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Abstract. For positive integers r > ℓ, an r-uniform hypergraph is called an ℓ-cycle

if there exists a cyclic ordering of its vertices such that each of its edges consists of

r consecutive vertices, and such that every pair of consecutive edges (in the natural

ordering of the edges) intersect in precisely ℓ vertices; such cycles are said to be

linear when ℓ = 1, and nonlinear when ℓ > 1. We determine the sharp threshold for

nonlinear Hamiltonian cycles and show that for all r > ℓ > 1, the threshold p∗r,ℓ(n)

for the appearance of a Hamiltonian ℓ-cycle in the random r-uniform hypergraph

on n vertices is sharp and given by p∗r,ℓ(n) = λ(r, l)( e
n )

r−ℓ for an explicitly specified

function λ. This resolves several questions raised by Dudek and Frieze in 2011.

1. Introduction

A basic problem in probabilistic combinatorics concerns locating the critical density

at which a substructure of interest appears inside a random structure. In the context

of random graph theory, the question of when a random graph contains a Hamiltonian

cycle has received considerable attention. Indeed, from the foundational works of

Pósa [14], Komlós and Szemerédi [12], Bollobás [2] and Ajtai, Komlós and Szemerédi [1],

we more or less have a complete picture, understanding not only the sharp threshold for

this problem but the hitting time as well. Since these early breakthroughs, there have

been a number of papers locating thresholds, both asymptotic and sharp, for various

spanning subgraphs of interest; see [15, 13] and the references therein for various related

results, old and new.

In contrast, threshold results for spanning structures in the context of random

hypergraph theory have been somewhat harder to come by. Indeed, even the basic

question of locating the asymptotic threshold at which a random r-uniform hypergraph

(or r-graph, for short) contains a matching, i.e., a spanning collection of disjoint edges,

proved to be a major challenge, resisting the efforts of a number of researchers up

until the breakthrough work of Johansson, Kahn and Vu [9]; more recently, both the

sharp threshold as well as the hitting time for this problem have been obtained by

Kahn [11, 10]. In the light of these developments for matchings, we study what is
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Figure 1. A 7-uniform 4-cycle.

perhaps the next most natural question in this setting, namely that of when a random

r-graph contains a Hamiltonian cycle; our main contribution is to completely resolve

the sharp threshold problem for nonlinear Hamiltonian cycles.

There are multiple notions of cycles in hypergraphs, so let us recall the relevant

definitions: given positive integers r > ℓ ≥ 1, an r-graph is called an ℓ-cycle (or an

overlapping ℓ-cycle) if there exists a cyclic ordering of its vertices such that each of

its edges consists of r consecutive vertices in the ordering, and such that every pair of

consecutive edges (in the natural ordering of the edges) intersect in precisely ℓ vertices;

see Figure 1 for an example. A Hamiltonian ℓ-cycle is then an ℓ-cycle spanning the

entire vertex set; of course, an r-graph on n vertices may only contain a Hamiltonian

ℓ-cycle when (r− ℓ) |n, and such a cycle then has precisely n/(r− ℓ) edges. Finally, by

convention, an ℓ-cycle is called linear (or loose) when ℓ = 1, nonlinear when ℓ > 1, and

tight when ℓ = r − 1.

Given r > ℓ ≥ 1, we set

λ(r, l) = t!(s− t)!,

where s = r− ℓ and 1 ≤ t ≤ s is the unique integer satisfying t = r (mod s), and define

p∗r,ℓ(n) =
λ(r, l)es

ns
.

Writing Gr(n, p) for the Erdős–Rényi random r-graph on n vertices, where each possible

r-set of vertices appears as an edge independently with probability p, our main result is

as follows.

Theorem 1.1. For all integers r > ℓ > 1 and all ε > 0, as n → ∞ with (r − ℓ) |n, we
have

P(Gr(n, p) contains a Hamiltonian ℓ-cycle) →

{
1 if p > (1 + ε)p∗, and

0 if p < (1− ε)p∗,

where we abbreviate p∗ = p∗r,ℓ(n).

