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Abstract. We identify a surprising inequality satisfied by the elementary symmetric

polynomials under the action of the fixed point measure of a random permutation.

Concretely, for any collection of n non-negative real numbers a1, . . . , an ∈ R≥0, we

prove that

1

n!

∑
π∈Sn

 ∏
{i:i=π(i)}

ai

 ≥ 1(
n
2

) ∑
S∈([n]

2 )


 ∏

{i∈S}

ai

1/2
 ,

and this bound is sharp. Our proof of this combinatorial inequality relies on techniques

from geometric analysis; we construct a collection of differential operators and use

these to set up a monotone flow that then allows us to establish the inequality.

1. Introduction

For integers 0 ≤ k ≤ n, the elementary symmetric polynomial ek(x) in the variables

x = (x1, . . . , xn) is defined by

ek(x) =
∑

S∈([n]
k )

∏
i∈S

xi,

and its normalised counterpart sk(x) is given by sk(x) = ek(x)/
(
n
k

)
; here, we write

(
[n]
k

)
for the family of k-element subsets of [n] = {1, . . . , n}, and as is standard, interpret any

product over the empty set as being one, so that e0(x) = s0(x) = 1.

Inequalities involving the elementary symmetric polynomials are a classical subject

of study. To give but two famous examples, for any sequence a = (a1, . . . , an) of non-

negative reals, a well-known theorem of Newton asserts that the sequence {sk(a)}nk=0

is log-concave, and this in turn implies another well-known result of Maclaurin that

the sequence {(sk(a))1/k}nk=1 is non-increasing; for a survey of these and other related

results, see [3, 6].

In this paper, we shall prove a new inequality involving the elementary symmetric

polynomials, one that arises from the action of the fixed point measure of a random

permutation on these polynomials. Writing fix(π) for the set of fixed points of a
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permutation π : [n] → [n] and Sn for the symmetric group over [n], our main result is

as follows.

Theorem 1.1. For any collection a = (a1, . . . , an) of n ≥ 2 non-negative reals, we have

Eπ∼Sn

 ∏
i∈fix(π)

ai

 ≥ E
S∼([n]

2 )

(∏
i∈S

ai

)1/2
 , (1)

where both expectations are over the respective uniform measures ; furthermore, provided

n ≥ 3, equality holds if and only if ai = 1 for all 1 ≤ i ≤ n.

We may also reformulate Theorem 1.1 explicitly in terms of the elementary symmetric

polynomials as follows. Writing D(n, k) for the rencontres numbers that count the

number of permutations of an n-element set with exactly k fixed points, our result says

that for any collection a = (a1, . . . , an) of n non-negative reals, we have
n∑

k=0

d(n, k)sk (a) ≥ s2
(√

a
)
,

where d(n, k) is the fraction D(n, k)/n! and
√
a = (

√
a1, . . . ,

√
an) is the vector of

non-negative square roots of the elements of a.

The fixed point measure induced by a random permutation — the probability measure

µ on 2[n] defined by

µ(X) = Pπ∼Sn (X = fix(π))

for each X ⊂ [n], where π is chosen uniformly at random from Sn — is known to

possess some interesting properties; for example, a beautiful result of Fishburn, Doyle

and Shepp [2] asserts that this measure is positively associated, meaning that for any

pair of non-decreasing functions f, g : 2[n] → R, we have

Eµ[fg] ≥ Eµ[f ]Eµ[g]. (2)

While the action of the fixed point measure on the elementary symmetric polynomials

considered in Theorem 1.1 appears to be somewhat unusual on the surface, it arises

naturally in the study of the matrix permanent, and indeed, we discovered Theorem 1.1

while searching for new lower bounds for the matrix permanent. While we hope to

say more about matrix permanents elsewhere, here, we content ourselves with pointing

out that the left-hand side of (1) is easily seen to be per(M(a))/n!, where M(a) is the

n× n matrix whose diagonal entries are a1, . . . , an and whose off-diagonal entries are

all one.

