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Abstract. We study the problem of cops and robbers on the grid where the robber

is allowed to move faster than the cops. It is a well-known fact that two cops are

necessary and sufficient to catch the robber on any finite grid when the robber has

unit speed. Here, we prove that if the speed of the robber exceeds a sufficiently large

absolute constant, then the number of cops needed to catch the robber on an n× n

grid is exp(Ω(logn/ log log n)).

1. Introduction

The game of Cops and Robbers, introduced almost thirty years ago independently by

Nowakowski and Winkler [14] and Quilliot [15], is a perfect information pursuit-evasion

game played on an undirected graph G as follows. There are two players, a set of

cops and one robber. The game begins with the cops being placed onto vertices of

their choice in G and then the robber, being fully aware of the placement of the cops,

positions himself at a vertex of his choosing. Afterwards, they move alternately, first

the cops and then the robber along the edges of the graph G. In the cops’ turn, each

cop may move to an adjacent vertex, or remain where he is, and similarly for the robber;

also, multiple cops are allowed to occupy the same vertex. The cops win if at some

time there is a cop at the same vertex as the robber; otherwise, the robber wins. The

minimum number of cops for which the cops have a winning strategy, no matter how

the robber plays, is called the cop number of G.

Perhaps the most well-known problem concerning the game of cops and robbers is

Meyniel’s conjecture which asserts that O(
√
n) cops are sufficient to catch the robber on

any n-vertex graph. While Meyniel’s conjecture has attracted a great deal of attention,

progress towards the conjecture in its full generality has been rather slow; see [2] for a

broad overview, and [9, 16] for the state of the art.

In this note, we shall be concerned with a variant of the question where the robber is

allowed to move faster than the cops. Let us suppose that the cops move normally as

before while the robber is allowed to move at speed R ∈ N; in other words, the robber

may, on his turn, take any walk of length at most R from his current position that

does not pass through a vertex occupied by a cop. The definition of the cop number in
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this setting is analogous. This variant was originally considered by Fomin, Golovach,

Kratochv́ıl, Nisse and Suchan [5] and following them, Frieze, Krivelevich and Loh [6],

Mehrabian [12], and Alon and Mehrabian [1] have obtained results about how large the

cop number of an n-vertex graph can be when the robber has a fixed speed R > 1.

It is natural to ask how the cop number of a given graph changes, if at all, when

the speed of the robber increases from 1 to some R > 1. The most natural example

of a graph where this question is interesting is the n × n grid of squares where two

squares of the grid are adjacent if and only if they share an edge. Let us write fR(n)

for the minimum number of cops needed to catch a robber of speed R on an n× n grid.

Maamoun and Meyniel [10] showed, amongst other things, that f1(n) = 2 for all n ≥ 2.

However, the flavour of the problem changes completely as soon as the robber is allowed

to move faster than the cops. Nisse and Suchan [13] showed that f2(n) = Ω(
√
log n).

Our aim in this note is to prove the following extension.

Theorem 1.1. There exists an R ∈ N and a cR > 0 such that for all sufficiently large

n ∈ N, we have

fR(n) ≥ exp

(
cR log n

log log n

)
.

To keep the presentation simple, we shall make no attempt to optimise the speed of

the robber; we prove Theorem 1.1 with R = 1025.

Note that fR(n) ≤ n for every R ∈ N since n cops can catch a robber of any speed

on the n × n grid by lining up on the bottom edge of the grid and then marching

upwards together. We suspect that this trivial upper bound is closer to the truth than

Theorem 1.1; we conjecture the following.

Conjecture 1.2. For all sufficiently large R ∈ N, fR(n) = n1−o(1) as n → ∞.

We give a sketch of the proof of Theorem 1.1 and then the proof proper in Section 2.

We also describe a modest improvement of the trivial upper bound in Section 3. We

conclude with some discussion in Section 4.

2. Proof of the main result

Our proof of Theorem 1.1 is inspired by the strategy used by Bollobás and Leader [3]

and Kutz [8] to resolve Conway’s angel problem in three dimensions.