The critical probability p∗r,ℓ appearing in our result corresponds to the so-called

‘expectation-threshold’, namely the density above which the expected number of Hamil-

tonian ℓ-cycles in Gr(n, p) begins to diverge. A moment’s thought should convince the

reader that, unlike in the case of linear Hamiltonian cycles where one has to worry

about isolated vertices, there are no ‘coupon collector’-esque obstacles to the presence

of nonlinear Hamiltonian cycles; therefore, the conclusion of Theorem 1.1 should not

come as a surprise. Indeed, the problem of whether something like Theorem 1.1 ought
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to hold was raised by Dudek and Frieze [4, 5]. Towards such a result, they showed

that p∗r,ℓ is an asymptotic threshold for all nonlinear Hamiltonian cycles, that p∗r,ℓ is a

sharp threshold for tight Hamiltonian cycles when r ≥ 4, and that p∗r,ℓ is a semi-sharp

threshold for all r > ℓ ≥ 3.

The main difficulty in proving Theorem 1.1 is that, with the exception of the case

of tight Hamiltonian cycles with r ≥ 4 mentioned earlier, the second moment method

is in itself not sufficient to prove the result; for instance, it is easy to verify, even in

the simple case of r = 3 and ℓ = 2 (i.e., tight Hamiltonian cycles in 3-graphs) that the

requisite second moment is too large to yield our result. To prove Theorem 1.1, we

shall combine a careful second moment estimate, which necessitates working modulo

various symmetries arising from the automorphism groups of nonlinear cycles, with a

powerful theorem of Friedgut [6] characterising coarse thresholds.

This paper is organised as follows. We gather the tools we require in Section 2. The

proof of Theorem 1.1 follows in Section 3. We conclude in Section 4 with a discussion

of some open problems.

2. Preliminaries

We begin with some background on thresholds. Recall that a monotone r-graph

property W is a sequence (Wn)n≥0 of families of r-graphs, where Wn is a family of

r-graphs on n vertices closed under the addition of edges and invariant under r-graph

isomorphism.

Given a monotone r-graph property W = (Wn)n≥0, a function p∗(n) is said to be a

threshold or asymptotic threshold for W if P(Gr(n, p) ∈ Wn) tends, as n → ∞, either

to 1 or 0 as p/p∗ tends either to ∞ or 0 respectively, and a function p∗(n) is said to

be a sharp threshold for W if P(Gr(n, p) ∈ Wn) tends, as n → ∞, either to 1 or 0

as p/p∗ remains bounded away from 1 either from above or below respectively. Of

course, thresholds and sharp thresholds are not unique, but following common practice,

we will often say ‘the’ threshold or sharp threshold when referring to the appropriate

equivalence class of functions. Finally, a function p∗(n) is said to be a semi-sharp

threshold for W if there exist constants C0 ≤ 1 ≤ C1 such that P(Gr(n, p) ∈ Wn) tends,

as n → ∞, either to 1 or 0 as p/p∗ remains bounded below by C1 or above by C0

respectively; while we do not need this notion ourselves, we give this definition to place

existing results around our main result in the appropriate context.

That every monotone property has an asymptotic threshold follows from a (much

more general) result of Bollobás and Thomason [3]. However, not every monotone

property has a sharp threshold; such properties are said to have coarse thresholds.

We shall make use of a powerful characterisation of monotone properties that have

coarse thresholds due to Friedgut [6] which says, roughly, that such properties are
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‘approximable by a local property’; a concrete formulation sufficient for our purposes,

see [7], is as follows.