Our proof of Theorem 1.1 relies on a somewhat unusual approach. Concretely, we

construct a collection of differential operators to set up a monotone flow that allows

us to locate (within some compact subset of the domain where it suffices to establish

the inequality) the critical points of the difference between the left-hand side and the
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right-hand side of (1). To get a sense of the difficulties involved in proving Theorem 1.1,

and to appreciate why our proof of Theorem 1.1 requires such machinery, it will be

helpful to consider the result in some special cases and for small values of n ∈ N.
When all the ai are equal, say to a, then the right-hand side of (1) is just a, while

the left-hand side of (1) is E[aX ], where X is the number of fixed points of a uniformly

random permutation; since E[X] = 1, the result in this case follows from convexity via

Jensen’s inequality. It is tempting to look for a similar argument that relies on convexity,

potentially in conjunction with the aforementioned positive association property (2) of

the fixed point measure, in the general case; such a proof might well exist, but we have

tried hard to find such an argument and have nothing to show for our efforts.

The statement of Theorem 1.1 is easy to check for n = 2 since it asserts (after scaling

by a factor of 2!) that 1 + a1a2 ≥ 2
√
a1a2 for any a1, a2 ≥ 0; this is of course immediate

from the AM–GM inequality. On the other hand, our main result is already somewhat

non-trivial for n = 3; in this case, the inequality asserts (now, after scaling by a factor

of 3!) that we have

2 + a1 + a2 + a3 + a1a2a3 ≥ 2
√
a1a2 + 2

√
a2a3 + 2

√
a1a3 (3)

for any a1, a2, a3 ≥ 0. It is not too difficult to prove (3), but what is striking to us is the

fact that every elementary proof of (3) that we know of appears to break symmetry in

the variables (a1, a2, a3) in some way (even though (3) is itself symmetric). For example,

we may deduce (3) from a well-known inequality of Schur [6] that says that for any

x, y, z ≥ 0, we have x(x− y)(x− z) + y(y − z)(y − x) + z(z − x)(z − y) ≥ 0; that said,

the proof of this inequality itself involves some symmetry breaking, and indeed, it is

known, see [4, 7], that on account of this symmetry breaking, there are no natural

extensions of Schur’s inequality that apply to four or more non-negative reals.

In fact, we can quantify the difficulty in proving (1) a little more precisely. First,

it is not too hard to show that the validity of (3) (and thus (1) as well) has no ‘sum

of squares’-certificate in the ring of polynomials. Second, there is a rather powerful

inequality due to Muirhead [5] that allows one to compare symmetric means of non-

negative reals. The right-hand side of (1) is a symmetric Muirhead mean of the numbers

a1, . . . , an (associated with the vector (1/2, 1/2, 0, . . . , 0)), while the left-hand side is

a weighted linear combination of the elementary symmetric polynomials, which are

themselves Muirhead means of the numbers a1, . . . , an as well. However, it can be

shown that even (3), the specialisation of (1) to three variables, is not in the Muirhead

semiring in the sense of [1], or in other words, that (3) does not follow (in a logically

precise sense) from Muirhead’s inequality.

The rest of this paper is organised as follows. Our proof of Theorem 1.1 via the

construction of a monotone flow is given in Section 2. We conclude with a discussion of

open questions in Section 3.
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2. Proof of the main result

We shall prove Theorem 1.1, for n ≥ 4, through an analysis of the critical points of

an appropriately defined real-valued function over Rn
≥0. To carry out this analysis, we

need some notation.

Let ck denote the number of derangements of [k], i.e., the number of permutations

of [k] with no fixed points. For n ∈ N, we define the functions Ln(x) and Rn(x) in

the real variables x = (x1, . . . , xn) to be the left-hand side and right-hand side of (1),

respectively; more precisely, we have

Ln(x) =
1

n!

n∑
i=0

cn−iei(x) =
1

n!

∑
π∈Sn

∏
i∈fix(π)

xi,

and

Rn(x) = s2
(√

x
)
=

1(
n
2

) ∑
S∈([n]

2 )

(∏
i∈S

xi

)1/2

,

where
√
x = (

√
x1,

√
x2, . . . ,

√
xn) is the vector of non-negative square roots of the

entries of x.

Our goal then is to prove that the function

fn(x) = Ln(x)−Rn(x)

is non-negative for all x ∈ Rn
≥0. In broad strokes, our proof of Theorem 1.1 proceeds as

follows.

(1) First, we establish that it suffices to show that fn ≥ 0 over a compact subset

C ⊂ Rn
≥0, and we also show that fn does not attain its minimum on the boundary

of C.

(2) We know that a differentiable function on a compact set attains its minimum

either at a point on the boundary or at a critical point in the interior, so we

finish by showing that fn has a unique critical point (1, . . . , 1) in the interior of

C, and that fn is equal to zero at this point.