We fix a large positive integer R ∈ N which will denote the speed of the robber in

what follows. We also fix two other positive integers C,N ∈ N such that C, N and R

together satisfy C ≥ 40, N > 100eC and R > 50N . We may, for example, take C = 40,

N = 1020 and R = 1025.

Define a sequence of grids as follows: let A0 be an N ×N grid and for k ≥ 1 let Ak

be a (2k + 1)2 × (2k + 1)2 array of copies of Ak−1.
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We shall imagine that our n× n grid is tiled with copies of A0, with these copies of

A0 themselves fitting together to form copies of A1, and so on. We call each copy of

Ak in our grid a k-cell. Our strategy for the robber will be inductive: we shall describe

how the robber may run from k-cell to adjacent k-cell, the path of the robber within a

k-cell being inductively determined, all the while avoiding k-cells where there are too

many cops.

Let us suppose that the robber is situated on the bottom edge of a ‘safe’ k-cell and

wishes to get to the bottom edge of the k-cell above. Assume for the moment that the

robber’s k-cell is guaranteed to be ‘safe’ for a reasonably large number of steps.

Here then is an outline of a strategy for the robber: he plots a straight line from his

current (k− 1)-cell to a (k− 1)-cell in the k-cell above that he wishes to get to. He runs

across each of the (k − 1)-cells on the way until he reaches his destination; within each

(k − 1)-cell, his path is determined inductively. Of course, there is a problem with this

strategy: along the way, a (k− 1)-cell that the robber needs to run across might not be

‘safe’ when he gets to it, or worse, a (k− 1)-cell might become ‘unsafe’ while the robber

is running through it. To address these issues, the robber alters his path dynamically

and detours around any (k − 1)-cell along his planned straight line path that he finds

might become ‘unsafe’ while he is running through it. Our definition of ‘safety’ will

ensure that the robber does not have to take too many detours. It will follow, and it is

here that we use the fact that a k-cell is a (2k + 1)2 × (2k + 1)2 array of (k − 1)-cells,

that the ‘average speed’ of the robber is large despite the fact that he has to take the

occasional detour (and detours within detours, and so on). This will provide us with

enough elbow room to prove what we need by induction.

We now go about making the above sketch precise. First, we define a sequence (Lk)k≥0

of natural numbers by setting Lk =
∏k

j=0(2j + 1)2; clearly a k-cell is an NLk ×NLk

grid of squares. Next, we define another sequence (Tk)k≥0 of natural numbers by setting

T0 = 1 and Tk = (2k + 1)2Tk−1 + CTk−1 for k ≥ 1.

An observation that we shall use repeatedly is that each k ≥ 0,

Tk = Lk

k∏
j=1

(
1 +

C

(2j + 1)2

)
< Lk exp

(
C

∞∑
j=1

1

(2j + 1)2

)
< eCLk.

We need to define some notions of ‘safety’. We say that a k-cell is safe at some point

in time if the number of cops (at that point in time) within the k-cell is strictly less

than 2k. Also, we say that a k-cell is safe for t steps (at some point) if the set of cops

at distance at most t from the k-cell has cardinality strictly less than 2k. Note that a

k-cell safe for t steps is necessarily safe for t′ steps for every 0 ≤ t′ ≤ t as well.

Next, we say that a square is k-safe if for each 0 ≤ k′ ≤ k, the k′-cell containing the

square is safe for Tk′ steps; also, a square is completely k-safe if it is guaranteed to be

k-safe after a single cop move.
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Figure 1. The bottom landing zone of a 1-cell; each square here repre-

sents a 0-cell.

Notice that if a k-cell is safe, then it contains at most one unsafe (k − 1)-cell. We

shall require a straightforward extension of this simple observation. Let us say that two

cells are separated if they share neither an edge nor a corner. The following proposition

is easily proved.

Proposition 2.1. Let X be a k-cell and assume that X is safe for t steps where

2t < NLk−1. If P and Q are a separated pair of (k − 1)-cells within X , then either P

or Q is safe for t steps.