Proposition 2.1. Fix r ∈ N and let W = (Wn)n≥0 be a monotone r-graph property

that has a coarse threshold. Then there exists a constant α > 0, a threshold function

p̂ = p̂(n) with

α < P(Gr(n, p̂) ∈ Wn) < 1− 3α

for all n ∈ N, a constant β > 0 and a fixed r-graph F such that the following holds : for

infinitely many n ∈ N, there exists an r-graph on n vertices Hn /∈ Wn such that

P(Hn ∪Gr(n, βp̂) ∈ Wn) < 1− 2α,

where the random r-graph Gr(n, βp̂) is taken to be on the same vertex set as Hn, and

P(Hn ∪ F̃ ∈ Wn) > 1− α,

where F̃ denotes a random copy of F on the same vertex set as Hn. □

We shall also require the Paley–Zygmund inequality.

Proposition 2.2. If X is a non-negative random variable, then

P(X > 0) ≥ E[X]2

E[X2]
. □

Finally, we collect together some standard estimates for factorials and binomial

coefficients.

Proposition 2.3. For all n ∈ N, we have
√
2πn

(n
e

)n
≤ n! ≤ e

√
n
(n
e

)n
,

and for all positive integers 1 ≤ k ≤ n, we have(
n

k

)
≤
(en
k

)k
. □

3. Proof of the main result

Before turning to the proof, let us briefly outline our strategy (already alluded to

earlier). First, we shall show that the standard deviation of the number of Hamiltonian

ℓ-cycles is of the same order of magnitude as its expectation, so the Payley–Zygmund

inequality bounds the probability of existence of a Hamiltonian ℓ-cycle away from zero.

Next, we show that this probability of existence exhibits a sharp threshold using a result

of Friedgut [6], so as soon as it is bounded away from zero, it must quickly approach

one.

We begin by setting up some notational conventions that we shall adhere to in the

sequel. In what follows, we fix r, ℓ ∈ N with r > ℓ > 1, set s = r − ℓ, take t to be the
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unique integer satisfying t = r (mod s) with 1 ≤ t ≤ s, and set λ = t!(s− t)!. We shall

henceforth assume that n is a large integer such that s |n, and we set m = n/s so that

m is the number of edges in an ℓ-cycle on n vertices. Finally, all r-graphs on n vertices

in the sequel will implicitly be assumed to be on the vertex set [n] = {1, 2, . . . , n}.
To deal with r-graph cycles on the vertex set [n], we shall define an equivalence

relation on Sn, the symmetric group of permutations of [n] = {1, 2, . . . , n}; we shall

ignore the group structure of Sn for the most part, so for us, a permutation σ ∈ Sn is

just an arrangement σ(1), σ(2), . . . , σ(n) of the elements of [n] (namely, vertices), at

locations indexed by [n].

We divide [n] into m blocks of size s, where for 0 ≤ i < m, the i-th such block is

comprised of the interval {is+ 1, is+ 2, . . . , is+ s} of vertices, and we further divide

each such block into two subblocks, where the t-subblock of a block consists of the first t

vertices in the block, and the (s− t)-subblock of a block consists of the last s− t vertices

in the block. Now, define an equivalence relation on Sn by saying that two permutations

σ and τ are subblock equivalent if τ may be obtained from σ by only rearranging vertices

within subblocks; in other words, an equivalence class of this equivalence relation may

be viewed as an element of the quotient Qn = Sn/(St × Ss−t)
m.

The definition of the above equivalence relation is motivated by the natural ℓ-cycle

associated with a permutation: given σ ∈ Sn, consider the r-graph Hσ on [n] with

m edges, where for 0 ≤ i < m, the i-th edge of Hσ is the r-set {σ(is + 1), σ(is +

2), . . . , σ(is+ r)}, of course with indices being considered cyclically modulo n. It is easy

to verify both that Hσ is an ℓ-cycle for each σ ∈ Sn, and that if σ and τ are subblock

equivalent, then Hσ = Hτ ; see Figure 2 for an illustration. Hence, in what follows, we

shall abuse notation and call the elements of Qn permutations (when strictly speaking,

they are equivalence classes of permutations), and for σ ∈ Qn, we write Hσ for the

natural ℓ-cycle associated with σ.

