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Abstract. Resolving a conjecture of Kühn and Osthus from 2012, we show that

p = 1/
√
n is the threshold for the random graph Gn,p to contain the square of a

Hamilton cycle.

1. Introduction

Understanding thresholds for various properties of interest has been central to the

study of random graphs since its initiation by Erdős and Rényi [4], and thresholds for

containment of (copies of) specific graphs in the random graph has been the subject of

some of the most powerful work in the area; see [3, 11, 10], both for a broad overview,

and for threshold basics.

Hamilton cycles in random graphs in particular are the subject of an extensive

literature, with, to begin, the question of when they appear posed in [4] and answered

in [19, 14, 2, 1]; see [9] for a thorough account. Here, we consider a related question

first raised by Kühn and Osthus [15]: when does the square of a Hamilton cycle appear

in the random graph? We remind the reader that the k -th power of a graph G is the

graph on V (G) with two vertices joined if and only if their distance in G is at most k.

For this discussion, we write Hk
n for the k-th power of an n-vertex cycle i.e., a

Hamilton cycle of Kn. The expected number of copies of Hk
n in the binomial random

graph Gn,p is

((n− 1)!/2)pkn,

implying that the threshold for appearance of Hk
n in Gn,p (henceforth, simply the

‘threshold for Hk
n’) is at least n−1/k; here, we follow a standard abuse in using ‘the’

threshold for an order of magnitude rather than a specific value. For k = 1, it was

famously shown by Pósa [19] that the threshold for a Hamilton cycle is log n/n —

this is driven not by expectation considerations, but by the need to avoid isolated

vertices — while for k ≥ 3, it follows from a general result of Riordan [20], based on

the second-moment method, that the threshold for Hk
n is n−1/k. The case k = 2 has

proved more stubborn: here, there is no obvious analogue of isolated vertices pushing

the threshold above n−1/2, but, unlike for k ≥ 3, the second-moment method yields
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only weak upper bounds. Kühn and Osthus [15] conjectured that n−1/2 is correct, and

showed that the threshold is at most n−1/2+o(1), an upper bound subsequently improved

to (log n)4n−1/2 by Nenadov and Škorić [18], to (log n)3n−1/2 by Fischer, Škorić, Steger

and Trujić [5], and to (log n)2n−1/2 in unpublished work of Montgomery [16]. Here we

resolve this question, proving the conjecture of [15].

Theorem 1.1. There is a universal K > 0 such that for p ≥ K/
√
n,

P(Gn,p contains the square of a Hamilton cycle) → 1

as n → ∞.

While the aforementioned attempts are all rooted in the notion of ‘absorption’

introduced in [21], the proof of Theorem 1.1 takes a different approach, based on the

recent resolution, by Frankston and the present authors [6], of Talagrand’s relaxation [22]

of the ‘expectation threshold’ conjecture of [12]. We say that a hypergraph H on a

finite vertex set V is q-spread if

|H ∩ ⟨I⟩| ≤ q|I||G|

for each I ⊂ V , where ⟨I⟩ is the increasing family generated by I; in this language, the

main result of [6] says that there is a universal C > 0 such that if a hypergraph H with

edges of size at most ℓ is q-spread, then a (Cq log ℓ)-random subset of V is likely to

contain some edge of H.

Applied to the hypergraph G consisting of all copies of H2
n — which is q-spread with

q ∼
√

e/n — the result of [6] says that the threshold for H2
n is at most log n/

√
n. A

key point in our proof of Theorem 1.1, which eliminates the offending log n, is the

observation that large ‘local spreads’ (|G ∩ ⟨I⟩|/|G|)1/|I| are relatively rare, a typical

value being more like 1/n than 1/
√
n.

Formally, we prove the following result which on the surface appears weaker than

Theorem 1.1.

Theorem 1.2. For each ε > 0 there is a K such that for p ≥ K/
√
n,

P(Gn,p contains the square of a Hamilton cycle) ≥ 1 − ε

for sufficiently large n ∈ N.

However, it is easily seen that Theorem 1.2 implies Theorem 1.1; this just requires

applying the machinery of Friedgut [7, 8] to say that the property of containing H2
n has

a sharp threshold. We omit this by now routine step (and the relevant definitions), and

refer the reader to [17] for a similar argument.

