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Abstract. Given an edge colouring of a graph with a set of m colours, we say that

the graph is (exactly) m-coloured if each of the colours is used. The question of finding

exactly m-coloured complete subgraphs was first considered by Erickson in 1994; in

1999, Stacey and Weidl partially settled a conjecture made by Erickson and raised

some further questions. In this paper, we shall study, for a colouring of the edges of

the complete graph on N with exactly k colours, how small the set of natural numbers

m for which there exists an m-coloured complete infinite subgraph can be. We prove

that this set must have size at least
√
2k; this bound is tight for infinitely many values

of k. We also obtain a version of this result for colourings that use infinitely many

colours.

1. Introduction

A classical result of Ramsey [10] says that when the edges of a complete graph on

a countably infinite vertex set are finitely coloured, one can always find a complete

infinite subgraph all of whose edges have the same colour.

Ramsey’s theorem has since been generalised in many ways; most of these generalisa-

tions are concerned with finding other monochromatic structures. For a survey of many

of these generalisations, see the book of Graham, Rothschild and Spencer [8]. Ramsey

theory has witnessed many developments over the last fifty years and continues to be

an area of active research today; see [9, 1, 13, 2], for instance.

Alternatively, anti-Ramsey theory, which originates in a paper of Erdős, Simonovits

and Sós [5], is concerned with finding large ‘rainbow coloured’ or ‘totally multicoloured’

structures. Between these two ends of the spectrum, one could consider the question of

finding structures which are coloured with exactly m different colours as was first done

by Erickson [6]; it is this line of enquiry that we pursue here.

2. Our results

For a setX, denote byX(2) the set of all unordered pairs of elements ofX; equivalently,

X(2) is the complete graph on the vertex set X. As usual, we write [n] for {1, . . . , n},
the set of the first n natural numbers. We denote a surjective map f from a set X to
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another set Y by f : X ↠ Y . By a colouring of a graph, we mean a colouring of the

edges of the graph unless we specify otherwise.

Let ∆: N(2) ↠ C be a surjective colouring of the edges of the complete graph on N
with an arbitrary set of colours C. If the set of colours C is infinite, we say that ∆ is an

infinite-colouring and if C is finite, we say that ∆ is a k-colouring if |C| = k.

Given a colouring ∆: N(2) ↠ C of the complete graph on N, we say that a subset X

of N is (exactly) m-coloured if ∆(X(2)), the set of values attained by ∆ on the edges

with both endpoints in X, has size exactly m. Let γ∆(X), or γ(X) in short, denote the

size of the set ∆(X(2)); in other words, every set X is γ(X)-coloured. Our aim in this

paper is to study the set

F∆ = {γ∆(X) : X ⊂ N such that X is infinite}.

We first consider colourings using finitely many colours. Let ∆: N(2) ↠ [k] be a

k-colouring of the edges of the complete graph on the natural numbers with k ≥ 2

colours. Trivially, k ∈ F∆ since ∆ is surjective, and Ramsey’s theorem tells us that

1 ∈ F∆. Furthermore, as was noted by Erickson [6], a fairly straightforward application

of Ramsey’s theorem enables one to show that 2 ∈ F∆ for any k-colouring ∆ with k ≥ 2.

Erickson conjectured however that with the exception of 1, 2 and k, no other elements

are guaranteed to be in F∆.

Conjecture 2.1. Let k,m ∈ N with k > m > 2. Then there exists a k-colouring

∆: N(2) ↠ [k] such that m /∈ F∆.

Stacey and Weidl [11] settled this conjecture in the case where k is much bigger than

m. More precisely, for any m > 2, they showed that there exists a constant Cm such

that if k > Cm, then there is a k-colouring ∆ such that m /∈ F∆.

