Section 3. We conclude with some

discussion of future directions in Section 4.

Note added in proof: Subsequent to our paper’s appearance on the arXiv, Demidovich,

Panichkin, and Zhukovskii [6] extended our results to r colors and d dimensions for

r, d ≥ 3. While it is straightforward to verify that our computations allow for a larger

number of colors, we posited in a previous version of this paper that it would be

necessary to find an appropriate higher-dimensional generalization of the interface

paths in our arguments in order to extend beyond d = 2. However, the methods of [6]

circumvent this need by careful modification to our reconstruction algorithm.

2. Proof of the 0-statement

In this short section, we prove the 0-statement in Theorem 1.1 which, as mentioned

earlier, follows from considerations of entropy.

Proof of the 0-statement in Theorem 1.1. An easy calculation shows that the definition

of kc(n) ensures that

n2/2k
2 → ∞ (1)

as n → ∞ for every k < kc(n). Under this condition, we show that with high probability,

it impossible to reconstruct a random picture Pn of size n from its k-deck. The reason

is simple: under this assumption on k, the k-deck does not contain enough entropy

to allow reconstruction; for simplicity, we phrase this argument in the language of

counting.

First, the number of pictures of size n is 2n
2
. Next, the number of such pictures that

are reconstructible from their k-decks is at most the number of distinct k-decks, which
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is itself at most the number of solutions to the equation

x1 + x2 + · · ·+ x2k2 = (n− k + 1)2

over the non-negative integers, where xi is the number of copies of the ith k × k grid in

D. It follows that

P[R(n, k)] ≤
(
(n− k + 1)2 + 2k

2 − 1

2k2 − 1

)
2−n2 ≤

(
10n2

2k2

)2k
2

2−n2

.

It is now straightforward to check that P[R(n, k)] → 0 by (1). This proves the 0-

statement in Theorem 1.1. □

3. Proof of the 1-statement

A simple calculation shows that the definition of kc(n) ensures that

kn2/2k
2−k → 0 (2)

as n → ∞ for all k > kc(n). We shall show that if (2) holds, then Pn is reconstructible

from its k-deck with high probability. To accomplish this, we provide an algorithm for

reconstruction and bound the probability that Pn is not the output when this algorithm

is run on Dk(Pn).

To motivate our preliminary analysis, we first give a rough description of the algorithm.

It begins by randomizing the deck and attempting to build the picture outward from

the first element, in one direction at a time. It will begin by extending the starting

element to a small rectangle ‘naively’, which means it will simply place the first deck

element that fits. Then it will extend the rectangle by one column at a time, followed

by one row at a time. The starting rectangle size will be linear in k, small enough that

a union bound suffices to show the rectangle is likely a correct reconstruction. However,

continuing to place deck elements naively will not suffice to give a correct reconstruction

with high probability. Thus, in the row and column extension steps we select deck

elements to place more carefully, in a way that has a lower probability of failure.

In the next section, we provide some notation including precise definitions of ‘exten-

sion’. We then consider the particular types of subpictures and extensions that will

come into play in our algorithm and show that with high probability, the deck does not

contain elements that will extend ‘badly’. At last, we provide our algorithm and put

together all of the results to show that the probability the algorithm fails tends to 0

above the threshold.

3.1. Notation and Terminology. We first set up some notation and conventions to

use throughout this section. As before, we will let P = Pn be the random picture we

wish to reconstruct from its k-deck D = Dk(P ). A partial picture is a (not necessarily
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Figure 2. On the left is a grid S, in the center is a grid T , and on the

right is the extension of S to the right by T .

rectangular) contiguous colored subset of an n × n picture. A grid or subgrid is a

rectangular partial picture, and a k-grid is a k × k grid.

As in matrix notation, the coordinate (i, j) will denote the cell in the ith row from

the top, jth column from the left. For a partial picture S, the notation S(i, j) will

denote the entry of cell (i, j), either 0 or 1. In our proof we may assume the elements

of D are distinct; indeed, we will show that the probability a given k-grid appears more

than once in D is o(1/k) in the supercritical regime. Thus, for a k-grid T , we may use

the notation P [T ] to mean the cells of the k× k subgrid of P whose entries are identical

to T , as this is well-defined, and similarly P [T (i, j)] to mean the entry of P in the ith

row and jth column of the k-grid P [T ].

(More formally, we can introduce an injective map ϕ : D → P mapping each deck

element T to the k × k subgrid of P identical to T ; using this notion, then, P [T ] refers

to ϕ(T ). To lighten the notational burden, we will not use this notion in the remaining

discussion but mention it here for the reader’s benefit.)

We first need the notion of ‘extending’ a partial picture.

Definition 3.1. Given two k × k grids S with columns s1, . . . , sk ∈ {0, 1}k and T with

columns t1, . . . , tk ∈ {0, 1}k, we say that T extends S to the right if ti = si+1 for all

1 ≤ i ≤ k−1. We call T itself an extension of S to the right and the resulting k×(k+1)

grid with columns s1, . . . , sk, tk the extended grid.

See Figure 2 for an illustration. We define extensions of a k-grid to the left, upwards,

and downwards analogously. We may also generalize this definition to larger partial

pictures, both rectangular and non-rectangular.