Proof. Simply notice that since P and Q are separated, the distance between them is

at least NLk−1. Consequently, the set of cops at distance at most t from P and the set

of cops at distance at most t from Q are disjoint and the proposition follows. □

To help with the induction, we shall demarcate certain regions as ‘landing zones’. For

k ≥ 1, the landing zone of a k-cell is the union of its bottom, top, right and left landing

zones; the bottom landing zone of a k-cell consists of the 3× 1 sub-grid of (k − 1)-cells

at the middle of the bottom edge of the k-cell as shown in Figure 1 and the top, right

and left landing zones are analogously defined by symmetry. Also, a square is called a

k-landing square, if the square is contained in the landing zone of each k′-cell containing

it for 1 ≤ k′ ≤ k.

Our proof of Theorem 1.1 hinges on the following lemma.

Lemma 2.2. Let k ≥ 1 and suppose that it is the robber’s turn to move. Suppose

further that the robber is positioned on a k-safe, k-landing square inside a k-cell X . If

the k-cell Y above X is safe for 2Tk +1 steps, then the robber has a strategy to reach, in

at most Tk steps and without getting caught, a k-landing square in the bottom landing

zone of Y which is completely k-safe on his arrival there.
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Let us point out that there is some asymmetry in how Lemma 2.2 is stated. The

lemma assumes something about the grid when the robber is about to move, and says

something about the grid after a sequence of moves ending with a move made by the

robber. However, note that a square is completely k-safe only if it is k-safe after a single

cop move; hence, if the robber moves using the strategy given by Lemma 2.2, then no

matter how the cops move on their turn following his final move, his new location is

k-safe (and the lemma may be applied once again).

Proof of Lemma 2.2. Note that Lemma 2.2 is really a collection of four different state-

ments, one each for when the robber starts in the bottom, top, right and left landing

zones of his k-cell X. Indeed, Lemma 2.2 says that under certain conditions, it is

possible for the robber to safely move from the landing zone of a k-cell to (the landing

zone of) any of its four neighbouring k-cells in Tk steps.

We prove the lemma by induction on k. The case k = 1 is easy to check. Assume

that it is the robber’s turn to move, that he is on a 1-safe square in the landing zone of

his 1-cell X, and that the 1-cell Y above him is safe for 2T1 + 1 = 19 + 2C steps. We

need to show that he can move in at most T1 steps to a square in the bottom landing

zone of Y which is completely 1-safe on his arrival. The robber can in fact do this in

one step as we now describe.

Since the robber’s square is 1-safe, note there are no cops in his 0-cell, say P . Consider

a pair of separated 0-cells, call them Q and Q′, in the bottom landing zone of Y . Note

that at least one of Q or Q′, say Q, must be safe for two steps because if not, then

since 4 < NL0 = N , it follows from Proposition 2.1 that Y is not safe for two steps,

contradicting our assumption that Y is safe for 19 + 2C steps with room to spare.

Note that a 1-cell is a 9× 9 array of 0-cells. Since a 0-cell is an N ×N grid, it is easy

to see that that there are N disjoint paths, each wholly contained within the union of

X and Y and of length at most 36N , from P to any 0-cell in Y . Since both X and Y

are safe when the robber is about to move, there are at most two cops in total within X

and Y . Hence, there are at least N − 2 paths between P and Q containing no cops on

them. Note that the speed of the robber R is greater than 36N , and hence the robber,

on his turn, can follow one of these N − 2 paths from his square in P to a square in Q.

Note that Q is safe for two steps and Y is safe for 19 + 2C ≥ T1 + 1 steps; hence, it

clear that any square in Q is completely 1-safe on the robber’s arrival there.

Now assume k > 1 and that we have proved the claim for each 1 ≤ k′ < k. We

describe the robber’s strategy when he starts in the bottom landing zone of his k-cell.

The strategy for the three other landing zones are very similar and we only highlight

the very minor differences.

We shall divide the robber’s journey into two parts. We first describe how the robber

should travel from the bottom landing zone of his k-cell X to the top landing zone of
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Figure 2. The planned path to the top landing zone, and the detouring

strategy.