Erickson’s conjecture, if true, would suggest that it is hopeless to look for particular

values in the set F∆ given a k-colouring ∆: N(2) ↠ [k]. It is natural then to consider

other properties of the set F∆. The first question which arises is that of the set of

possible sizes of F∆. Since F∆ ⊂ [k], it follows that |F∆| ≤ k and it is easy to see that

equality is in fact possible. Things are not so clear when we turn to the question of

lower bounds. Let us define

ψ(k) = min
∆: N(2)↠[k]

|F∆|.

We are able to prove the following lower bound for ψ(k).

Theorem 2.2. Let n ≥ 2 be the largest natural number such that k ≥
(
n
2

)
+ 1. Then

ψ(k) ≥ n.

It is not hard to check that Theorem 2.2 is tight when k =
(
n
2

)
+1 for some n ≥ 2. To

this end, we consider the ‘small-rainbow colouring’ ∆ which colours all the edges with
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both endpoints in [n] with
(
n
2

)
distinct colours and all the remaining edges with the one

colour that has not been used so far. Clearly, F∆ = {
(
i
2

)
+ 1 : i ≤ n}, so Theorem 2.2

is best-possible for infinitely many values of k.

Turning to the question of upper bounds for ψ, the small-rainbow colouring demon-

strates that ψ(k) = O(
√
k) for infinitely many values of k. When k is not of the form(

n
2

)
+1, there are two obvious ways of generalising the small-rainbow colouring described

above: we could replace the rainbow coloured clique in the construction either with a

disjoint union of cliques, or with a clique along with an extra vertex attached to some

vertices of the clique. It is not hard to check that both these generalisations fail to give

us good upper bounds for ψ(k) for general k; in particular, we are unable to decide

if ψ(k) = o(k) for all k ∈ N. However, by considering colourings that colour all the

edges of a small complete bipartite graph with distinct colours (as opposed to a small

complete graph) and making use of some number theoretic estimates of Tenenbaum [12]

and Ford [7], we get reasonably close to such a statement.

Theorem 2.3. There exists a subset A of the natural numbers of asymptotic density

one such that for all k ∈ A,

ψ(k) = O

(
k

(log log k)δ(log log log k)3/2

)
,

where δ = 1− 1+log log 2
log 2

≈ 0.086 > 0.

In the spirit of canonical Ramsey theory, which originates in a paper of Erdős and

Rado [4], we also study colourings using infinitely many colours. When ∆ is an infinite-

colouring, then it might so happen (when ∆ is injective, for instance) that for each

infinite subset X of N, the set ∆(X(2)) is infinite; consequently, our search for infinite

m-coloured subsets is doomed to fail in this case. So given a colouring ∆: N(2) ↠ C,
we define

G∆ = {γ∆(X) : X ⊂ N}.
The difference between G∆ and F∆ is that we also consider finite complete subgraphs in

defining G∆. We can prove the following analogue of Theorem 2.2 for infinite-colourings.

Theorem 2.4. Let ∆: N(2) ↠ N be an infinite-colouring and suppose n ≥ 2 is a natural

number. Then |G∆ ∩ [
(
n
2

)
]| ≥ n− 1.

By considering the injective colouring that colours each edge with a distinct colour,

it is easy to see that Theorem 2.4 is best-possible.

The rest of this paper is organised as follows. In the next section, we prove our lower

bounds, namely Theorems 2.2 and 2.4. We remark that we do not prove Theorem 2.2

and 2.4 as stated. Instead, we prove two stronger structural results that in turn imply

these theorems. We postpone the statements of these results since they depend on a
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certain notion of homogeneity that we shall introduce in the next section. In Section 4,

we describe how Theorem 2.3 follows from certain divisor estimates. We conclude by

mentioning some open problems in Section 5.

3. Lower bounds

In this section, we prove Theorem 2.2 by proving a stronger structural result, namely

Theorem 3.3. The proof of Theorem 2.4 via Theorem 3.5 is very similar and we shall

only highlight the main differences in the proofs.