We parameterise p = Cp∗r,l(n) = Cλes/ns for some constant C > 0, and work with

G = Gr(n, p), where we take the vertex set of G to be [n]. Therefore, our goal is to show

that G contains a Hamiltonian ℓ-cycle with high probability when C > 1 (namely, the

1-statement), and that G does not contain a Hamiltonian ℓ-cycle with high probability

when C < 1 (namely, the 0-statement).

In what follows, constants suppressed by asymptotic notation are allowed to depend

on fixed parameters (quantities depending only on r, ℓ, C, etc.) but not on variables

that depend on n, which we send to infinity along multiples of s. We also adopt the

standard convention that an event holds with high probability if the probability of the

event in question is 1− o(1) as n → ∞.

We shall focus our attention on the random variable X that counts the number of

σ ∈ Qn for which the ℓ-cycle Hσ is contained in G, noting that G contains a Hamiltonian

ℓ-cycle if and only if X > 0.
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Figure 2. Blocks and subblocks of a 7-uniform 4-cycle.

We start by computing the first moment of X.

Lemma 3.1. We have E[X] = |Qn|pm = n!(p/λ)m, so that

E[X] →

{
∞ if C > 1, and

0 if C < 1.

Proof. This follows from noting that |Qn| = n!/λm, estimating n! using Proposition 2.3,

and using the fact that n = ms. □

In particular, the above first moment estimate, combined with Markov’s inequality,

establishes the 0-statement. To establish the 1-statement, the following second moment

estimate will be crucial.

Lemma 3.2. For C > 1, we have E[X2] = O(E[X]2).

Let us point out that Lemma 3.2 does not make the stronger promise that

E[X2] = (1 + o(1))E[X]2,

and indeed, such an estimate does not hold generally for an arbitrary pair of integers

r > ℓ > 1.

Proof of Lemma 3.2. To estimate the second moment of X, it will be convenient to

make the following definition: for 0 ≤ b ≤ m, let N(b) denote, for any fixed permutation

σ ∈ Qn, the number of permutations τ ∈ Qn meeting σ in b edges, by which we mean

that Hτ intersects Hσ in exactly b edges. With this definition in place, using the trivial

fact that N(0) ≤ |Qn|, we have

E[X2] =
∑

σ,τ∈Qn

P(Hσ ∪Hτ ⊂ G)

= |Qn|pm
m∑
b=0

N(b)pm−b

≤ |Qn|2p2m + |Qn|pm
m∑
b=1

N(b)pm−b

= E[X]2 + E[X]
m∑
b=1

N(b)pm−b,
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whence it follows that
E[X2]

E[X]2
≤ 1 +

m∑
b=1

N(b)p−b

|Qn|
,

so to prove Lemma 3.2, it suffices to show that the sum

Γ =
m∑
b=1

N(b)p−b

|Qn|

satisfies the estimate Γ = O(1) when C > 1.

The rough plan of attack now is similar to that adopted by Dudek and Frieze [5], but

we shall require a more careful two-stage analysis since we require stronger estimates:

first, we shall control the ‘canonical’ contributions to Γ, and subsequently bound the

‘non-canonical’ contributions in terms of the aforementioned ‘canonical’ ones; we make

precise these notions below.

An r-graph is called an ℓ-path if there exists a linear ordering of its vertices such

that each of its edges consists of r consecutive vertices, and such that every pair of

consecutive edges (in the natural ordering of the edges) intersect in precisely ℓ vertices.

Given a permutation σ ∈ Qn, we say that τ ∈ Qn meets σ canonically if Hτ meets Hσ in

a family of vertex-disjoint ℓ-paths, and we otherwise say that τ meets σ non-canonically.