This paper is organised as follows: the proof of Theorem 1.2 is given in Section 3,

with some basic calculations supporting the argument provided in Section 2, and a few

final remarks follow in Section 4.
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2. Preliminaries

We will use M for E(Kn) and from now on write H for H2
n. As above, G is the

(2n)-uniform hypergraph on vertex set M consisting of all copies of H in Kn. Thus

|G| = (n− 1)!/2, and it is not hard to see that G is q-spread with

q = (2/(n− 1)!)1/(2n) ∼
√

e/n,

which we recall means that

|G ∩ ⟨I⟩| ≤ q|I||G| (1)

for all I ⊂ M.

The next two observations implement the basic idea mentioned above, that large

values of |G ∩ ⟨I⟩|/|G| are relatively rare.

Proposition 2.1. For an I ⊂ M with ℓ ≤ n/3 edges and c components,

|G ∩ ⟨I⟩| ≤ (16)ℓ
(
n−

⌈
ℓ + c

2

⌉
−1

)
!

Proof. Let I1, . . . , Ic be the components of I and v = |V (I)|, where for H ⊂ M, we

write V (H) for the set of vertices spanned by H. The upper bound on ℓ implies that

no Ij can ‘wrap around’, so we have |E(Ij)| ≤ 2|V (Ij)| − 3 for each j and

ℓ ≤ 2v − 3c. (2)

We first designate a root vertex vj for each Ij and order V (Ij) by some ≺j that begins

with vj and in which each v ≠ vj appears later than at least one of its neighbors. We

may then bound |G ∩ ⟨I⟩| as follows.

To specify a J (∈ G) containing I, we first specify a cyclic permutation of {v1, . . . , vc}∪
(V (Kn) \ V (I)). By (2), the number of ways to do this, namely, (n− v + c− 1)!, is at

most (
n−

⌈
ℓ + c

2

⌉
−1

)
!.

We then extend to a full cyclic ordering of V (Kn) (thus determining J) by inserting,

for j = 1, . . . , c, the vertices of V (Ij) \ {vj} in the order ≺j. This allows at most four

places to insert each vertex (since one of its neighbours has been inserted before it and

the edge joining them must belong to J), so the number of possibilities here is less than

4v ≤ (16)ℓ, and the proposition follows. □

Proposition 2.2. For an F ⊂ H of size h, the number of subgraphs of F with ℓ edges

and c components is at most

(8e)ℓ
(

2h

c

)
.
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Proof. We need the following standard bound, which follows from the fact (see [13], for

example) that the infinite ∆-branching rooted tree contains precisely(
∆v
v

)
(∆ − 1)v + 1

≤ (e∆)v−1

rooted subtrees with v vertices.

Lemma 2.3. For a graph G of maximum degree ∆, the number of connected, h-edge

subgraphs of G containing a given vertex is less than (e∆)h. □

To specify a subgraph J of F as in the proposition, we proceed as follows. We first

choose root vertices v1, . . . , vc for the components, say J1, . . . , Jc, of J , the number of

possibilities for this being at most
(
2h
c

)
. We then choose the sizes, say ℓ1, . . . , ℓc, of

J1, . . . , Jc; here the number of possibilities is at most the number of positive integer

solutions of ℓ1 + · · · + ℓc = ℓ, which is
(
ℓ−1
c−1

)
. Finally, we specify for each i, a connected

Ji of size ℓi rooted at vi, which according to Lemma 2.3 can be done in at most∏
(4e)ℓi = (4e)ℓ ways. Combining these estimates with the crude bound of

(
ℓ−1
c−1

)
< 2ℓ

yields the bound in the proposition. □

3. Proof of the main result

Recall that M = E(Kn) and G is the hypergraph of copies of H = H2
n in Kn, and set

m = |M| =
(
n
2

)
. For S ∈ G and X ⊂ M, an (S,X)-fragment is a set of the form J \X

with J ∈ G contained in S ∪X.

Our main point, Lemma 3.1 below, says that for a suitably large w, most pairs (S,W )

with S ∈ G and W ∈
(
M

w

)
admit small fragments.