Definition 3.2. Given a partial picture Q and a k × k subgrid S of Q, we say that a

k×k grid T extends Q to the right at S if it is an extension of S by the above definition

and if the extension is consistent with all other entries of Q \ S.

In other words, T extends Q to the right at S if it is possible to place T as an

extension of S without creating any conflicts.
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In the next subsection, we give some probability bounds that we will use in our

argument. The events that we define will play a role in the analysis of our reconstruction

algorithm described in Section 3.6, but we discuss the events here to make it clear that

they do not depend on the algorithm itself.

Definition 3.3. Fix a subgrid S of P . For any of the extension types defined above,

we say the extension is incorrect (with respect to S and P ) if the extended grid is not a

subgrid of P .

3.2. Constraint Graphs. In our reconstruction algorithm, we will create sequences

of consecutive extensions; this is because it will be unlikely to find many overlapping

subgrids all containing the same mistakes. In particular, we will require some arguments

about independence of entries in non-overlapping subgrids. To that end, we introduce

the notion of a constraint graph, previously used in [5] to analyze reconstruction of

jigsaws. The constraint graph has vertices corresponding to the n2 cells of Pn, and a

pair of vertices is joined by an edge if the corresponding cells must have the same color.

Definition 3.4. Let C be a set of constraints of the form {P (i, j) = P (i′, j′)}. The

constraint graph induced by C is denoted GC and has vertex set VC = {xi,j : 1 ≤
i, j ≤ n} and edge set EC = {xi,jxi′,j′ : {P (i, j) = P (i′, j′)} ∈ C}.

In practice, we will only consider constraints where one of the cells has already been

‘revealed’ by the algorithm.

Let c(G) denote the number of components in a graph G. Our constraint graph

allows us to track the dependencies introduced by reconstruction in the following way:

Lemma 3.5. Let C be a set of constraints of the form {σ(i, j) = σ(i′, j′)}, and

let GC be the constraint graph induced by C . For another set of constraints A, let

∆ = c(GC)− c(GC∪A). Then P(A |C) ≤ 2−∆.

Proof. Observe that components of a constraint graph are independent of one another.

A new constraint reduces the number of components in the graph by at most 1. If xi,j

and xi′,j′ are in different components, then revealing the information xi,j = xi′,j′ has a

cost of 1
2
. □

We say a constraint ϕ ∈ C is a degree 1 constraint if GC\{ϕ} contains strictly more

isolated vertices than GC . Observe that adding a degree 1 constraint always reduces

the number of connected components of the constraint graph by 1.

Here is our first simple application of the previous lemma.

Proposition 3.6. Let S be a fixed k × k subgrid of P . If n2k2−k2+k → 0, then the

probability that there exists T ∈ D incorrectly extending S to the right is o
(

1
n2k

)
.
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Proof. Observe that if T extends S to the right, then there are k2−k cells in S∩T . The

probability for any given element of D to incorrectly extend S in this manner is 2−k2+k.

Phrased in the language of constraint graphs, there are k2 − k degree 1 constraints

introduced between the rightmost k− 1 columns of P [S] and the leftmost k− 1 columns

of P [T ]. By Lemma 3.5 and our assumption that n2k2−k2+k → 0, the claim follows. □

An almost identical proof also shows the following:

Lemma 3.7. Let S ∈ D. If n2k2−k2+k → 0, then the probability that there exists T ∈ D

identical to S is o(1/k).

Proof. The probability that such a T exists is 2−k2 . The assumption n2k2−k2+k → 0

gives the claim. □

We can now describe in slightly more detail the main idea of our reconstruction

algorithm. Given a partial picture (such as one correctly reconstructed by our algorithm),

suppose we extend some piece of it by one deck element T1. If the extension is incorrect,

it introduces constraints between the cells in the ‘correct’ location of T1 and the

‘incorrect’ location of T1 which reduce the number of components in the constraint

graph. If we continue extending by deck elements T2, T3, . . . , Tk, then the number of

new constraints introduced will be large enough that the probability of D containing

such a sequence of extensions will be negligible for supercritical k. Our algorithm

thus proceeds by first checking for the existence of some sequence of extensions before

carrying out these extensions.

3.3. Analyzing Γ-grid extensions. We will use the constraint graph to analyze the

probabilities associated with extensions for two different types of subpictures that will

arise in our reconstruction algorithm. The first is the following:

Definition 3.8. For ℓ ≥ k, a subset of P is an (ℓ, j)-Γ-grid if it consists of an ℓ× k

rectangle where the top j rows (j ≥ k) have been extended one column to the right. An

(ℓ, j)-L-grid is the same but where the bottom j rows have been extended one column

to the right. The ℓ× k rectangle is the base and the j × k horizontal extension is the

hook.

A small example is provided in Figure 3.

Proposition 3.9. Let Q be an (ℓ, j)-Γ-subgrid of P with base S and hook T0. Let E be

the event that there exist T1, . . . , Tk ∈ D such that

(1) Ti is a downward extension of Ti−1 and a rightward extension of S at rows i+ 1

through i+ k, and

(2) T1 is an incorrect extension.