For 1 ≤ b ≤ m, let Nc(b) to be the number of permutations τ ∈ Qn which canonically

meet a fixed permutation σ ∈ Qn in b edges, set N ′(b) = N(b)−Nc(b), and decompose

Γ = Γc + Γ′, where naturally

Γc =
m∑
b=1

Nc(b)p
−b

|Qn|

and

Γ′ = Γ− Γc =
m∑
b=1

N ′(b)p−b

|Qn|
.

First, we bound the canonical contributions to Γ.

Claim 3.3. For C > 1, we have Γc = O(1).

Proof. Fix a permutation σ ∈ Qn and for 1 ≤ a ≤ b, write Nc(b, a) for the number

of permutations τ ∈ Qn which meet σ canonically in b edges which together form a

vertex-disjoint ℓ-paths in Hσ. We now proceed to estimate Nc(b, a).

Given σ, a (b, a)-configuration in σ is a collection of b edges in Hσ which together

form a vertex-disjoint ℓ-paths; clearly, a (b, a)-configuration covers sb+ ℓa vertices. The

number of ways to choose a (b, a)-configuration in σ is clearly at most(
m

a

)(
b

a

)
,

7



Figure 3. The rigid interior of a 7-uniform 4-path in the two possible

directions of embedding.

since there are at most
(
m
a

)
ways of locating the leftmost edge in each of the a ℓ-paths

in Hσ, and the number of ways to subsequently choose the number of edges in each of

these a paths so that there are b edges in total is clearly at most the number of solutions

to the equation x1 + x2 + · · ·+ xa = b over the positive integers, which is
(
b−1
a−1

)
≤
(
b
a

)
.

Next, given a (b, a)-configuration P in σ, let us count the number of choices for

τ ∈ Qn for which Hτ contains P . We do this in two steps. First, we count the number

of ways in which the vertices covered by P can be embedded into τ , and then estimate

the number of ways in which the vertices not covered by P can be ordered in τ , ensuring

at all times that we only count up to subblock equivalence.

Now, there are at most a!
(
m
a

)
ways to choose the starting blocks of the leftmost edges

of the a distinct ℓ-paths of P in τ . Once the left endpoint of one of these ℓ-paths has

been fixed in τ , we observe that there are only O(1) ways, up to subblock equivalence,

to embed the remaining vertices of this ℓ-path into τ ; indeed, the relative ordering of all

the vertices in an ℓ-path, with O(1) exceptions at the left and right extremes, is rigid

up to subblock equivalence, up to a reversal of the direction of embedding (left-to-right

or right-to-left), as shown in Figure 3. Consequently, once the location of the a leftmost

edges have been determined in τ , the number of ways of embedding the rest of P into

τ is at most La for some L = L(r, ℓ). We conclude that the number of ways to embed

P is at most (
m

a

)
a!La.

Once we have embedded P into τ , there are (n − sb − ℓa)! ways to arrange the

remaining vertices uncovered by P , without accounting for subblock equivalence. It is

easy to check that any embedding of P covers at most b+ ℓa blocks in τ , so the number

of choices for τ ∈ Qn with a given embedding of P is at most

(n− sb− ℓa)!

λm−b−ℓa
.
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From the above estimates and using Proposition 2.3 to bound binomial coefficients,

we conclude that

Nc(b, a) ≤
(
m

a

)(
b

a

)(
m

a

)
a!La (n− sb− ℓa)!

λm−b−ℓa

≤ exp (O(a))
n2aba

a2a
(n− sb− ℓa)!

λm−b
, (1)

where, as remarked upon before, constants suppressed by the asymptotic notation

depend only on r and ℓ.

To finish the proof of the lemma, we now use, in order, the above bound (1), the fact

that ℓ ≥ 2, Proposition 2.3, and the fact that 1 + x ≤ ex for all x ∈ R to show that

Γc =
m∑
b=1

b∑
a=1

Nc(b, a)p
−b

|Qn|

≤
m∑
b=1

b∑
a=1

exp (O(a))
n2aba

a2a
(n− sb− ℓa)!