The first step is fairly straightforward, but the second step is somewhat delicate.

To show that (1, . . . , 1) is the unique critical point of fn in C, we need to show that

the gradient ∇fn is non-vanishing at every other point in the interior of C. However,

this appears to be quite difficult; indeed, it is unclear, a priori, which components of

∇fn ought to be non-zero at any given point. We circumvent this difficulty by instead

constructing a monotone flow; concretely, we construct a family of differential operators

whose action on fn allows us to exhibit, at each x ̸= (1, . . . , 1), a direction d(x) in which

fn is decreasing.

We now turn to the details of how to execute this strategy.
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Proof of Theorem 1.1. We shall first prove the inequality assuming n ≥ 4; the cases

where n ≤ 3 are handled separately at the end with more ad hoc arguments.

Before we proceed, we remind the reader that the number ck of derangements of [k]

is given by

ck = k!
k∑

j=0

(−1)j

j!
;

in particular, k!/3 ≤ ck ≤ k!/2 for k ≥ 2.

We first show that it suffices to restrict our attention to a compact subset of Rn
≥0.

Lemma 2.1. For any n ≥ 4, the function fn(x) is non-negative for all x ∈ Rn
≥0 if and

only if it is non-negative for all x ∈ C, where

C = {x = (x1, . . . , xn) : x1 ≥ 0, . . . , xn ≥ 0 and
∑
i

xi ≤ 6n}.

Proof. We claim that for all n ≥ 4, fn(x) ≥ 5/6 whenever
∑

i xi ≥ 6n. To see this, note

that

fn(x) =
1

n!

n∑
k=0

cn−kek (x)−
1(
n
2

)e2 (√x
)

≥ 1

n!
(cn + cn−1e1(x) + cn−2e2(x))−

1(
n
2

)e2 (√x
)

≥ 1

3n!
(n! + (n− 1)! · e1(x) + (n− 2)! · e2(x))−

1(
n
2

)e2 (√x
)

≥ 1

3
+

e1(x)

3n
+

1(
n
2

)∑
i<j

(
xixj/6−

√
xixj

)
,

where the bound cn−2 ≥ (n − 2)!/3 relies on our assumption that n ≥ 4. Now, it is

easily verified that y/6−√
y ≥ −3/2 for all y ≥ 0, so it follows from the assumption

that e1(x) =
∑

i xi ≥ 6n that

fn(x) ≥
1

3
+

6n

3n
+

1(
n
2

)∑
i<j

(−3/2)

= 1/3 + 2− 3/2 = 5/6,

as claimed. □

Hence, it suffices to show that fn(x) ≥ 0 for x ∈ C. Next, we claim that fn(x) does

not attain its minimum on the boundary of C. The boundary of C is {x ∈ S : e1(x) =

6n ∨ x1 = 0 ∨ · · · ∨ xn = 0}. Lemma 2.1 tells us that fn(x) ≥ 5/6 when e1(x) = 6n,

while it is easy to see that 1 = (1, . . . , 1) is in C and that fn(1) = 0. So to show that

fn(x) does not attain its minimum on the boundary of C, it suffices to consider those

points x in the boundary of C where xi = 0 for some i ∈ [n]. For any i ∈ [n], as xi → 0+
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with the other xj fixed with at least one xj ̸= 0, we have ∂fn/∂xi = −Θ(1/
√
xi) → −∞.

Hence, at any point on the boundary of C other than 0 = (0, . . . , 0) where some xi = 0,

fn is strictly decreasing in the direction of bi, i-th standard basis vector, and this

vector is clearly inward pointing. On the other hand, at 0, fn is easily seen to be

strictly decreasing in the (inward pointing) direction of 1 = (1, . . . , 1); indeed, we see

that fn(t1) = (cn/n!)− (1− cn−1/(n− 1)!)t+Θ(t2) as t → 0+, and this shows (since

cn−1 < (n − 1)!) that fn(t1) is strictly decreasing in t for small t ≥ 0. Hence, we

conclude that fn does not attain its minimum on the boundary of C.

On a compact set, a differentiable function may only attain its minimum at points on

the boundary or at critical points in the interior. We shall finish the proof by showing

that fn has exactly one critical point, namely the point 1, in the interior of C. Since

fn(1) = 0, we may then conclude that fn(x) ≥ 0 for all x ∈ Rn
≥0, and that equality is

attained only at the point 1.