If n2k2−k2+k → 0, then P[E] = o
(

1
k2n2

)
.
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Figure 3. Examples of (9, 3)-Γ and (9, 3)-L-grids, k = 3

Note that the same result must hold for (ℓ, j)-L-subgrids; as the argument is the

same, we omit the proof.

Proof. We begin with some observations about the constraint graph. First, since Q

is a subpicture of P , we must have C(Q) = ∅ and so GC(Q) consists of n2 isolated

vertices. We will abuse notation slightly and use P (i, j) to refer to both a cell in P

and its corresponding vertex in C(P ); the meaning will be clear from context. We also

write Ci for the set of constraints C(Q ∪ T1 ∪ · · · ∪ Ti) and Gi for GCi
.

For each i, by considering the k − 1 columns of Q[Ti] ∩Q[S], we have

{P [Ti(r, c)] ∼ P [S(i+ r, c+ 1)]} ∈ GCi
(3)

for every (r, c) such that 1 ≤ r ≤ k and 1 ≤ c ≤ k − 1.

Note that C1 consists of k2 − 1 degree 1 constraints between entries of P [T1] and

P [S ∪ T0]. Letting E1 be the event that there exists T1 as in the lemma statement, we

apply Lemma 3.5 and a union bound to obtain

P[E1] ≤ n22−k2+1.

For i ≥ 2, we will condition on the extensions Tj for j < i. Let Si be the subgrid of S

consisting of the cells {P [S(r, c)] : 2 ≤ r ≤ i+ k, 2 ≤ c ≤ k} (in other words, the entries

of S contained in the extensions T1, . . . , Ti). We identify each Ti as one of three types:

(1) P [Ti] ∩ P [Tj] = ∅ for all j < i and P [Ti] ∩ P [Si−1] = ∅,

(2) P [Ti] = P [Tj] + (i− j, 0) for some j < i, meaning that Ti appears in the same

relative position to Tj in P as it does in the extension, and P [Ti]∩ P [Si−1] = ∅,

or

(3) not Type (1) or Type (2) .

See Figure 4 for an illustration.

Let Ei be the event that D contains a Ti of Type 1 or 2, and Fi be the event that D

contains a Ti of Type 3. If Fi occurs for some i, then for all j > i we simply bound the
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T1

T3
T4

T2

(a) The picture P showing subpicture S ∪
T0 and deck elements T1, T2, T3, T4

T1

T4

(b) An extended partial picture Q. Shaded

in blue are constraints introduced by C4.

Figure 4. An example where T1 and T2 are Type 1, T3 is Type 2, and

T4 is Type 3

probability of Ej ∪ Fj by 1. Thus,

P[E] ≤ P[E1, E2, . . . , Ek] +
k∑

i=2

P[E1, . . . , Ei−1, Fi].

We expand each term as

P[E1, . . . , Ei−1, Fi] = P[E1] · P[E2 |E1] · · ·P[Ei−1 |E1, . . . , Ei−2] · P[Fi |E1, . . . , Ei−1]

and so we may now focus our attention on bounding the conditional probabilities.

Case 1: Tj is Type 1 or 2 for all j ≤ i.

If Ti is Type 1, then by the same argument as for T1, we have k2 − 1 degree 1

constraints in Ci \ Ci−1 (one for each entry revealed by Ti−1 ∪ S) and fewer than n2

deck elements to take a union bound over. In this case, the probability of Ei is at most

n22−k2+1. Else, Ti is Type 2 and there is some ℓ where 1 ≤ ℓ ≤ k − 1 such that the

top ℓ rows of Ti do not introduce any new constraints but the leftmost k − 1 entries of

each of the bottom k − ℓ rows give rise to new degree 1 constraints (between P [Ti] and

P [S]). Then the components of the constraint graph reduce by k − 1 in one case (if

ℓ = k − 1) and at least 2k − 2 in all other cases. We again apply Lemma 3.5 to obtain

P[Ei |E1, . . . , Ei−1] ≤ n22−k2+1 + 2−k+1 + (i− 1)2−2k+2

≤ 2−k+1(n22−k2+k + 1 + k2−k+1) =: pE.

Case 2: Ti is of Type 3 and Tj is of Type 1 or 2 for all j < i.

First, note that Gi−1 is a forest and in fact, each component must be a star centered at
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an element of P [Si−1] which we can see from considering the degree 1 constraint edges

described in Case 1.

If P [Ti] = P [Tj] + (i− j, 0) for some j < i but P [Ti] ∩ P [Si−1] ̸= ∅, then we bound

as in Case 1.

Else, we may assume P [Ti] ∩ P [Tj] ̸= ∅ for some j < i, or P [Ti] ∩ P [Si−1] ̸= ∅. By

(3), Gi contains k
2 − k distinct edges of the form

er,c = {P [Ti(r, c)], P [S(i+ r, c+ 1)]}

for all 1 ≤ r ≤ k, 1 ≤ c ≤ k − 1. We argue that these edges do not appear in Gi−1 and

moreover that if we add them one at a time, each constraint edge joins two previously

disjoint components. This will give us a sufficient bound on P[Fi |E1, . . . , Ei−1].

Fix r, c as above. If P [Ti(r, c)] /∈ P [S] ∪
⋃

j<i P [Tj], then a degree 1 constraint is

introduced at the isolated vertex P [Ti(r, c)].

