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Abstract. We elucidate the relationship between the threshold and the expectation-

threshold of a down-set. Qualitatively, our main result demonstrates that there exist

down-sets with polynomial gaps between their thresholds and expectation-thresholds;

in particular, the logarithmic gap predictions of Kahn–Kalai and Talagrand (recently

proved by Park–Pham and Frankston–Kahn–Narayanan–Park) about up-sets do not

apply to down-sets. Quantitatively, we show that any collection G of graphs on

[n] that covers the family of all triangle-free graphs on [n] satisfies the inequality∑
G∈G exp(−δe(Gc)/

√
n) < 1/2 for some universal δ > 0, and this is essentially

best-possible.

1. Introduction

For a given finite set X, a family F ⊂ 2X is called an up-set if it is closed under

taking supersets, a down-set if it is closed under taking subsets, and monotone if it is

either an up-set or a down-set.

Our main result demonstrates that there is no analogue for down-set thresholds of

the conjectures of Kahn–Kalai [9] (resolved in [11]) and Talagrand [16] (resolved in [7])

regarding up-set thresholds. The following theorem, our main contribution, answers (in

the negative) a question that arose in discussions between Kahn and the third author.

Theorem 1.1. For the down-set Tn of triangle-free graphs on the vertex set [n], the

asymptotic growth rates of the expectation-threshold and the fractional expectation-

threshold of Tn are both between
√

1/n and
√

log n/n, while the asymptotic growth rate

of the threshold of Tn is 1/n.

The problem of locating thresholds has been a central concern in the study of random

discrete structures since the seminal work of Erdős and Rényi [6] on threshold phenomena

in random graphs. A great deal of work has since gone into locating thresholds of

specific properties of interest; see [4, 8] and the many references therein, for example.

Expectation-thresholds were introduced in [9] as a comparatively easy (and rather

general) way of locating thresholds of up-sets, so Theorem 1.1 comes as a bit of a surprise;
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the arguments needed to control the expectation-threshold of the aforementioned down-

set Tn are somewhat delicate, in stark contrast to what is needed to locate the threshold

of Tn. We shall explain exactly where Theorem 1.1 fits into the general theory of

thresholds once we fill in some background, a task to which we now turn.

For a given finite set X and p ∈ [0, 1], we write µp for the product measure on the

power set 2X of X given by

µp(S) = p|S|(1 − p)|X\S|

for all S ⊂ X. For a non-trivial (i.e., not 2X or ∅) monotone family F ⊂ 2X , the

threshold pc(F) of F is the unique p for which µp(F) = 1/2; this is well-defined since

µp(F) =
∑

S∈F µp(S) is strictly increasing in p when F is a non-trivial up-set, and

strictly decreasing in p when F is a non-trivial down-set.

Following Talagrand [14, 15], we say an up-set F ⊂ 2X is p-small if there is a

certificate G ⊂ 2X such that F ⊂ G↑, where G↑ is the increasing family generated by G
(i.e. the family of all sets containing elements of G), and∑

S∈G

p|S| ≤ 1/2; (1)

in other words, F is p-small if there is a simple ‘first-moment’ proof of the fact that

pc(F) ≥ p, namely

µp(F) ≤ µp(G↑) ≤
∑
S∈G

p|S| ≤ 1/2.

Analogously, we say a down-set F ⊂ 2X is p-small if there is a certificate G ⊂ 2X such

that F ⊂ G↓, where G↓ is the decreasing family generated by G, and∑
S∈G

(1 − p)|X\S| ≤ 1/2; (2)

again, this means that there is a simple proof of the fact that pc(F) ≤ p, namely

µp(F) ≤ µp(G↓) ≤
∑
S∈G

(1 − p)|X\S| ≤ 1/2.

Now, we define the expectation-threshold q(F) of a monotone F as follows: for an

up-set F , this is the largest value p ∈ [0, 1] for which F is p-small, and for a down-set

F , this is the smallest value p ∈ [0, 1] for which F is p-small.