Set k = 4
√
n and for S ∈ G and X ⊂ M, call the pair (S,X) good if some (S,X)-

fragment has size at most k, and bad otherwise. In what follows, we will always assume

S, J ∈ G and W ∈
(
M

w

)
, where w will be Cn3/2 for some large constant C.

Lemma 3.1. There is a fixed C0 such that for all C ≥ C0 and n ∈ N, with w = Cn3/2,

|{(S,W ) : (S,W ) is bad}| ≤ 2C−k/3|G|
(
m

w

)
. (3)

Proof. We may of course assume n is large, since values below any fixed n0 can be

handled trivially by adjusting C0. It is enough to show

|{(S,W ) : (S,W ) is bad, |W ∩ S| = t}| ≤ 2C−k/3|G|
(

2n

t

)(
m− 2n

w − t

)
(4)

for t ∈ {0, . . . , 2n}, since summing over t then gives (3).

Now aiming for (4), we fix t, set w′ = w − t, and bound the number of bad (S,W )’s

with |W ∩ S| = t (so |W \ S| = w′ and |W ∪ S| = w′ + 2n).
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Call Z ∈
(

M

w′+2n

)
pathological if

|{S ⊂ Z : (S,Z \ S) is bad}| > C−k/3|G|
(
m− 2n

w′

)/(
m

w′ + 2n

)
= C−k/3|G|

(
w′ + 2n

2n

)/(
m

2n

)
,

and, when |S ∪X| = w′ + 2n, say (S,X) is pathological if S ∪X is. We bound the

nonpathological and pathological parts of (4) separately.

Nonpathological contributions. We claim that the number of nonpathological

(S,W )’s in (4) is less than

C−k/3|G|
(

2n

t

)(
m− 2n

w′

)
. (5)

To see this, we specify (S,W ) by specifying first Z = S ∪W , then S, and then W . The

number of possibilities for Z is at most(
m

w′ + 2n

)
,

while, since (S,W ) being bad implies that (S,Z \ S) is bad (and Z is nonpathological),

the number of possibilities for S given Z is at most

C−k/3|G|
(
m− 2n

w′

)/(
m

w′ + 2n

)
.

Of course the number of possibilities for W given Z and S is at most
(
2n
t

)
, and we

have (5).

Pathological contributions. The main point here is the following estimate.

Claim 3.2. For a given S ∈ G, Y chosen uniformly from
(
M\S
w′

)
, and large enough C ,

E [|{J ∈ G : J ⊂ Y ∪ S and |J ∩ S| ≥ k}|] ≤ C−2k/3|G|
(
w′ + 2n

2n

)/(
m

2n

)
. (6)

This is proved below, but assuming for the moment it is true, we show that the

number of pathological (S,W )’s in (4) is, for C as in the claim, less than

C−k/3|G|
(

2n

t

)(
m− 2n

w′

)
. (7)

To see this we think of choosing (S,W ∩ S) — which can be done in at most |G|
(
2n
t

)
ways — and then W \ S. For the latter, notice that (S,W ) being bad means that every

J ⊂ S ∪W has |J ∩ S| (≥ |J \W |) ≥ k. Hence, since (S,W ) is pathological, we have

|{J ⊂ S ∪ (W \ S) : |J ∩ S| ≥ k}| ≥ C−k/3|G|
(
w′ + 2n

2n

)/(
m

2n

)
.
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But then Claim 3.2, along with Markov’s inequality, says the number of possibilities for

W \ S is at most

C−k/3

(
m− 2n

w′

)
.

Thus, we have (7), and combining this with (5) completes the proof of Lemma 3.1. □

Proof of Claim 3.2. With fi the fraction of J ’s (in G) with |J ∩ S| = i, the left-hand

side of (6) is ∑
i≥k

|G|fi
(

w′

2n− i

)/(
m− 2n

2n− i

)
,

so it is enough to show

fi

((
w′

2n− i

)/(
m− 2n

2n− i

))((
w′ + 2n

2n

)/(
m

2n

))−1

= eO(i)C−i, (8)

where — here and below — implied constants do not depend on C. The terms other

than fi on left-hand side of (8) reduce to

(w′)2n−i

(w′ + 2n)2n−i

· (m)2n−i

(m− 2n)2n−i

· (m− 2n + i)i
(w′ + i)i

; = eO(i)C−ini/2.

we omit the routine calculation establishing this, just noting that
√
n = O(i) since

i ≥ k. Hence, for (8) we just need

fi ≤ eO(i)n−i/2. (9)

For n/3 ≤ i ≤ 2n, this follows from the fact that G is q-spread with q ∼
√

e/n,

see (1), which gives

fi ≤
(

2n

i

)
qi = eO(i)n−i/2.