Suppose P [Ti(r, c)] ∈ P [Tj] for some j < i. Let r′, c′ be such that P [Ti(r, c)] =

P [Tj(r
′, c′)].

If P [Ti(r, c)] /∈ P [Si−1], then we know the only constraint in Ci−1 involving P [Ti(r, c)]

has the form fr,c = {P [Ti(r, c)], P [S(j + r′, c′ + 1)]}. In order for er,c = fr,c to hold,

we must have c′ = c and r′ = r + i − j. However, this would imply that P [Ti] =

P [Tj] + (i − j, 0), making Ti an extension of Type 2, a contradiction. So the cells

S(j + r′, c′ + 1) and S(i+ r, c+ 1) are distinct and thus er,c ̸= fr,c. This implies that

er,c must join two distinct components from Gi−1.

Else, Ti(r, c) introduces an edge between two cells of P [Si−1], which by previous

observation must be the centers of two disjoint stars.

So by Lemma 3.5 and by taking a union bound over the 2i(4k(k − 1)) ≤ 8k3 deck

elements that intersect with P [Si−1] ∪
⋃

j<i P [Tj], we have

P[Fi |E1, . . . , Ei−1] ≤ 2−k+1 + (i− 1)2−2k+2 + 8k32−k2+k =: pF .

We apply the assumption that n2k2−k2+k → 0 to obtain

pE ≤ 2−k+1

(
1 + o

(
2

k

))
,

pF ≤ k

22k
+ o

(
k2

n2

)
, and

pFpE ≤ o

(
k2

n22k

)
.

Putting everything together, we have

P[E] ≤ P[E1]

(
pk−1
E +

∑
i

pFp
i−1
E

)
≤ P[E1](p

k−1
E + (k − 1)pFpE)
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≤ n22−k2+1

(
2−(k−1)2

(
1 + o

(
2

k

))k−1

+ (k − 1) · o
(

2k2

n22k

))

≤ n22−2k2+2k(e2) + n22−k2+1 · o
(

2k3

n22k

)
≤ o

(
1

n2k2

)
,

as desired. □

3.4. Interface Paths. Both a Γ- and L-grid subpicture consist of a rectangle with

an additional k-grid extending the corner. We now consider the event of extending

a rectangular grid at the corner, thus resulting in either a Γ- or L-grid. The main

idea will be to use the property of mistakes ‘propagating’, meaning if there exists

an incorrect entry in an extension of S ⊂ P , then there must be a large—and thus

unlikely—collection of extensions containing the same incorrect entry. This method is

similar in spirit to the Peierls method [20] commonly used in percolation theory, where

an interface or contour is defined to separate components in a graph (originally +1 and

−1 spins in the Ising model), and the probability of such a contour existing is bounded

using first moment arguments.

To that end, we introduce another auxiliary graph that will allow us to analyze paths

along which we have subgrids containing mistakes.

Definition 3.10. For a picture Q, the lattice graph (also called grid graph) L(Q) is

the graph associated with Q when viewed as a subset of Z2, where each of the (n+ 1)2

intersection points of gridlines is a vertex, and each gridline segment connecting a pair

of vertices is an edge. We say an edge of L(Q) is incident to the cells of Q bordering

it, of which there are either one or two (see Figure 5).

u v

w

Figure 5. The grid graph of a picture S of size 2. The edge uv is

incident to one white cell of S whereas vw is incident to one white and

one black cell.

Given a partial picture Q, if a k × k subgrid of Q is incorrect with respect to P , we

mark the cell of the subgrid’s upper-right corner with an × and say that Q is a marked

picture. See Figure 6.
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We first observe some properties of the marking:

(1) Each incorrect entry of Q gives rise to k2 marked cells (one for each k-grid

containing the entry).

(2) As a corollary to Observation 1, if cell (i, j) is unmarked and (i, j+1) is marked,

then {(i, j + c) : 2 ≤ c ≤ k} are marked.

(3) Similarly, if (i, j) is unmarked and (i+1, j) is marked, then {(i+r, j) : 2 ≤ r ≤ k}
are marked.

Definition 3.11. Given a marked picture Q, an interface path in L(Q) is a directed

path such that all the cells incident to the path on one of its sides (either left or right,

with respect to the direction of the path) are marked, and those on the other side are

unmarked.

×

×

×

×

×

×

×

×

×

×

γ

Figure 6. On the left is a picture P . On the right is a reconstruction

Q, for k = 2. Each marked cell is the upper-right corner of a k-grid

containing an incorrect entry. An interface path γ is highlighted in blue.

3.5. Analyzing Interface Paths. Our goal in this subsection will be to establish a

bound similar to that of Proposition 3.9 but for grids along an interface path.

Proposition 3.12. Let S be an ℓ× k subgrid of P , ℓ ≥ 3k. Let E be the event that

there exist {Ti,j : 1 ≤ i ≤ k, 1 ≤ j ≤ k − 1} ⊂ D such that for all i, j, we have

• Ti,1 is a rightward extension of rows i through i+ k − 1 of S,

• Ti,j+1 is a rightward extension of Ti,j , and

• Ti+1,j is a downward extension of Ti,j .