We first introduce a notational convenience. Given a colouring ∆ of N(2), a vertex

v ∈ N, and a subset X ⊂ N \ {v}, we say that a colour c is a new colour from v into X

if some edge from v to X is coloured c by ∆ and also, no edge of X(2) is coloured c by

∆. We write N∆(v,X), or just N(v,X) when the colouring ∆ in question is clear, for

the set of new colours from v into X.

3.1. Proof of Theorem 2.2. Before we prove Theorem 2.2, we note that Erickson’s

argument showing that 2 ∈ F∆ can be generalised to give a quick proof of the fact that

ψ(k) = Ω(log k).

Lemma 3.1. Let ∆: N(2) ↠ [k] be a k-colouring and suppose l ∈ F∆ and l < k. Then

there is an m ∈ F∆ such that l + 1 ≤ m ≤ 2l.

Note that Lemma 3.1, coupled with the fact that we always have 1 ∈ F∆, implies

that ψ(k) ≥ 1 + log2 k.

Proof of Lemma 3.1. Let X ⊂ N be a maximal l-coloured set. As l < k, X ̸= N. Pick
v ∈ N \ X. Note that N(v,X) ̸= ∅ since otherwise X ∪ {v} is l-coloured, which

contradicts the maximality of X.

If |N(v,X)| ≤ l, then X ∪ {v} is m-coloured for some l + 1 ≤ m ≤ 2l. So suppose

|N(v,X)| ≥ l + 1. By the pigeonhole principle, there is an infinite subset Y of X such

that all the vertices of Y are connected to v by edges of a single colour, say c.

We consider two cases. If c ∈ N(v,X), we pick l− 1 vertices from X which are joined

to v by edges coloured with l − 1 distinct colours from N(v,X) \ {c}. If on the other

hand c /∈ N(v,X), we pick l vertices from X which are joined to v by edges coloured

with l distinct colours from N(v,X). Call this set of l − 1 or l vertices Z.

In both cases, it is easy to check that Y ∪Z∪{v} ism-coloured with l+1 ≤ m ≤ 2l. □

Consequently, we have the following corollary.

Corollary 3.2. If ∆: N(2) ↠ [k] is a k-colouring and n is a natural number such that

k ≥ 2n + 1, then F∆ ∩ ([2n+1] \ [2n]) ̸= ∅. □
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We shall show that for any k-colouring ∆: N(2) ↠ [k] with k ≥
(
n
2

)
+ 1 for some n,

we can find n nested subsets A1 ⊊ A2 ⊊ · · · ⊊ An of N such that ∆(A
(2)
1 ) ⊊ ∆(A

(2)
2 ) ⊊

· · · ⊊ ∆(A
(2)
n ). To do this, we introduce the notion of n-homogeneity on which our first

structural result, Theorem 3.3, hinges.

For an ordered n-tuple X = (X1, X2, . . . , Xn), write X̂i for the set X1 ∪X2 · · · ∪Xi.

Given a colouring ∆, we call X = (X1, X2, . . . , Xn), with each Xi a nonempty subset of

N, n-homogeneous with respect to ∆ if the following conditions are met:

(1) Xi ∩Xj = ∅ for i ̸= j,

(2) X1 is infinite and 1-coloured,

(3) ∆(X̂
(2)
1 ) ⊊ ∆(X̂

(2)
2 ) ⊊ · · · ⊊ (X̂

(2)
n ),

(4) for each Xi with 2 ≤ i ≤ n, every v ∈ Xi satisfies

N(v, X̂i−1) = ∆
(
X̂

(2)
i

)
\∆

(
X̂

(2)
i−1

)
, and

(5) γ(X̂n) ≤
(
n
2

)
+ 1.

Rather than proving Theorem 2.2, we prove the following stronger statement.

Theorem 3.3. Let ∆: N(2) ↠ [k] be a k-colouring and suppose n is a natural number

such that k ≥
(
n
2

)
+ 1. Then there exists an n-homogeneous tuple with respect to ∆.