λm−b

λm

n!

nsb

Cbλbesb

≤
m∑
b=1

b∑
a=1

C−b exp (O(a))
n2aba

a2a
(n− sb− 2a)!

n!

nsb

esb

≤
m∑
b=1

b∑
a=1

C−b exp (O(a))
nsb+2aba

a2a
(n− sb− 2a)n−sb−2a

nn

≤
m∑
b=1

b∑
a=1

C−b exp (O(a))
ba

a2a

(
1− sb+ 2a

n

)n−sb−2a

≤
m∑
b=1

b∑
a=1

C−b exp (a log b− 2a log a− sb− 2a+ (sb+ 2a)2/n+O(a)).

We uniformly have (4a2 + 4sab)/n ≤ 8a, since a ≤ b ≤ m ≤ n, so the above estimate

reduces to

Γc ≤
m∑
b=1

(
C−b exp (−sb+ (sb)2/n)

b∑
a=1

exp (a log b− 2a log a+O(a))

)
. (2)

Finally, since sb ≤ sm = n, we uniformly have

exp (−sb+ (sb)2/n) ≤ 1

for all 1 ≤ b ≤ m, and it is straightforward to verify that we uniformly have

exp (a log b− 2a log a+O(a)) = exp(o(b))
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for all 1 ≤ a ≤ b. Using these two bounds in (2), it follows that for C > 1, we have

Γc ≤
m∑
b=1

C−bb exp(o(b)) =
m∑
b=1

C−b+o(b) = O(1),

proving the claim. □

The second and final step in the proof of Lemma 3.2 is to estimate the non-canonical

contributions to Γ.

Claim 3.4. For C > 1, we have Γ′ = O(1).

Proof. We shall prove the claim by means of a comparison argument: we shall demon-

strate how we may group summands in Γ′ so as to get estimates analogous to those

that we obtained for Γ in the proof of Claim 3.3.

For any σ, τ ∈ Qn, we may decompose the intersection of Hσ and Hτ into a collection

of vertex-disjoint weak paths, where a weak path is a just a sequence of edges in which

every consecutive pair of edges intersect.

We fix a permutation σ ∈ Qn for the rest of the argument. Every weak path P ′ in

Hσ can be uniquely extended to an ℓ-path P in Hσ with the same terminal edges; we

call P the minimal cover of P ′, noting that P covers precisely the same set of vertices

as P ′. Now, given any τ ∈ Qn, there is a unique minimal covering configuration in σ

associated with τ obtained by taking the minimal covers of each of the weak paths in

which Hτ meets Hσ. To prove the claim, we shall show that the contributions to Γ′ from

all those τ ∈ Qn whose covering configuration is P is comparable to the contributions

to Γc from all those τ ∈ Qn meeting σ canonically in P .

We fix a (b, a) configuration P in σ consisting of b edges in total distributed across a

ℓ-paths, and we consider the set of permutations τ ∈ Qn with minimal cover P that

meet σ non-canonically; we additionally parametrise this set by 1 ≤ k ≤ b, writing

Q(P , k) for the set of such permutations τ for which there are k edges of P missing

from the intersection P ′ of Hτ and Hσ.

We claim that the number of ways to select a configuration P ′ as above, and then

embed the vertices covered by P ′ into a permutation τ ∈ Q(P , k) in such a way that

P ′ is contained in Hτ is, up to subblock equivalence, at most(
b

k

)(
m

a

)
a!Ra+k

for some R = R(r, ℓ).