If n2k2−k2+k → 0, then P[E] = o
(
1
n

)
.

As a first step of the proof, we show that we can associate the event E with an

interface path.

12



Lemma 3.13. Under the assumptions of Proposition 3.12, there exists an interface

path in L(S ∪
⋃

i,j Ti,j) with initial edge e1 and final edge incident to the marked cell of

Ti,j for some (i, j) such that j = k − 1 or i = k − 1.

This follows from a standard argument in percolation theory: since T1,1 is marked

and S is not, we start at the initial edge incident to the marked cell of T1,1. Walk along

the lattice graph edges, keeping the marked cells to your left and the unmarked cells

to your right. The previously observed properties of the marking ensure that you can

walk until reaching one of the boundaries. The proof below makes these notions more

precise.

Proof of Lemma 3.13. Let T =
⋃

i,j Ti,j. The boundary of T refers to the edges of

L(
⋃k

j=1 T1,j \ S) that are incident to exactly one cell of T . This definition takes into

account the fact that there are no marked cells below row k, since markings are placed

in the upper-right corners of k-grids.

Observe first that if we mark S and T , there must exist an interface path in L(S ∪T ).

Indeed, by assumption T1,1 is marked and S is not. So there exists some interface path

γ containing the edge incident to T1,1 and S—call it e1. We impose a direction on the

path so we may refer to edges as rightward, leftward, downward, and upward based on

the direction they point. To that end, let e1 be directed downward.

Now let γ be a longest interface path beginning with e1. There is some final edge

e = uv with terminal vertex v, incident to a marked cell and an unmarked cell. If γ

does not reach any boundary of T , then there must exist a neighbor u′ ̸= u of v such

that v⃗u′ also borders one marked and one unmarked cell. Thus, we may construct a

longer path γ ∪ {v⃗u′} unless u′ ∈ γ.

If u′ ∈ γ, then γ′ = γ ∪ {v⃗u′} contains a cycle (not necessarily directed) such that

the entries of the cycle interior are either all marked or all unmarked. However, by the

marking properties observed above, we know that a row containing an unmarked cell

followed by a marked cell must contain a contiguous block of k marked cells. Thus, if

the interior of the cycle is marked, then the cycle must intersect the right boundary of

T , contradicting our assumption about γ. But if the interior of the cycle is unmarked,

then there exists a row such that the first i entries are unmarked, followed by j entries

which are marked, followed by m entries in the interior of the cycle which are marked,

where i ≥ k because S is unmarked, j ≥ k because of our prior observation, and m ≥ 1.

This implies the row has at least 2k + 1 entries in it, a contradiction.

Therefore, we may assume γ ends at a boundary of T . By the marking properties,

the first row of S ∪ T consists of k unmarked cells followed by k marked cells. Thus,

the only edge incident to the top boundary of T that can be contained in γ is e1. So γ

cannot end at the top boundary of T . Note that γ also cannot reach the left boundary

of S ∪ T , so it must end at either the right or bottom boundaries. □

13



Say γ is a rightward path if it ends at the right boundary and a downward path if it

ends at the bottom boundary. Let ℓ(γ) denote the number of edges in γ.

We observe some properties of any valid interface path γ which follow from our earlier

observations about a marked configuration.

(a) There are no up-steps in γ. This is due to Observation 2 and the total size of

our extensions.

(b) If ei is a left-step in γ and ej is a right-step in γ such that j > i and ei and ej
are in the same column of S ∪ T , then there must be at least k cells between ei
and ej. This follows from Observation 3.

We are now ready to bound the probability associated with an interface path.

Proof of Proposition 3.12. Fix a path γ as guaranteed by Lemma 3.13 with (directed)

edges {e1, . . . , eℓ(γ)}. Observe that because we know e1 is incident to an unmarked cell

at T1,1(1, k−1) and a marked cell at T1,1(1, k), this determines for each of the remaining

edges in γ which of the two incident cells is marked and which is unmarked.

By the observations above, γ cannot have any right-steps, and ℓ(γ) ∈ [k, 2k − 1].

Let Eγ be the event that there exist {Ti,j}i,j giving rise to the interface path γ,

noting that E ⊂
⋃

γ Eγ . Similar to the proof of Proposition 3.9, we will use conditional

probabilities to bound P[Eγ]. Let T
′
i be the incorrect k-grid whose upper-right corner

is incident to ei.

Let Q = S ∪
⋃

i,j Ti,j and let (ri, ci) denote the cell Q[T ′
i (1, k)], in other words the

cell of Q that gets marked for the placement of T ′
i . Let Si be the correct partial picture

that has been ‘revealed’ up to the point of T ′
i , meaning the set of all unmarked cells in

S ∪
⋃

j≤i T
′
j . We again classify the T ′

i ’s into different types.

(1) P [T ′
i ] ∩ P [T ′

j ] = ∅ for all j < i and P [T ′
i ] ∩ P [Si−1] = ∅,

(2) P [T ′
i ] = P [T ′

j ] + (ri − rj, ci − cj) for some j < i, meaning that T ′
i appears in the

same relative position to T ′
j in P as it does in the extension, and P [T ′

i ]∩P [Si−1] =

∅, or

(3) not Type (1) or Type (2) .