We begin with some preliminary calculations. The partial derivatives of Ln are given

by

∂Ln

∂xi

=
∂

∂xi

 1

n!

∑
π∈Sn

∏
j∈fix(π)

xj

 =
(n− 1)!

n!

 1

(n− 1)!

∑
σ∈S(i)

n−1

∏
j∈fix(σ)

xj

 =
1

n
Ln−1(x̂i)

where S
(i)
n−1 denotes the symmetric group acting on [n] \ {i}, and x̂i is the vector x with

the i-th coordinate removed. Next, the partial derivatives of Rn are given by

∂Rn

∂xi

=
∂

∂xi

(
1(
n
2

) ∑
1≤j<k≤n

√
xjxk

)
=

1

n(n− 1)

∑
j ̸=i

√
xj

xi

.

Therefore, the partial derivatives of fn(x) = Ln(x)−Rn(x) are given by

∂fn
∂xi

=
1

n
Ln−1(x̂i)−

1

n(n− 1)

∑
j ̸=i

√
xj

xi

. (4)

With these formulae in hand, we first verify that 1 is indeed a critical point of fn.

Lemma 2.2. The point 1 is a critical point of fn, and fn(1) = 0.

Proof. First, note that

fn(1) = Ln(1)−Rn(1) = Eπ∈Sn [1]− E
S∈([n]

2 )
[1] = 1− 1 = 0.

Next, using (4), we get that

∂fn
∂xi

∣∣∣∣
x=1

=
1

n
(1)− 1

n(n− 1)
(n− 1) =

1

n
− 1

n
= 0

for all i ∈ [n], establishing the claim. □
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Next, we show that certain regions of Rn
≥0 are free of critical points of fn. We first

show that there are no critical points in the region (1,∞)n.

Lemma 2.3. No critical points of the function fn lie in the region (1,∞)n.

Proof. We bound the second derivatives of f = fn at each point x ∈ (1,∞)n. First, we

have
∂2f

∂x2
i

=
1

2n(n− 1)

∑
j ̸=i

√
xj

x3
i

> 0.

Also, for j ̸= i, we have

∂2f

∂xj∂xi

=
1

n(n− 1)
Ln−2(x̂i,j)−

1

2n(n− 1)

1
√
xixj

,

where x̂i,j is the vector x with the i-th and j-th coordinates removed. Since x ∈ (1,∞)n,

we see that Ln−2(x̂i,j) ≥ 1 and
√
xixj ≥ 1, so we then have

∂2f

∂xj∂xi

≥ 1

n(n− 1)
− 1

2n(n− 1)
≥ 1

2n(n− 1)
> 0.

Recall that
∂f

∂xi

∣∣∣∣
x=1

= 0

for each i ∈ [n]. Consequently, each derivative ∂f/∂xi is positive everywhere in the

region (1,∞)n, so there are no critical points in this region as claimed. □

Next, we show that there are no critical points in the region (0, 1)n.

Lemma 2.4. No critical points of the function fn lie in the region (0, 1)n.

Proof. Consider ⟨∇f(x),1⟩ for f = fn. This is given by

n∑
i=1

∂f

∂xi

=
n∑

i=1

 1
n
Ln−1(x̂i)−

1

n(n− 1)

∑
j∈[n]\{i}

√
xj

xi

 .

For any x ∈ (0, 1)n, it is clear that Ln−1(x̂i) < 1 for each i ∈ [n]. Hence,
n∑

i=1

1

n
Ln−1(x̂i) < 1.

On the other hand, as
√

xj

xi
+
√

xi

xj
≥ 2, we have that

1

n(n− 1)

n∑
i=1

∑
j∈[n]\{i}

√
xj

xi

≥ 1.