For k ≤ i ≤ n/3, Propositions 2.1 and 2.2 with Stirling’s formula give

fi ≤ |G|−1(128e)i
i∑

c=1

(
4n

c

)(
n−

⌈
i + c

2

⌉
−1

)
! = eO(i)n−i/2

i∑
c=1

(
√
n/c)c = eO(i)n−i/2,

where at the end we use the fact that (a/x)x ≤ ea/e and that i ≥ k. □

We are now ready to prove Theorem 1.2.

Proof of Theorem 1.2. For a given ε > 0 as in the statement of the theorem, we prove

the result for K = 3C0 + C, with C0 as in Lemma 3.1 and C a suitable function of ε

(essentially 1/ε). Let p0 = 3C0/
√
n, p1 = C/

√
n and p = p0 + p1 − p0p1 < K/

√
n. We

generate Gn,p in two rounds, as W0 ∪W1, where W0 and W1 are independent with W0

and W1 distributed as Gn,p0 and Gn,p1 respectively, and W1 chosen after W0 (at which

point we are really just interested in W1 \W0).
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Call W0 successful if

|{S : (S,W0) is bad}| ≤ |G|/2.

We first observe that W0 is (very) likely to be successful: standard concentration

estimates give (say)

P(|W0| < C0n
3/2) = exp

(
−n3/2

)
,

and Lemma 3.1 gives

P(W0 unsuccessful | |W0| ≥ C0n
3/2) < 4C

−k/3
0 ;

in particular W0 is successful with probability 1 − o(1).

Suppose now that W0 is successful. For each S with (S,W0) being good, let χ(S,W0)

be some k-element subset of S containing an (S,W0)-fragment, and let R be the

k-uniform multihypergraph

{χ(S,W0) : (S,W0) is good}. (10)

To finish, we use the second moment method to show that W1 is reasonably likely to

contain a member of R. Setting

X = |{A ∈ R : A ⊂ W1}|,

we have

µ = E[X] = |R|pk1
and

Var(X) ≤ p2k1
∑{

p
−|A∩B|
1 : A,B ∈ R, A ∩B ̸= ∅

}
. (11)

For R ∈ R and 1 ≤ i ≤ k, as in the proof of Claim 3.2, Propositions 2.1 and 2.2 with

Stirling’s formula give

|{A ∈ R : |A ∩R| = i}| ≤
∑

I⊂R,|I|=i

|R ∩ ⟨I⟩| ≤
∑

I⊂R,|I|=i

|G ∩ ⟨I⟩|

= eO(i)
∑
1≤c≤i

(
2k

c

)(
n−

⌈
i + c

2

⌉
−1

)
!

= eO(i)n−i/2|G|.

Recall that W0 was assumed to be successful, so this means that |R| ≥ |G|/2, and

hence, the sum in (11) is at most

2|R|2p2k1
k∑

i=1

eO(i)p−i
1 n−i/2 = O(µ2/C)

for large enough C where, again, the implied constant does not depend on C. Finally,

Chebyshev’s inequality gives

P(X = 0) ≤ Var(X)/µ2 = O(1/C),
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which is at most ε provided C = Ω(1/ε) and we are done. □

4. Conclusion

Our work still leaves open a natural question, namely that of locating the sharp

threshold for Gn,p to contain a square of the Hamilton cycle. Though there seems little

hope of proving such a statement along the present lines, it is natural to guess that the

above expectation considerations drive the threshold more precisely.

Conjecture 4.1. For fixed ε > 0 and p > (1 + ε)
√
e/n,

P(Gn,p contains the square of a Hamilton cycle) → 1

as n → ∞.
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14. J. Komlós and E. Szemerédi, Limit distribution for the existence of Hamiltonian

cycles in a random graph, Discrete Math. 43 (1983), 55–63. 1
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