Let Eγ,i be the event that there exists a T ′
i of Type 1 or 2 in D, and let Fγ,i be the

event that there exists a T ′
i of Type 3 in D. Then

P[Eγ] ≤ P[Eγ,1, Eγ,2 . . . , Eγ,k] +

ℓ(γ)∑
i=2

P[Eγ,1 . . . , Eγ,i−1, Fγ,i]

and

P[Eγ,1, . . . , Eγ,i−1, Fγ,i] ≤ P[Eγ,1] · P[Eγ,2|Eγ,1] · · ·P[Eγ,ℓ(γ)|Eγ,ℓ(γ)−1, . . . , Eγ,1].
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γ

e1

e2

?

(a) An example of two down-steps in a

row; all but one entry of T2 is determined

by T1 and S.

γ

e4

e5

?

(b) An example of a down-step preceded

by a right-step; all but one entry of T5 is

determined by previously placed k-grids.

Figure 7

For i = 1, observe that if T ′
1 extends S to the right, then there are k2 − k cells in S ∩ T ′

1

and thus k2 − k degree 1 constraints introduced, so by Lemma 3.5, we have

P[Eγ,1] ≤ n22−k2+k.

We would like to find a general upper bound for P[Eγ,i |Eγ,i−1, . . . , Eγ,1] and for

P[Fγ,i |Eγ,i−1, . . . , Eγ,1]. Unfortunately, there are some cases in which we cannot have a

better bound than 1. For example, if ei−1 is a down-step and ei is a right-step (forming

an ‘inner corner’), then by definition, T ′
i−1 is the same as T ′

i (see, for example, e2 and

e3 in Figure 7a), so we trivially have P[Ei |Ei−1] = 1.

Thus, we can only hope to nontrivially bound P[Eγ,i] and P[Fγ,i] for certain types of

edges in γ. To that end, say ei is a contributing edge if it is one of the following:

• a down-step preceded by a right-step or down-step,

• a right-step preceded by a right-step, or

• a left-step preceded by a down-step or left-step.

We claim the following.

Claim 3.14. For every i > 1 such that ei is a contributing edge, we have

P[Eγ,i |Eγ,1, . . . , Eγ,i−1] ≤ 4k32−k+1, and

P[Fγ,i |Eγ,1, . . . , Eγ,i−1] ≤ 4k32−k2+k.
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Proof of claim. We break the analysis into cases similar to those in the proof of Propo-

sition 3.9. As before, let Ci be the constraints imposed by S ∪
⋃

j≤i T
′
j and Gi = GCi

.

Case 1: T ′
j is Type 1 or 2 for all j ≤ i.

We claim that at least k−1 new constraints are introduced by T ′
i which each decrease

the number of components of G.

If T ′
i is Type 1, then there are k2 − 1 degree 1 constraints from P [T ′

i ] to Q[T ′
i ].

If T ′
i is Type 2, then we further consider what type of contributing edge ei is.

Subcase 1: ei is a down-step (preceded by a down-step or a right-step). Then we see

from the bottom row of T ′
i that the constraint P [T ′

i (k, j)] ∼ Q[T ′
i (k, j)] is introduced

by Ci for all 1 ≤ j ≤ k − 1. This follows from Property (a) of γ: since there are no

up-steps, the cells {Q[T ′
i (k, j)] : 1 ≤ j ≤ k − 1} cannot be contained in Q[T ′

a(k, j)] for

any a < i, and so the aforementioned constraints are degree 1 constraints.

Subcase 2: ei is a right-step (preceded by a right-step). Then the rightmost column of

T ′
i introduces degree 1 constraint {P [T ′

i (j, k)] ∼ Q[T ′
i (j, k)]} for all 1 ≤ j ≤ k− 1. This

again follows from Property (a) of γ.

Subcase 3: ei is a left-step (preceded by a down-step or left-step). Then the leftmost

column of T ′
i introduces degree 1 constraints P [T ′

i (1, j)] ∼ Q[T ′
i (1, j)] for all 1 ≤ j ≤

k − 1, as in the previous subcases.

In all subcases—of which there are at most i(4k2)— we may apply Lemma 3.5 to

obtain a bound of 2−k+1 on the probability of the event Eγ,i conditioned on the previous

steps.

P[Eγ,i |Eγ,1, . . . , Eγ,i−1] ≤ 4k32−k+1 =: pE.

Case 2: T ′
i is of Type 3 and for each j < i, Tj is of Type 1 or 2.

We claim that k2 − k new constraints are introduced by T ′
i . The argument proceeds

identically to that of Proposition 3.9 in each of the three aforementioned subcases, so

we describe just one subcase here.

Suppose ei is a down-step preceded by a right-step. The constraints introduced are

those in the leftmost k − 1 columns of T ′
i . It is straightforward to check that, as in

the proof of Proposition 3.9, each constraint introduces a new edge between the cells

P [T ′
i (r, c)] and Q[T ′

i (r, c)] where 1 ≤ r ≤ k, 1 ≤ c ≤ k − 1, and that these edges must

join distinct components of Gi−1.