X. This journey will require at most (2k + 1)2Tk−1 + 3Tk−1 steps. We then show that

robber can dash across from the top landing zone of X into the bottom landing zone of

Y in at most 13Tk−1 steps. Hence, the total number of steps required will be bounded

above by

(2k + 1)2Tk−1 + 16Tk−1 ≤ (2k + 1)2Tk−1 + CTk−1 ≤ Tk

as required.

In what follows, when we speak of the robber arriving at a square in a (k − 1)-cell, it

is implied that the square is a (k − 1)-landing square.

The robber begins by plotting a straight line path from his (k − 1)-cell, say S, to the

nearest (k − 1)-cell, say F , in the top landing zone of X as shown in Figure 2. The

robber’s square is k-safe; this means that X is safe for Tk steps and that the robber’s

square is (k − 1)-safe. If the (k − 1)-cell above him is safe for 2Tk−1 + 1 steps, then

the robber may inductively run, in at most Tk−1 steps and without getting caught, to

a square in the (k − 1)-cell above him which is completely (k − 1)-safe on his arrival

there. Following the subsequent cop turn, his square is (k − 1)-safe. The robber may

repeat this process until he gets to F , provided that every time the robber arrives at a

(k − 1)-cell (and the cops have subsequently moved), the (k − 1)-cell above is safe for

2Tk−1 + 1 steps at that point. In this case, the robber reaches the top landing zone of

X in at most (2k + 1)2Tk−1 steps, and we are done.

So we may assume that at some stage of his journey, the robber is on a (k − 1)-safe

square in a (k − 1)-cell P within X, it is his turn to move, and that the (k − 1)-cell Q

above P is not safe for 2Tk−1 + 1 steps. We claim that the robber only has to deal with

such a situation once.
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Let us consider the first time such a situation arises. Clearly, the robber has taken

at most (2k + 1)2Tk−1 steps from S; as X was safe for Tk = (2k + 1)2Tk−1 + CTk−1

steps to begin with, X is now safe for at least CTk−1 steps. The robber takes a detour

around Q as follows. He considers the two paths around Q to a (k − 1)-cell Q′ located

above (and separated from) Q as shown in Figure 2; call these paths Zl and Zr. We

claim that each of the (k − 1)-cells along one of these two paths is safe for 8Tk−1 + 1

steps. Indeed, all the (k − 1)-cells on these paths with the exception of the two initial

(k − 1)-cells Pl and Pr are separated from Q. If one of these (k − 1)-cells is not safe for

8Tk−1 + 1 steps, then since Q is not safe for 2Tk−1 + 1 steps and

2(8Tk−1 + 1) ≤ 18Tk−1 < 18eCLk−1 < NLk−1,

it follows by Proposition 2.1 that X is not safe for 8Tk−1+1 ≤ 9Tk−1 steps, contradicting

the fact that X is in fact, safe for CTk−1 steps. Again, by Proposition 2.1, one of Pl and

Pr is necessarily safe for 8Tk−1 + 1 steps since Pl and Pr are separated. So suppose that

all the (k − 1)-cells along Zl are safe for 8Tk−1 + 1 steps. Then it is easy to check that

the robber may inductively run along Zl, in at most 7Tk−1 steps and without getting

caught, from P to Q′ so that he reaches a square in Q′ which is completely (k − 1)-safe

on his arrival there.

We now show that this situation arises at most once. Indeed, since Q was not

safe for 2Tk−1 + 1 steps when the robber was at P , we know that there are at least

2k−1 cops at distance at most 2Tk−1 + 1 from Q; let us mark these cops. The robber

takes 7Tk−1 steps to reach Q′ from P . In those 7Tk−1 steps, the 2k−1 marked cops

may move at most 7Tk−1 steps up. However, since the distance between Q and Q′

is NLk−1 > 100eCLk−1 > 100Tk−1, it is clear that these 2k−1 marked cops can never

overtake the robber vertically, and hence the robber will, after this detour, always find

that when he arrives at a (k − 1)-cell, the (k − 1)-cell above him is safe for 2Tk−1 + 1

steps.