Therefore, we have ⟨∇f(x), 1⟩ < 0 for any x ∈ (0, 1)n, so there are no critical points in

this region as claimed. □
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Now, fix some x ∈ intC \ {(0, 1)n ∪ {1} ∪ (1,∞)n}. To show that x is not a critical

point, we construct a monotone flow, i.e., we exhibit a direction d(x) at each such

x such that ⟨∇fn(x), d(x)⟩ > 0, thereby showing that ∇fn(x) ̸= 0 and that x is not

a critical point. Hence, suppose for a contradiction that x is a critical point. As fn
is a symmetric function of the xi’s, we may assume without loss of generality that

0 < x1 ≤ · · · ≤ xn. Lemmas 2.3 and 2.4 tell us that x /∈ (0, 1)n ∪ (1,∞)n. Thus, we

may also assume that x1 < xn, and that x1 ≤ 1 ≤ xn. To finish, we will show that there

exists a direction d(x) at x such that ⟨∇fn(x), d(x)⟩ > 0. In more detail, for every

k ∈ [n− 1], we shall consider the action of the differential operators

Ok = xk
∂

∂xk

− xn
∂

∂xn

on fn and show that Okfn(x) < 0 for the largest k ∈ [n− 1] such that xk < xk+1 (and

such a k exists by our assumption that x1 < xn); in other words, we may take d(x) to

be xkbk − xnbn for some k ∈ [n− 1], where (b1, . . . ,bn) denotes the standard basis.

First, we compute Okfn(x) for k ∈ [n− 1]. With

Sk(x) =
n−2∑
i=1

cn−iei−1(x̂k,n)− (n− 2)!
∑
i̸=k,n

√
xi√

xk +
√
xn

,

it follows from (4) after some algebraic manipulation that

Okfn(x) =
1

n!
(xk − xn)Sk(x).

In what follows, we shall show that Sk(x) > 0 for some k ∈ [n− 1].

Lemma 2.5. If xn−1 < xn, then Sn−1(x) > 0.

Proof. We have

Sn−1(x) =
n−2∑
i=1

cn−iei−1(x̂n−1,n)− (n− 2)!
n−2∑
i=1

√
xi√

xn−1 +
√
xn

≥ cn−1 + cn−2

n−2∑
i=1

xi − (n− 2)!
n−2∑
i=1

√
xi√

xn−1 +
√
xn

=
n−2∑
i=1

Fn−1(xi),

where Fn−1(x) is given by

Fn−1(x) =
cn−1

n− 2
+ cn−2x− (n− 2)!

√
x

√
xn−1 +

√
xn

. (5)

We shall prove that Fn−1(x) > 0 for all x ∈ (0, xn−1], implying that Sn−1(x) > 0.
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Indeed, for x ≤ xn−1, put y =
√

x/xn and note that

Fn−1(x) =
cn−1

n− 2
+ cn−2x− (n− 2)!

√
x

√
xn−1 +

√
xn

≥ (n− 1)!

3(n− 2)
+

(n− 2)!

3
x− (n− 2)!

√
x√

x+
√
xn

=
(n− 1)!

3(n− 2)
+

(n− 2)!

3
y2xn − (n− 2)!

y

y + 1
;

here, we use the fact that n ≥ 4 to bound cn−2 ≥ (n − 2)!/3. Since xn ≥ 1, we then

have

Fn−1(x) ≥
(n− 1)!

3(n− 2)
+

(n− 2)!

3
y2 − (n− 2)!

y

y + 1

≥ (n− 2)!

[
1

3
+

1

3
y2 − y

y + 1

]
.

The function
1

3
+

1

3
y2 − y

y + 1

is easily checked to be positive for all y ∈ (0, 1]. Hence, Fn−1(x) > 0 for all x ∈ (0, xn−1],

implying that Sn−1(x) > 0. □

Next, we outline how one may show that Sn−2(x) > 0 when xn−2 < xn−1 = xn.

Before we do so, it will be helpful to generalise the definition of Fn−1 above, and we

define Fk(x) for each k ∈ [n− 2] by

Fk(x) =
cn−1

n− 2
+ cn−2x− (n− 2)!

√
x

√
xk +

√
xn

.

As before, it is clear that Sn−2(x) ≥
∑

i̸=n−2,n Fn−2(xi). While Fn−2(xi) > 0 for each

i ∈ [n− 3] as in the proof of Lemma 2.5, the term Fn−2(xn−1) can be negative when

xn−2 < xn−1 = xn. We get around this fact by pairing up Fn−2(xn−1) with Fn−2(x1), say.

Indeed, since xn−1 = xn and xn ≥ 1, and since y =
√

x1/xn is at most z =
√
xn−2/xn,

we have

Fn−2(x1) + Fn−2(xn−1) ≥ (n− 2)!

[
1

3
+

1

3
y2xn −

y

z + 1
+

1

3
+

1

3
xn−1 −

1

z + 1

]
≥ (n− 2)!

[
1

3
+

1

3
y2 − y

z + 1
+

1

3
+

1

3
− 1

z + 1

]
≥ (n− 2)!