Before we prove Theorem 3.3, let us first recall the lexicographic order on Nr: we say

that (a1, a2 . . . , ar) < (b1, b2 . . . , br) if for some l ≤ r − 1 we have ai = bi for 1 ≤ i ≤ l

and al+1 < bl+1.

Note that if X = (X1, X2, . . . , Xn) is n-homogeneous, then by condition (4), the set

N(v, X̂i−1) is identical for all v ∈ Xi for 2 ≤ i ≤ n. For n ≥ 2, define the rank of

an n-homogeneous tuple X to be the (n− 1)-tuple (x1, x2, . . . , xn−1), where xi is the

number of new colours from any vertex of Xi+1 into the set X̂i. Note that the rank of

an n-homogeneous tuple is an (n − 1)-tuple of natural numbers, so we can compare

ranks using the lexicographic order on Nn−1.

Proof of Theorem 3.3. We proceed by induction on n. The case n = 1 is Ramsey’s

theorem. Suppose that k ≥
(
n+1
2

)
+ 1 and assume inductively that at least one

n-homogeneous tuple exists.

From the set of all n-homogeneous tuples, pick one with minimal rank in the lex-

icographic order, say X = (X1, X2, . . . , Xn). If n = 1, the rank is immaterial; it

suffices to pick X = (X1) such that X1 is an infinite 1-coloured set. We shall build an

(n+ 1)-homogeneous tuple from X.

Note that k ≥
(
n+1
2

)
+ 1 >

(
n
2

)
+ 1. Since ∆ is surjective and attains at most

(
n
2

)
+ 1

different values inside X̂n, it is clear that N \ X̂n ̸= ∅. We consider two cases.
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Case 1: N(v, X̂n) ̸= ∅ for some v ∈ N \ X̂n. If |N(v, X̂n)| ≤ n, then it is easy to

check that (X1, X2, . . . , Xn, {v}) is an (n+ 1)-homogeneous tuple and we are done. So,

assume without loss of generality that |N(v, X̂n)| ≥ n+ 1.

Let j be the smallest index such thatN(v, X̂j) ̸= ∅. SinceN(v, X̂n) ̸= ∅, this minimal

index j exists. We now build our (n+ 1)-homogeneous tuple Y = (Y1, Y2, . . . , Yn+1) as

follows.

Set Y1 = X1, Y2 = X2, . . . , Yj−1 = Xj−1. We define Yj as follows. First, choose

c ∈ N(v, X̂j); note that by the minimality of j, N(v, X̂j−1) = ∅, so all the edges

between v and X̂j coloured c are actually edges between v and Xj. Take Yj ⊂ Xj to

be the (nonempty) set of vertices u ∈ Xj such that the edge between v and u is either

coloured c or with a colour from ∆(X̂
(2)
j ) (and hence a colour not in N(v, X̂j)). Note

that if j = 1, we can always choose c such that Y1 is an infinite subset of X1.

Next, set Yj+1 = {v}. Now, note that the only colour from ∆(Ŷ
(2)
j+1) that might possibly

occur in N(v, X̂n) is c. So we can now choose v1, v2, . . . , vn−j from Xn∪Xn−1 · · ·∪Xj+1∪
(Xj \Yj) such that these n− j vertices are joined to v by edges which are all coloured by

distinct elements of N(v, X̂n) \ {c}. Set Yj+2 = {v1}, Yj+3 = {v2}, . . . , Yn+1 = {vn−j}.
We claim that Y is an (n+ 1)-homogeneous tuple. Indeed, conditions (1) and (2) are

obviously satisfied.