It is therefore clear that the robber can safely reach some (k − 1)-cell F in the top

landing zone of X (though, on account of his detours, not necessarily his initial choice)

in at most (2k + 1)2Tk−1 + 3Tk−1 steps. This completes the first leg of the robber’s

journey.

Let us now pause and survey the robber’s situation after the cops have moved. He is

now on a (k− 1)-safe, (k− 1)-landing square in a (k− 1)-cell F in the top landing zone

of his k-cell X. Also, X is now safe for at least (C − 3)Tk−1 steps and Y , the k-cell

above X, is safe for at least Tk + (C − 3)Tk−1 + 1 steps.

We now show that the robber can safely reach, in at most 13Tk−1 steps, a square in

the bottom landing zone of Y which is completely (k − 1)-safe when the robber arrives

there; that this square is also completely k-safe follows from the fact that Y is safe for

at least Tk +(C − 3)Tk−1+1 steps before the robber starts the second leg of his journey.
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Figure 3. The final stretch from F to the bottom landing zone of Y .
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Figure 4. Getting to the top landing zone from the left landing zone.

It is possible to consider a set of five paths, as shown in Figure 3, from F to the

(k − 1)-cells in the bottom landing zone of Y , and show using Proposition 2.1, the fact

that X is safe for (C − 3)Tk−1 steps, and the fact that Y safe for Tk + (C − 3)Tk−1 + 1

steps, that all the (k − 1)-cells along one of these five paths are all safe for 14Tk−1 + 1

steps. Since each of these five paths is composed of at most thirteen (k − 1)-cells, it is

clear that the robber can then complete his journey by following one of these paths in

at most 13Tk−1 steps. This completes the second leg of the robber’s journey.

Clearly, this also shows how the robber may proceed if he is initially located in the

top landing zone of X. A similar strategy to the what has just been described (see

Figure 4) can be easily shown to work when the robber starts on either the right or the

left landing zone of X; the robbers path becomes slightly longer than before if he needs

to make a detour as he is ‘turning’, but our choices of C and N are large enough to

ensure that the detouring strategy works with room to spare. □

Armed with Lemma 2.2, it is a simple exercise to deduce Theorem 1.1.

8



Proof of Theorem 1.1. We show that if n ≥ 2NLk for some k ≥ 1, then fR(n) ≥ 2k;

since Lk =
∏k

j=0(2j + 1)2 = exp(O(k log k)), this implies the result.

Since n ≥ 2NLk, we may fix a 2× 2 array of k-cells in the grid. If the number of cops

on the grid is strictly less than 2k, each of these k-cells is guaranteed to be safe forever.

After the cops have placed themselves on the grid, the robber positions himself on a

k-safe, k-landing square in one of these four k-cells; that the robber can actually find

such a square is easily checked by Proposition 2.1. The robber now wins by repeatedly

using Lemma 2.2 to run around this 2× 2 array in a clockwise loop forever. □

3. Upper bounds

We remarked earlier that fR(n) ≤ n for all n ∈ N. Here, we sketch how this trivial

bound may be improved slightly.

Proposition 3.1. For each R ∈ N, we have

fR(n) ≤ n

(
2R− 2

2R− 1

)
+O(1)

for all sufficiently large n ∈ N.

Proof. We describe a winning strategy for 2L+ 1 cops where L is an integer such that

L ≥ n

(
R− 1

2R− 1

)
+ 2.

The cops initially arrange themselves in a line on the top row of the grid as shown in

Figure 5. We write (xr, yr) and (xc, yc) respectively for the positions of the robber and

the central cop in the formation, with the convention that the bottom left square of the

grid is (1, 1).

The cops all move together as follows. When the cops have to move, they all step

down if either

(1) |xc − xr| ≤ R, or

(2) xc = L+ 1 and xr < xc −R, or

(3) xc = n− L− 1 and xr > xc +R.

If none of those conditions are satisfied, then the cops all step to the left if xc > xr and

to the right otherwise.