Viewing the certificates G in (1) and (2) as integral maps from 2X to {0, 1}, the

consideration of fractional relaxations of these certificates leads us to the fractional

expectation-threshold qf (F) of a monotone F , which is the optimal value p ∈ [0, 1] for

which there is a fractional certificate witnessing either the fact that pc(F) ≥ p for an

up-set F , or the fact that pc(F) ≤ p for a down-set F . Since we shall primarily focus

on expectation-thresholds at this stage of the discussion, we defer a careful discussion

of these fractional issues to Section 4. Nevertheless, we note that it follows immediately
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from these definitions that for any up-set F , we have q(F) ≤ qf (F) ≤ pc(F), while for

any down-set F , we instead have pc(F) ≤ qf (F) ≤ q(F).

This paper gets its motivation from [9], where Kahn and Kalai (drawing on a number of

important examples in random graph theory) conjectured that pc(F) = O(q(F) log |X|)
for any up-set F ⊂ 2X , a conjecture recently proven by Park and Pham [11]. An

earlier slight weakening of this result, originally conjectured by Talagrand [16], was

proved in [7], where it was shown that pc(F) = O(qf (F) log |X|) for any up-set F ⊂ 2X .

Since decreasing properties also appear quite frequently in the study of random discrete

structures, it is natural to ask if there are analogues of the results of [11, 7] for down-sets.

Concretely, our primary motivation is the following question that arose from discussions

between Kahn and the third author.

Problem 1.2. Is it true that q(F)/pc(F) ≤ (log |X|)O(1) for every down-set F ⊂ 2X?

Of course, down-sets are just complements of up-sets, so one must ask if there is any

new content in Problem 1.2, or if it is trivially resolved by the existing machinery for up-

sets in [9, 11, 16, 7]. Problem 1.2 is indeed nontrivial, but this merits a short explanation.

The results of [11, 7] are all only meaningful for ‘large’ up-sets F for which q(F) = o(1);

indeed, if F is ‘small’ in the sense of q(F) = Ω(1), then 1 ≥ pc(F) ≥ q(F) = Ω(1), so the

Park-Pham theorem for such ‘small’ F holds no content. Nevertheless, the following is

a natural analogous question for ‘small’ up-sets in the spirit of the Park-Pham theorem.

Problem 1.3. Is it true that q′/p′ ≤ (log |X|)O(1) for every up-set F ⊂ 2X , where

pc(F) = 1 − p′ and q(F) = 1 − q′?

It is easy to check that Problems 1.2 and 1.3 are equivalent, as every down-set F
can be turned into an up-set F ′ = {X − A : A ∈ F} with p(F ′) = 1 − p(F) and

q(F ′) = 1 − q(F). In this way, all our results on down-sets can also be reformulated

in the complementary setting of ‘small’ up-sets. In turn, Theorem 1.1 demonstrates

that the answer to Problem 1.2 (and hence Problem 1.3 as well) is in the negative:

there exist down-sets with polynomial gaps between their thresholds and (fractional)

expectation-thresholds.

We now turn to a discussion of the sharpness of Theorem 1.1, as well as its proof.

For the down-set Tn of triangle-free graphs on the vertex set [n], it is an easy exercise

to show that pc(Tn) = Θ(1/n); see [2], for instance. Thus, the heart of the matter is

to establish that q(Tn) = Ω(1/
√
n) (along with a similar bound for qf (Tn)). Therefore,

writing e(H) for the number of edges in a graph H, we restrict ourselves to proving the

following.
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Theorem 1.4. There exists a universal δ > 0 such that the following holds for all

sufficiently large n ∈ N. If H is a collection of graphs on [n], and∑
H∈H

exp
(
(−δe(H))/

√
n
)
<

1

2
, (3)

then there is a triangle-free graph G on [n] sharing at least one edge with each H ∈ H.