To check condition (3), first note that ∆(Ŷ
(2)
1 ) ⊊ ∆(Ŷ

(2)
2 ) ⊊ · · · ⊊ ∆(Ŷ

(2)
j−1) follows

from the n-homogeneity of X since Ŷi = X̂i for 1 ≤ i ≤ j − 1. Also, ∆(Ŷ
(2)
j−1) ⊊ ∆(Ŷ

(2)
j )

since Yj ⊂ Xj, and ∆(Ŷ
(2)
j ) ⊊ ∆(Ŷ

(2)
j+1) since v is joined to at least one vertex of Yj by

an edge coloured with c and we know that c is a new colour from v into Ŷj. Finally,

∆(Ŷ
(2)
j+1) ⊊ ∆(Ŷ

(2)
j+2) ⊊ · · · ⊊ ∆(Ŷ

(2)
n+1) because the vertices v1, v2, . . . , vn−j are all joined

to v by edges of distinct colours and none of these colours belong to ∆(X̂
(2)
n ). So

condition (3) is also satisfied.

Condition (4) for each of Y1, Y2, . . . , Yj is equivalent to the same condition for

X1, X2, . . . , Xj respectively. Furthermore, condition (4) is also satisfied by each of

Yj+1, Yj+2, . . . , Yn+1 since they each contain exactly one vertex.

Finally, we check condition (5). Clearly, ∆(Ŷ
(2)
n+1) is a subset of ∆(X̂

(2)
n )∪ T for some

subset T of N(v, X̂n) of size at most n. Hence, we see that γ(Ŷn+1) ≤
(
n
2

)
+ 1 + n =(

n+1
2

)
+ 1.

Case 2: N(v, X̂n) = ∅ for every v ∈ N \ X̂n. It is here that we use the fact that

X has minimal lexicographic rank. To deal with this case, we will need the following

lemma.
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Lemma 3.4. Let X be an n-homogeneous tuple of minimal lexicographic rank and

suppose N(v, X̂n) = ∅ for some v ∈ N \ X̂n. Then there is an n-homogeneous tuple Y

such that Yj = Xj ∪ {v} for some j ∈ [n], and Yi = Xi for each 1 ≤ i ≤ n with i ̸= j.

Proof. IfN(v, X̂i) = ∅ for each 1 ≤ i ≤ n, then (X1∪{v}, X2, . . . , Xn) is n-homogeneous

and we have Y as required. Hence, let j < n be the largest index such that N(v, X̂j) ̸=
∅. So by the definition of j, N(v, X̂i) = ∅ for j < i ≤ n. We claim that Y =

(X1, X2, . . . , Xj, Xj+1 ∪ {v}, Xj+2, . . . , Xn) is n-homogeneous.

Consider a colour c that belongs to N(v, X̂j). Since N(v, X̂j+1) = ∅, this means

that c must occur in ∆(X̂
(2)
j+1) \ ∆(X̂

(2)
j ). But, by condition (4), for each u ∈ Xj+1,

N(u, X̂j) = ∆(X̂
(2)
j+1) \∆(X̂

(2)
j ). Hence, N(v, X̂j) ⊂ N(u, X̂j) for u ∈ Xj+1.

Observe that since N(v, X̂i) = ∅ for j < i ≤ n, N(u, X̂i−1) = N(u, X̂i−1 ∪ {v}) for
each u ∈ Xi with j + 1 < i ≤ n. From this, it is easy to see that Y is n-homogeneous if

N(v, X̂j) = N(u, X̂j) for u ∈ Xj+1. So, suppose that N(v, X̂j) ⊊ N(u, X̂j) for u ∈ Xj+1,

and then consider the n-tuple Z = (X1, X2, . . . , Xj, {v}, Xj+1, Xj+2, . . . , Xn−1). We

claim that Z is n-homogeneous and has strictly smaller lexicographic rank than X,

which is a contradiction.

We first check the n-homogeneity of Z. Clearly, conditions (1) and (2) are satisfied

by Z.

To check condition (3), first note that ∆(Ẑ
(2)
1 ) ⊊ ∆(Ẑ

(2)
2 ) ⊊ · · · ⊊ ∆(Ẑ

(2)
j+1) follows

from the n-homogeneity ofX and the fact that N(v, X̂j) ̸= ∅. Next, ∆(Ẑ
(2)
j+1) ⊊ ∆(Ẑ

(2)
j+2)

since N(v, X̂j) ⊊ N(u, X̂j) for u ∈ Xj+1. Finally, we have ∆(Ẑ
(2)
j+2) ⊊ ∆(Ẑ

(2)
j+3) ⊊ · · · ⊊

∆(Ẑ
(2)
n ) since we know that N(u, X̂i−1 ∪ {v}) = N(u, X̂i−1) ̸= ∅ for each u ∈ Xi with

j + 1 < i ≤ n. So Z satisfies condition (3).