[
1 +

1

3
y2 − y + 1

z + 1

]
≥ (n− 2)!

3
y2 > 0,
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so it follows that

Sn−2(x) ≥
∑

i̸=n−2,n

Fn−2(xi) ≥ Fn−2(x1) + Fn−2(xn−1) > 0,

where of course the presence of the term Fn−2(x1) implicitly needs n ≥ 4.

We may extend the argument above to show for any ⌊n/2⌋ ≤ k ≤ n − 2 that if

xk < xk+1 = · · · = xn, then

Okfn(x) =
1

n!
(xk − xn)Sk(x) < 0.

Indeed, we have Fk(xi) > 0 for each 1 ≤ i ≤ k − 1, and for each k + 1 ≤ j ≤ n − 1,

we may pair up Fk(xj) and Fk(xn−j) and check, as above, that Fk(xj) + Fk(xn−j) > 0.

This then shows that

Sk(x) ≥
∑
i̸=k,n

Fn−2(xi) ≥
n−1∑

j=k+1

Fk(xj) + Fk(xn−j) > 0,

as required.

However, this pairing strategy fails once ⌊n/2 + 1⌋ or more of the largest coordinates

of x are all equal. At this point, it will be convenient to treat the cases of even n and

odd n separately.

First, suppose that n = 2ℓ is even and that

xk < xk+1 = · · · = xn ≥ 1

for some 1 ≤ k ≤ ℓ− 1.

We reparametrise by setting k = ℓ − t − 1 for some t ∈ {0, 1, . . . , ℓ − 2}, then set

y =
√
xk/xn, and finally define

f(y, t) =
n−2∑
i=1

cn−i

(
ℓ+ t

i− 1

)
− (n− 2)!

(
(ℓ+ t)

1

y + 1
+ (ℓ− t− 2)

y

y + 1

)
.

Recall that

Sk(x) =
n−2∑
i=1

cn−iei−1(x̂k,n)− (n− 2)!
∑
i̸=k,n

√
xi√

xk +
√
xn

.

Since at least ℓ+ t coordinates of x are bounded below by 1, we have

ei−1(x̂k,n) ≥
(
ℓ+ t

i− 1

)
;

it is also easy to see, since x1 ≤ · · · ≤ xk, that∑
1≤i<k

√
xi√

xk +
√
xn

≤ (ℓ− t− 2)
y

y + 1
,
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while the fact that xk+1 = · · · = xn gives us∑
k<i≤n−1

√
xi√

xk +
√
xn

=
ℓ+ t

y + 1
.

It follows that Sk(x) ≥ f(y, t), as claimed. The following lemma completes the argument

in the case where n is even.

Lemma 2.6. For all y ∈ (0, 1] and t ∈ {0, 1, . . . , ℓ− 2}, we have f(y, t) > 0.

Proof. Note that

∂f

∂y
= (n− 2)!

2t+ 2

(1 + y)2
> 0,

so f is strictly increasing in y for any fixed t. Thus, to prove the lemma, it suffices to

show that f(0, t) ≥ 0 for each t ∈ {0, 1, . . . , ℓ− 2}; since ∂f/∂y > 0 for all y ∈ (0, 1),

the fact that f(0, t) ≥ 0 implies that f(y, t) > 0 for all y ∈ (0, 1].

In what follows, we first show that f(0, ℓ−2) = 0, and then show that f(0, t) increases

as we decrease t, establishing the claim.

Let us first check that

f(0, ℓ− 2) =
n−2∑
i=1

cn−i

(
n− 2

i− 1

)
− (n− 2)!(n− 2) = 0. (6)

Note that (n−2)!(n−2) is the number of ways of permuting the set [n−1] while ensuring

that n − 1 is not a fixed point. On the other hand, any such permutation has i − 1

fixed points for some 1 ≤ i ≤ n− 2, so we may first select i− 1 fixed points from [n− 2]

in
(
n−2
i−1

)
ways, and then select a derangement of the remaining (n− 1)− (i− 1) = n− i

elements in cn−i ways. The identity (6) is now immediate.

Finally, we show that f(0, t− 1) > f(0, t) for all 1 ≤ t ≤ ℓ− 2. Indeed, from the fact

that ℓ+ t− 1 < n− 2, we get

f(0, t)− f(0, t− 1) =
n−2∑
i=1

cn−i

((
ℓ+ t

i− 1

)
−
(
ℓ+ t− 1

i− 1

))
− (n− 2)!