We may verify the estimate above as follows. The number of possible choices for P ′,

namely the number of ways to choose k edges from P such that each of the ℓ-paths

of P remains a weak path after these k edges are removed, may be crudely bounded

above by
(
b
k

)
. As in the proof of Claim 3.3, there are

(
m
a

)
a! ways to choose the starting
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blocks of the leftmost edges of the a distinct weak paths of P ′ in τ . Assume now that

we have fixed P ′, the starting blocks in τ of the leftmost edges of the a weak paths of

P ′, and the directions of embedding of these weak paths into τ (for which there are

2a choices). Now, it is easy to see from the linear structure of a weak path that the

relative order of vertices in disjoint edges of a weak path must be preserved in any

embedding of that weak path into τ , so in particular, there are only O(1) choices for

the location in τ of any particular vertex covered by P ′ (once endpoints and directions

of embedding have been fixed, as we have assumed). Furthermore, it follows from the

rigidity of an ℓ-path (as in the proof of Claim 3.3) that any vertex covered by P ′, with

O(1) exceptions at the left and right extremities of each of the a weak paths, which

possesses potential embedding locations in more than one subblock must necessarily be

within O(1) distance (in σ) of some edge present in P but not in P ′; clearly there O(k)

such vertices in total. These facts taken together demonstrate the validity of the bound

claimed above.

Now, noting that the contribution of any τ ∈ Q(P , k) to Γ′ is a factor of pk times

the contribution to Γc from any τ ∈ Qn meeting σ canonically in P , we may mimic the

proof of Claim 3.3 to show that

Γ′ ≤
m∑
b=1

b∑
a=1

(
exp (O(a))

n2aba

a2a
(n− sb− ℓa)!

λm−b

λm

n!

nsb

Cbλbesb

b∑
k=1

(
b

k

)
Rkpk

)
.

Observing that
b∑

k=1

(
b

k

)
Rkpk =

b∑
k=1

exp(O(k))
bk

kknsk
= O(1),

we are left with an estimate for Γ′ of the same form as the one for Γ′ which we showed

to be O(1) when C > 1 in the proof of Claim 3.3; the claim follows. □

The two claims above together imply that Γ = O(1) when C > 1, from which it

follows that E[X2] = O(E[X]2) when C > 1; the result follows. □

With our moment estimates in hand, we are now ready to prove our main result.

Proof of Theorem 1.1. As mentioned earlier, the 0-statement, namely that Gr(n, p) does

not contain a Hamiltonian ℓ-cycle with high probability if p < (1 − ε)p∗r,ℓ(n) follows

immediately from Lemma 3.1 and Markov’s inequality.

We prove the 1-statement, namely that Gr(n, p) contains a Hamiltonian ℓ-cycle with

high probability if p > (1 + ε)p∗r,ℓ(n), by showing that the property of containing

a Hamiltonian ℓ-cycle has a sharp threshold, and that this sharp threshold must

(asymptotically) necessarily be p∗r,ℓ(n).

If p > (1+ε)p∗r,ℓ(n), then it follows from Lemma 3.2 and the Paley–Zygmund inequality,

i.e., Proposition 2.2, that Gr(n, p) contains a Hamiltonian ℓ-cycle with probability
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at least δ > 0 for some δ = δ(ε, r, ℓ); consequently, if the property of containing a

Hamiltonian ℓ-cycle has a sharp threshold, this sharp threshold is necessarily asymptotic

to p∗r,ℓ(n).

It remains to prove that the monotone r-graph property W = (Wn)n≥0 of containing

a Hamiltonian ℓ-cycle has a sharp threshold, so suppose for the sake of a contradiction

that W has a coarse threshold.

It follows from Proposition 2.1 that there is a fixed r-graph F and a threshold function

p̂ = p̂(n) with the property that for infinitely many n ∈ N, there is an r-graph Hn /∈ Wn

on n vertices such that adding a random copy of F to Hn is significantly more likely to

make the resulting graph contain a Hamiltonian ℓ-cycle than adding a random collection

of edges of density about p̂; concretely, for some universal constants α, β > 0, we have

P(Hn ∪Gr(n, βp̂) ∈ Wn) < 1− 2α, (3)

where the random r-graph Gr(n, βp̂) is taken to be on the same vertex set as Hn, and

P(Hn ∪ F̃ ∈ Wn) > 1− α, (4)

where F̃ denotes a random copy of F on the same vertex set as Hn.