Condition (4) is satisfied trivially by each of Z1, Z2, . . . , Zj. Condition (4) holds

for Zj+1 since v is the only element in Zj+1. We know that N(v, X̂j+1) = ∅. Hence,

condition (4) holds for Zj+2 since for any vertex u ∈ Zj+2 = Xj+1, we see that

N(u, Ẑj+1) = N(u, X̂j) \N(v, X̂j) = ∆(Ẑ
(2)
j+2) \∆(Ẑ

(2)
j+1). Finally, condition (4) holds

for each Zi with j + 2 < i ≤ n by the fact that N(u, X̂i−1 ∪ {v}) = N(u, X̂i−1) for each

u ∈ Xi.

Finally, it is easy to see that condition (5) holds since N(v, X̂n) = ∅.

That Z has smaller lexicographic rank than X is clear from the fact that N(v, X̂j) ⊊
N(u, X̂j) for u ∈ Xj+1. □

We have assumed that N(v, X̂n) = ∅ for each v ∈ N \ X̂n. Now, ∆ is surjective, so

there must exist two vertices v1 and v2 in N \ X̂n such that the edge joining v1 and v2
is coloured with a colour c not in ∆(X̂

(2)
n ).
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Let Y be the n-homogeneous tuple that we get by applying Lemma 3.4 to X and v1. It

is then clear that N(v2, Ŷn) = {c}. Thus, (Y1, Y2, . . . , Yn, {v2}) is an (n+1)-homogeneous

tuple. This completes the proof of the theorem. □

3.2. Proof of Theorem 2.4. As we mentioned earlier, the proof of Theorem 2.4 is

very similar to that of Theorem 2.2 and also goes via a stronger structural result. We

only highlight the main differences.

To prove Theorem 2.4, we will need to alter the definition of n-homogeneity slightly.

We shall relax condition (2): instead of demanding that our first set X1 be infinite and

1-coloured, we shall only require that |X1| = 1.

More precisely, given a colouring ∆, we call an n-tuple X = (X1, X2, . . . , Xn), with

each Xi a nonempty subset of N, weakly homogeneous with respect to ∆ if the following

conditions are met:

(1) Xi ∩Xj = ∅ for i ̸= j,

(2) |X1| = 1,

(3) ∅ = ∆(X̂
(2)
1 ) ⊊ ∆(X̂

(2)
2 ) ⊊ · · · ⊊ ∆(X̂

(2)
n ),

(4) for each Xi with 2 ≤ i ≤ n, every v ∈ Xi satisfies

N(v, X̂i−1) = ∆
(
X̂

(2)
i

)
\∆

(
X̂

(2)
i−1

)
, and

(5) γ(X̂n) ≤
(
n
2

)
.

Theorem 2.4 is an easy consequence of the following stronger statement.

Theorem 3.5. Let ∆: N(2) ↠ N be an infinite-colouring and suppose n ≥ 2 is a natural

number. Then there exists a weakly homogeneous n-tuple with respect to ∆. □

The proof is essentially identical to that of Theorem 3.3. Note that we only use the

finiteness of the set of colours in two places in the proof of Theorem 3.3. First, to

produce an infinite 1-coloured set for the base case of the induction and second, to

ensure that the subset Y1 of X1 that we construct in the inductive step (in Case 1) is

infinite. The definition of weak homogeneity gets around both these difficulties.

4. Upper bounds

Erdős proved in [3] that for a natural number n, the set Pn = {ab : a, b ≤ n} has

size o(n2). We base the proof of Theorem 2.3 on the observation that Pn is exactly the

set of sizes of all induced subgraphs of a complete bipartite graph between two equal

vertex classes of size n.