Thus, we have

P[Fγ,i |Eγ,1, . . . , Eγ,i−1] ≤ 4k32−k2+k =: pF . ■

To finish, we observe that regardless of whether γ is a rightward path or downward

path, γ must have at least k contributing edges. Indeed, if γ is a rightward path, then

γ has at least k right-steps, each of which is either a contributing edge or which is

preceded by a contributing down-step. If γ is a downward path, then γ has exactly
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k down-steps. Given a down-step ei, either ei itself is a contributing edge (preceded

by a down- or right-step), or ei is preceded by a left-step ei−1. In the latter case, ei−2

must be either a down- or left-step, implying that ei−1 is a contributing edge. Thus, γ

contains at least k contributing edges.

We now put everything together as follows.

First,

P[Eγ] ≤ P[Eγ,1]

(
pk−1
E +

k∑
i=2

pFp
i−1
E

)
≤ P[Eγ,1](p

k−1
E + (k − 1)pFpE).

Next, substituting the definition of pE and pF , we have

pk−1
E + (k − 1)pFpE ≤ (4k32−k+1)k−1 + (k − 1)(4k32−k2+k)(4k32−k+1)

≤ (8k32−k)k−1 + 32k72−k2

=

(
10k3

2k

)k−1

.

Finally, we bound the number of choices for γ by 32k, and using our assumption that

n2k2−k2+k → 0, we have

P[E] ≤ 32kn22−k2+k

(
10k3

2k

)k−1

≤ 1

k

(
60k3

2k

)k−1

= o

(
1

n

)
as desired. □

3.6. Reconstruction algorithm. We now give an algorithm for reconstructing a

random picture P from its k-deck. Roughly, this algorithm proceeds by placing the

k-grids in the deck in place, into an expanding droplet, one at a time and eventually

reconstructing the entire picture P . We begin with our droplet being a single (randomly

chosen) k-grid and first extend it to a 3k×k colored grid. We extend this 3k×k droplet

horizontally one column at a time, and extend the subsequent 3k × n droplet vertically

one row at a time until we have an n× n grid.

When putting a deck element in place to extend our droplet, we shall often check

if it can be extended further; by ‘looking ahead’ in this manner, we decrease the

probability that the algorithm places an incorrect k-grid into the droplet, as shown

by the probability bounds from the previous sections. To formalize this notion, we

introduce three types of extensions. The majority of the algorithm consists of applying

the three types of extension steps to the current droplet S using a randomly ordered

deck D.
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• Naive extension (to the right). Find the first element T of D that extends S

to the right. Replace S with the extension of S by T and delete T from D.

• Internal extension (to the right). Find deck elements T1, . . . , Tk satisfying

Proposition 3.9. Place T1 in the droplet and delete T1 from D. See Figure 8d.

• Corner extension (to the right). Find deck elements {Ti,j : 1 ≤ i ≤ k, 1 ≤
j ≤ k − 1} satisfying Proposition 3.12. Place T1,1 in the droplet and delete T1,1

from D. See Figures 8b and 8c.

We analogously define such extensions in other directions (to the left, upward, and

downward). Using these, we may now describe the steps in our algorithm which consist

of repeatedly applying the above extensions.

• Single column extension (to the right). Given a 3k × ℓ droplet S (ℓ ≥ k),

extend S to the right at the top corner and the bottom corner via corner

extensions. Then for each 2 ≤ i ≤ k+1, extend S to the right at rows i through

i+ k − 1 via an internal extension to the right.

• Single row extension (upward). Given a 3k × n droplet S, extend S upward

at the left corner and the bottom corner via corner extensions upward. Then

for each 2 ≤ i ≤ n− 2k + 1, extend S upward at columns i through i+ k − 1

via an internal extension upward.

• Boundary step (to the right). Given a rectangular droplet S, extend S one

column to the right by first applying naive extensions at the top and bottom

corners. Then for each 2 ≤ i ≤ k + 1, extend S to the right at rows i through

i+ k − 1 via an internal extension to the right (Figures 8f–8g).

Extensions in other directions are defined analogously, and we refer to the illustrations

in Figure 9. We now give a full description of our reconstruction algorithm. Throughout,

S will denote the droplet at the current step.

(1) Choose a uniformly random ordering of Dk(P ); let S be the first element, and

let D = Dk(P ) \ S.
(2) Naively extend S until it has 3k rows by first extending downward, then upward

if necessary (Figure 8a).

(3) Repeat the following until an extension fails:

Perform a single column extension ((Figures 8b–8d). The last internal extension

adds a k-grid adjacent to the bottom corner k-grid. For the remaining k-grids

extending rows k+2 through 3k−1, delete these k-grids from D (these appear in

the reconstructed grid but have not been explicitly placed by the algorithm—see

Figure 8e). If these are not all found in D, abort.

(4) When an extension fails, we assume that we are close to the boundary and have

our algorithm do the following.
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• If an internal extension fails, we identify the previous column as the bound-

ary of the grid and undo the column where the failure occurred, returning

the deck elements from the failed column back to D.

• If a corner extension fails, we are within k − 1 columns from the boundary.

We repeatedly apply the boundary step until it fails, at most k − 1 times.

We identify the column before the failure as the boundary.

(5) Repeat Steps 3 and 4 extending to the left. If the resulting droplet does not

have n columns, abort.