Now, the only way F can help induce a Hamiltonian ℓ-cycle in Hn is through some

sub-hypergraph of itself that appears in all large enough ℓ-cycles, so by pigeonholing

(and adding extra edges if necessary), we conclude from (4) that there exists a fixed

ℓ-path P , say with k edges on ℓ+ sk vertices, with the property that, for some universal

constant γ > 0, we have

P(Hn ∪ P̃ ∈ Wn) > γ,

where P̃ again denotes a random copy of P on the same vertex set as Hn. In other

words, a positive fraction of all the possible ways to embed P into the vertex set of Hn

are useful and end up completing Hamiltonian ℓ-cycles.

Since p̂ is an asymptotic threshold for W , clearly p̂(n) = Θ(p∗r,ℓ(n)) = Θ(n−s), since

p∗r,ℓ is also an asymptotic threshold forW , as can be read off from the proof of Lemma 3.2.

On the other hand, the expected number of useful copies of P created by the addition

of a βp̂ = Θ(n−s) density of random edges to Hn is

Ω

((
n

ℓ+ sk

)
(n−s)k

)
= Ω

(
nℓ
)
,

and a routine application of the second moment method (indeed, ℓ-paths are suitably

‘balanced’) shows that adding a βp̂ density of random edges to Hn must, with high

probability, create at least one useful copy of P in Hn and complete a Hamiltonian

ℓ-cycle, contradicting (3).

We have now shown that W has a sharp threshold, and that this threshold must be

asymptotic to p∗r,ℓ(n); the 1-statement follows, completing the proof. □
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4. Conclusion

There are two basic questions that our work raises; we conclude this paper by

discussing these problems.

First, now that we have identified the sharp threshold for the appearance of nonlinear

Hamiltonian cycles, one can and should ask about the ‘width’ of the critical window.

Since the sharp threshold corresponds to the expectation-threshold, we do not expect

the hitting time to be of interest; indeed, hitting time results are interesting when they

explain some underlying ‘coupon collector’ obstacle, but that is not expected to be the

case here. It is nonetheless plausible that the expectation-threshold is much sharper

than what we have shown, and we conjecture the following.

Conjecture 4.1. For all integers r > ℓ > 1, as n → ∞ along multiples of r − ℓ, if

p = p(n) is such that E[Xℓ] → ∞, where Xℓ is the number of Hamiltonian ℓ-cycles in

Gr(n, p), then

P(Gr(n, p) contains a Hamiltonian ℓ-cycle) → 1.

Second, it is natural to ask what happens for linear cycles (which, recall, are ℓ-

cycles with ℓ = 1). The proof of Theorem 1.1 shows that the appearance of a linear

Hamiltonian cycle in Gr(n, p) has a sharp threshold, and we expect this sharp threshold

to coincide with the sharp threshold for the disappearance of isolated vertices (i.e.,

vertices not contained in any edges). For r ≥ 3, writing

pdegr (n) =
(r − 1)! log n

nr−1

to denote the sharp threshold for the disappearance of isolated vertices in Gr(n, p), we

predict the following.

Conjecture 4.2. For each r ≥ 3, pdegr (n) is the sharp threshold for the appearance of a

linear Hamiltonian cycle in Gr(n, p).

In the case where r = 3, Frieze [8] showed that pdeg3 is a semi-sharp threshold for the

appearance of a linear Hamiltonian cycle, and Dudek and Frieze [4] showed that pdegr is

an asymptotic threshold for the appearance of a linear Hamiltonian cycle for all r ≥ 3.

Of course, we expect much more than Conjecture 4.2 to be true and naturally expect

the hitting time for the appearance of a linear Hamiltonian cycle to coincide with the

hitting time for the disappearance of isolated vertices, but even Conjecture 4.2 appears

to be out of the reach of existing techniques.
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