A certificate G witnessing the expectation-threshold q(Tn) is just a collection of

graphs on [n] that together cover all the triangle-free graphs on [n]. Taking H to be

the collection of complements of graphs in G, we see that Theorem 1.4 is equivalent to

the fact that q(Tn) = Ω(1/
√
n). As we shall see in Section 4, the proof of Theorem 1.4,

with very minor alterations, also allows us to prove that qf(Tn) = Ω(1/
√
n), but we

focus on q(Tn) and Theorem 1.4 to keep the presentation simple.

Both Theorems 1.1 and 1.4 are best-possible up to logarithmic factors. As we shall

see in Section 5, the machinery of hypergraph containers [3, 12] quickly demonstrates

that q(Tn) = O(log n/
√
n), and a slightly more careful calculation using the Ramsey

number upper bound of r(3, k) = O(k2/ log k) of Ajtai–Komlós–Szemerédi [1] shows

that in fact q(Tn) = O(
√

log n/n). This in turn demonstrates that the conclusion of

Theorem 1.4 need not hold if the
√

1/n in the exponent in (3) is replaced with anything

growing faster than
√

log n/n.

We also remark that Theorem 1.4 immediately reproduces the Ramsey number

lower bound of r(3, k) = Ω(k2/ log2 k); recall that r(3, k) is the least integer n for

which each triangle-free graph on n vertices has independence number at least k. The

aforementioned lower bound was proved independently by Erdős [5] and Spencer [13]

(but is of course superseded by Kim’s [10] tour de force bound of r(3, k) = Ω(k2/ log k),

which gives the correct asymptotic growth rate). Indeed, for C > 0 large enough, taking

H to be the collection of all cliques of size C
√
n log n on [n], we see that∑

H∈H

exp
(
−δe(H)n−1/2)

)
=

(
n

C
√
n log n

)
exp
(
−δC2

√
n log2 n/2

)
≤ exp

(
(C − δC2/2)

√
n log2 n

)
<

1

2
,

so Theorem 1.4 implies the existence of a triangle-free graph G on the vertex set [n]

with no independent set of size C
√
n log n.

The proof of Theorem 1.4 proceeds by generalising of Erdős’ lower bound for r(3, k).

Erdős built triangle-free graphs with large independence number by starting with

an Erdős–Rényi random graph Γ = G(n, p) with p ≍ n−1/2 and picking a maximal

triangle-free subgraph G ⊂ Γ; he showed that with high probability, such a G has an

edge in every set of vertices of size at least
√
n log n. We shall show, more generally,
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that for any choice of H satisfying (3), it is likely for a similarly constructed triangle-free

G to share an edge with every H ∈ H.

One of the technical tools that we need to execute the above strategy is a large-

deviations estimate for the number of triangles completed by any fixed set of edges

in the random graph. This large-deviations estimate, and the mechanism we use to

‘preserve independence’ in the proof of this estimate (which involves passing from

random graphs to random directed graphs and back) might both be of independent

interest; the details appear in Sections 2 and 3.

This paper is organised as follows. The proof of Theorem 1.4, modulo the large-

deviations estimate mentioned above, is given in Section 2, and the beef follows in

Section 3 where the requisite large-deviations estimate is established. The fractional

analogue of our main result is stated and sketched in Section 4. We present the

constructions demonstrating the sharpness of our results in Section 5. Finally, we close

in Section 6 with a discussion of some open problems.

2. Proof of the main result

Writing G(n, p) for the Erdős–Rényi random graph, the proof of Theorem 1.4 follows

from a large-deviations estimate for the number of triangles in G(n, p) ‘closed’ by the

addition of any given set of m edges. To state this lemma, we need a little bit of

notation: given a graph Γ, we write e(Γ) for the number of edges of Γ, ∆(Γ) for the

maximum degree of Γ, and Γ2 for the square of Γ, which is the graph on the same

vertex set as Γ whose edges are all pairs of vertices with a common neighbour in Γ. At

the heart of our argument is the following fact.