=
n−2∑
i=1

cn−i

(
ℓ+ t− 1

i− 2

)
− (n− 2)!

=
n−4∑
j=0

cn−2−j

(
ℓ+ t− 1

j

)
− (n− 2)!

<

n−4∑
j=0

cn−2−j

(
n− 2

j

)
− (n− 2)!.
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Note that (n − 2)! is the number of permutations of [n − 2], and this may also be

enumerated by counting permutations that fix exactly j elements in [n− 2] for some

0 ≤ j ≤ n− 2, yielding

(n− 2)! =
n−2∑
j=0

cn−2−j

(
n− 2

j

)
.

It follows that

f(0, t)− f(0, t− 1) <
n−4∑
j=0

cn−2−j

(
n− 2

j

)
−

n−2∑
j=0

cn−2−j

(
n− 2

j

)

= −
n−2∑

j=n−3

cn−2−j

(
n− 2

j

)
< 0,

and the claim follows. □

Next, suppose that n = 2ℓ+ 1 is odd, and that

xk < xk+1 = · · · = xn ≥ 1

for some 1 ≤ k ≤ ℓ− 1. The argument for this case is similar to the one in the even

case above, but with some minor modifications.

In this case, it is more convenient to reparametrise by setting k = ℓ − t for some

t ∈ {1, . . . , ℓ− 1}, then set y =
√

xk/xn, and finally define

g(y, t) =
n−2∑
i=1

cn−i

(
ℓ+ t

i− 1

)
− (n− 2)!

(
(ℓ+ t)

1

y + 1
+ (ℓ− t− 1)

y

y + 1

)
.

Arguing as in the previous case, it is not difficult to verify that

(1) Sk(x) ≥ g(y, t),

(2) ∂g/∂y = (n− 2)!(2t+ 1)/(1 + y)2 > 0 for all y ∈ (0, 1),

(3) g(0, t− 1) > g(0, t) for all 2 ≤ t ≤ ℓ− 1, and

(4) g(0, ℓ− 1) = 0.

These facts then imply that Sk(x) > 0, as desired.

We have shown, assuming n ≥ 4, that the only critical point of fn in the interior

of the domain C is 1, that fn(1) = 0, and that fn(x) > 0 for all x ∈ Rn
≥0 \ C; this

establishes the result for n ≥ 4.

To finish our proof of the result in full generality, we need to prove the claimed

bound (1) for n ≤ 3.

When n = 2, the result is trivial: we need to verify that 1 + xy ≥ 2
√
xy for any

x, y ≥ 0, and this is immediate from the AM–GM inequality.
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When n = 3, we have to show that

2 + x+ y + z + xyz ≥ 2
√
xy + 2

√
yz + 2

√
xz

for any x, y, z ≥ 0. From the AM–GM inequality, we have

2 + xyz = 1 + 1 + xyz ≥ 3(xyz)1/3,

so it suffices to show that

x+ y + z + 3(xyz)1/3 ≥ 2
√
xy + 2

√
yz + 2

√
xz.

Putting x = a3, y = b3 and z = c3, this is equivalent to showing that

a3 + b3 + c3 + 3abc ≥ 2
(
(ab)3/2 + (bc)3/2 + (ac)3/2

)
for a, b, c ≥ 0. Schur’s inequality tells us that

a3 + b3 + c3 + 3abc ≥ ab(a+ b) + bc(b+ c) + ac(a+ c),

and the fact that

ab(a+ b) + bc(b+ c) + ac(a+ c) ≥ 2
(
(ab)3/2 + (bc)3/2 + (ac)3/2

)
follows from three applications of the AM–GM inequality. Additionally, one may check

that the only case of equality occurs when x = y = z = 1. Hence, we have shown that

the claim holds for n = 3 as well, and the result now follows. □

3. Conclusion

Our result raises the possibility that there exist other interesting families of inhomo-

geneous inequalities satisfied by the elementary symmetric polynomials. While there is

a fairly well-developed algebraic theory of inequalities for symmetric polynomials, this

theory is mostly concerned with homogeneous inequalities. While it is not clear how to

extend the existing algebraic theory to prove our main result, we suspect that such an

extension is likely to lead to some interesting new discoveries; we hope that our result

will serve as a spur for further developments in this direction.
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