(6) Once S has dimensions 3k × n, we repeat the following until an extension fails:

Perform a single row extension upward. As before, we check if the k-grids that

intersect both the last internal extension and the upper-right corner are elements

of D; if so, delete them from D and if not, abort.

(7) When an extension fails, again apply Step 4, but now for extending upward.

(8) Repeat Steps 6 and 7 but extending downward. If the resulting droplet does

not have n rows, abort. Otherwise, output the resulting picture of size n.

Figures 8 and 9 illustrate several steps of the algorithm. At each step, the coloring of

the previously placed grids is not shown to emphasize which grid is being added in the

current step.

We remark that we have made no attempt to optimize our algorithm with respect to

time complexity. Indeed, a successful run of the algorithm has |D| = (n− k + 1)2 steps,

and the longest of these steps is the corner extension which requires checking k2 elements

of D. Subsequent results of [6] contain a similar algorithm but with the longest step

requiring only k elements to be checked; they prove a runtime of O(k(n− k + 1)2 log n)

(in the case of d = 2, although their results are given for general d dimensions) as well

as an efficient derandomization. We refer the interested reader to their work.

We are ready to apply the previous estimates to our reconstruction algorithm and

prove Theorem 1.1.

Proof of the 1-statement in Theorem 1.1. Say the location of a subgrid is coordinate of

its top-right corner cell, and suppose the initial droplet in Step 1 of the algorithm is

located at (i0, j0). We will think of the positions of all subsequently placed subgrids in

our droplet relative to (i0, j0). It is then meaningful to talk about the reconstruction

algorithm making a mistake at a location (i, j) in P ; this happens if the subgrid in

our droplet at location (i, j) is not identical to the subgrid at the same location in P ,

and this includes the event that the reconstruction algorithm places a subgrid at (i, j)

that extends past the boundary of P . We can see that our reconstruction algorithm

successfully terminates by outputting P if it never makes a mistake.

We now claim that for any fixed location (i0, j0) in the random picture P , the

probability that our reconstruction algorithm makes a mistake when starting with the
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3k

k

(a) First step: naive

extensions.

k

2k − 1

(b) Corner extension at the

top.

k

2k − 1

(c) Corner extension at the

bottom.

2k − 1

(d) Internal extension.

last internal

extension

corner extension

(e) On the left is the completed column. On the right

are the subgrids intersecting the internal and corner

extension that must be removed from D.

(f) If a corner extension fails, we are

close to the boundary.

(g) The boundary finished with naive exten-

sions at the corners. We undo the column that

failed and return these subgrids, shown on the

right, to D.

Figure 8. Steps 1–4 of the reconstruction algorithm.

subgrid at (i0, j0) in P is o(1); the result follows since the reconstruction algorithm

selects its initial subgrid uniformly at random.
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2k − 1 2k − 1

(a) Extending upwards at the corners.

2k − 1

(b) Extending upwards internally.

Figure 9. Step 6 of the algorithm.

First, by Lemma 3.7, we know that for any fixed location (i, j) in P , the probability

of the subgrid at that location occurring more than once in the deck D is o(1/k). As

the starting location is thus well-defined, there is a unique order in which a mistake-

free execution of our reconstruction algorithm reconstructs P . In particular, such a

mistake-free execution of our algorithm makes O(k) naive extensions (we perform 3k

such extensions in Step 2 and O(k) in the boundary steps near the four corners of P ),

O(n) corner extensions, and O(n2) internal extensions, and the locations of each of

these extensions is determined uniquely by the starting location (i0, j0); let L denote

this collection of extensions (along with their locations).

If our reconstruction algorithm fails to reconstruct P , then it makes its first mistake

in one of the extensions listed in L. The probability of this first mistake happening at

any fixed naive extension in L, of which there are O(k), is o(1/k) by Proposition 3.6;

the probability of this happening at any fixed corner extension in L, of which there

are O(n), is o(1/n) by Proposition 3.12; and the probability of this happening at any

fixed internal extension in L, of which there are O(n2), is o(1/n2) by Proposition 3.9.

Thus, by a union bound, the probability of our reconstruction algorithm ever making a

mistake is o(1) for any fixed starting location (i0, j0), proving the result. □

4. Conclusion

Determining the behaviour of the reconstruction problem for pictures of size n at the

critical threshold kc(n) is an interesting problem that we have not been able to resolve.

We conjecture that the behavior at kc(n) is determined by the expression in the entropy

bound of the 0-statement proof, namely that reconstructibility depends on whether the

simple entropy bound for P(R(n, kc(n))) tends to 0 or not.

It is also natural to consider the reconstruction problem for pictures of higher dimen-

sions, and indeed, Demidovich, Panichkin, and Zhukovskii generalized our arguments
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to obtain 2-point concentration for d-dimensional grids [6]. There are several more

variants of this problem that would be interesting to pursue. Some, such as changing

the distribution of the entries, or changing the shape of the base configuration, seem

compatible with our proof techniques—indeed, our results generalize in a straightfor-

ward way to r colors and this is stated explicitly in [6] within their result for higher

dimensions. Others, such as introducing correlations between entries or attempting

reconstruction without the full deck, would likely require new ideas.
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