Let H(x, y, z) be the number of natural numbers n ≤ x having a divisor in the

interval (y, z]. Tenenbaum [12] showed that

H(x, y, z) = (1 + o(1))x if log y = o(log z), z ≤
√
x. (1)
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Ford [7] proved that

H(x, y, 2y) = Θ

(
x

(log y)δ(log log y)3/2

)
if 3 ≤ y ≤

√
x, (2)

where δ = 1− 1+log log 2
log 2

. Armed with these two facts, we can now prove Theorem 2.3.

Proof of Theorem 2.3. We shall take

A = {k : ∃ a, b ∈ N with k − 1 = ab and log k ≤ a ≤ b}.

It follows from (1) that H(x, log x,
√
x) = (1 + o(1))x; as an easy consequence, A has

asymptotic density one. Now, for a fixed k ∈ A with k − 1 = ab, consider a surjective

k-colouring ∆ of the complete graph on N which colours all the edges of the complete

bipartite graph between [a] and [b+ a] \ [a] with ab distinct colours and all the other

edges with the one colour not used so far. It is easy to then see that

F∆ = {a′b′ + 1 : 1 ≤ a′ ≤ a, 1 ≤ b′ ≤ b} ∪ {1}.

Now, for any element a′b′ + 1 ∈ F∆, note that a/2i+1 < a′ ≤ a/2i for some i ≥ 0, so

a′b′ ≤ ab/2i. Thus,

|F∆| ≤ 1 +
∑
i≥0

H

(
ab

2i
,
a

2i+1
,
a

2i

)
.

Using Ford’s estimate (2) for H(x, y, 2y) and the fact that a ≥ log k, we obtain that

ψ(k) = O

(
k

(log log k)δ(log log log k)3/2

)
for all k ∈ A. □

5. Conclusion

Our results raise many questions that we cannot yet answer. We suspect that

something much stronger than Corollary 3.2 is true.

Conjecture 5.1. Let ∆: N(2) ↠ [k] be a k-colouring and suppose n ≥ 2 is a natural

number such that k ≥
(
n
2

)
+ 2. Then F∆ ∩ ([

(
n+1
2

)
+ 1] \ [

(
n
2

)
+ 1]) ̸= ∅.

If true, note that this statement would imply Theorem 2.2. When n = 2, the

conjecture is implied by Corollary 3.2. We are able to prove the first nontrivial instance

of Conjecture 5.1, namely that when k ≥ 5, F∆∩{5, 6, 7} ≠ ∅, but the proof we possess

sheds no light on how to prove the conjecture in general.

We strongly suspect that the function ψ is rather far from being monotone. We have

shown that ψ(
(
n
2

)
+ 1) = n and ψ(

(
n+1
2

)
+ 1) = n + 1, and it is an easy consequence

of our results that ψ(
(
n
2

)
+ 2) = n + 1. It appears to be true that even ψ(

(
n
2

)
+ 3)

is much bigger than n, though we cannot even prove much more than the fact that

ψ(
(
n
2

)
+ 3) > n+ 1.
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Conjecture 5.2. There is an absolute constant c > 0 such that ψ(
(
n
2

)
+ 3) > (1 + c)n

for all natural numbers n ≥ 2.

The problem of determining ψ completely is of course still open. We do not know

the answer to even the following question.

Problem 5.3. Is ψ(k) = o(k) for all k ∈ N?

If we restrict our attention to colourings which use every colour but one exactly once,

we are led to the following question about induced subgraphs, a positive answer to

which would immediately imply that ψ(k) = o(k) for all k ∈ N. To state the question,

we need some definitions: let S(G) denote the set of sizes of all the induced subgraphs

of a graph G and let S(m) be the minimum value of |S(G)| taken over all graphs G

with m edges.

Problem 5.4. Is S(m) = o(m)?
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