Observe that since the robber may move at most R steps in his turn, if the quantity

xc − xr changes sign in some interval, then we must have |xc − xr| ≤ R after one of the

robber’s turns in that interval, at which point all the cops step down.

First, we claim that cops eventually leave the top row. Indeed, we may assume that

xr > xc + R after the robber’s first turn, for if not the cops step down on their first

turn. Now, the cops begin moving to the right one step at a time, as dictated by their
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Figure 5. The initial formation.

strategy. By our earlier observation, we may assume that we have xr > xc until the

line of cops reaches the right edge of the grid. However, when the cops reach the right

edge, we have xc = n− L− 1 and xr > xc, so the cops step down on their next turn.

Notice that robber has to be in a column occupied by one of the cops when the cops

step down. Since the cops start on the top row, we may assume that yr < yc after the

cops step down for the first time, for the robber would have been caught otherwise.

We claim that this inequality, namely yr < yc, is now maintained by the strategy

until the robber is caught. To see this, suppose otherwise and let (x1
r, y) and (x1

c , y)

denote the positions of the robber and the central cop at the first instance at which we

have yr ≥ yc; here, (x
1
r, y) may be an intermediate position in the robber’s trajectory,

i.e., a position occupied by the robber at some point during his turn but perhaps not

the position occupied by the robber at the end of his turn. Clearly, we must either have

x1
r > x1

c + L or x1
r < x1

c − L; without loss of generality, let us assume the former.

Let (x0
c , y) be the position of the central cop at the time when the cops first step

down to the yth row, and let (x0
r, y

′) be the robber’s position at that time. Consider

the moves made by the cops during the robber’s journey from (x0
r, y

′) to (x1
r, y). There

are no steps down in this interval as this would contradict the maximality of y. Since

x1
r > x1

c , we must have had xr > xc the entire time, so each move in this interval is a

step to the right. In particular, we must have had xc < n− L− 1 at all times in this

interval, so we conclude that x0
c ≤ x0

r ≤ x0
c +R.

The robber needs at least (x1
r − x0

r)/R steps to get from (x0
r, y

′) to (x1
r, y). In this

period, the cops move at least (x1
r − x0

r)/R− 1 times to the right. Therefore,

x1
c − x0

c ≥
x1
r − x0

r

R
− 1 >

(x1
c + L)− (x0

c +R)

R
− 1,
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which implies that

L

R
< (x1

c − x0
c)

(
R− 1

R

)
+ 2 < (n− 2L)

(
R− 1

R

)
+ 2.

This is equivalent to

L

(
2R− 1

R

)
< n

(
R− 1

R

)
+ 2;

this contradicts the fact that L ≥ n(R− 1)/(2R− 1) + 2.

To finish the proof, we may argue (as we did for the top row) that the cops cannot

be stuck in any row indefinitely, and they therefore catch the robber when they step

down into the bottom row. □

The argument used to prove Proposition 3.1 is by no means close to best-possible.

For instance, by considering a similar strategy to the one in the proof where the cops

begin by arranging themselves in a downward-pointing wedge instead of a straight line,

one can show that

fR(n) ≤ n

(
R− 1

R + 1

)
+O(1).

However, our argument for proving this bound is somewhat tedious, so we omit the

proof and settle for the slightly weaker bound in Proposition 3.1 since the purpose of

the proposition is merely to demonstrate that the trivial bound of fR(n) ≤ n is not

tight.

4. Conclusion

It seems exceedingly unlikely that Theorem 1.1 is close to the truth; as we conjectured

earlier, it should be the case that there exists an R ∈ N for which fR(n) = n1−o(1) as

n → ∞.

Our proof of Theorem 1.1 is built on ideas used to solve Conway’s angel problem in

three dimensions. We conclude by mentioning that it is not inconceivable that one can,

by suitably adapting one of the solutions (see [11, 4, 7]) to Conway’s problem in two

dimensions, prove the existence of an R ∈ N and a cR > 0 such that fR(n) ≥ ncR for

all sufficiently large n ∈ N.
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