Lemma 2.1. There exist universal γ, ε > 0 such that the following holds for all

sufficiently large m,n ∈ N. Let H be a graph on [n] with m edges. If Γ ∼ G(n, p) with

p ≤ εn−1/2, then

P
(
e(H ∩ Γ2) ≥ 3m/4

∧
∆(Γ) ≤ 2pn

)
≤ 15 exp

(
−γmn−1/2

)
.

We defer the proof of Lemma 2.1 to the next section, but briefly mention why the

lemma demands that we work within the event {∆(Γ) < 2pn}; by considering the case

where H is a star with m = Θ(n) edges, we see that P(e(H ∩ Γ2) ≥ 3m/4) = pΘ(n),

thus demonstrating that the bound in Lemma 2.1 does not hold uniformly in H for

P(e(H ∩ Γ2) ≥ 3m/4). We now describe how to deduce Theorem 1.4 from Lemma 2.1.

Proof of Theorem 1.4. Take γ, ε > 0 to be the constants in Lemma 2.1, and put

p = εn−1/2 and Γ = G(n, p). For H ∈ H, we say that an edge uv ∈ E(H) is H-good if

uv ̸∈ E((Γ \H)2), i.e., uv is an edge of H that does not form any triangle uvw where

uw, vw ∈ E(Γ \H).
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We claim that if Γ contains an H-good edge, then every maximal triangle-free

subgraph of Γ intersects H. Indeed, suppose for contradiction that Γ contains an

H-good edge e, and that G is a maximal triangle-free subgraph of Γ with G ∩H = ∅.

We see that G ∪ {e} is also triangle-free, since any triangle thereof must contain e,

but this would violate the H-goodness of e. This would imply that G ∪ {e} is also a

triangle-free subgraph of Γ, violating the maximality of G.

It remains to show that with positive probability, Γ contains an H-good edge for

every H ∈ H. This proves the theorem, as any maximal triangle-free subgraph G of Γ

then demonstrates the desired result. To this end, we define three types of bad events,

and show that they are all unlikely to happen. Let Z be the event that ∆(Γ) > 2pn.

For H ∈ H, let YH be the event that e(H ∩ Γ2) ≥ 3e(H)/4, and let XH be the event

that Γ contains no H-good edges.

Writing E for the complement of an event E, we have

P

( ∨
H∈H

XH

)
≤ P(Z) +

∑
H∈H

P
(
YH ∧ Z

)
+
∑
H∈H

P
(
XH ∧ YH

)
, (4)

since either Z occurs, some YH occurs without Z, or else some XH occurs without

the corresponding YH . We now treat the three terms on the right hand side of (4)

separately.

For the first, it is easily seen that P(Z) → 0 as n → ∞. For the second term, we

apply Lemma 2.1 to obtain

P
(
YH ∧ Z

)
≤ 15 exp

(
−γe(H)n−1/2

)
. (5)

For the third and final term in (4), note that P(XH ∧ YH) ≤ P(XH |YH). We can

understand this conditional probability of XH by exposing the randomness of Γ = G(n, p)

in two stages. First, we expose the edges of Γ outside H and count the number of

H-good edges in H. We then expose the edges of Γ in H, noting that when doing this,

each edge of H has an independent p chance of lying inside Γ. Thus,

P
(
XH |YH

)
≤ P

(
XH | e(H \ (Γ \H)2) ≥ e(H)/4

)
≤ (1 − p)e(H)/4

≤ exp
(
−ε

4
e(H)n−1/2

)
. (6)

Now, we fix δ = min(ε/4, γ)/5. We know from (3) that∑
H∈H

exp
(
−δe(H)n−1/2

)
<

1

2
;
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in particular, each individual term in the sum is less than 1/2. Thus,∑
H∈H

exp
(
−5δe(H)n−1/2

)
<

1

16

∑
H∈H

exp
(
−δe(H)n−1/2

)
<

1

32
.

Putting this together with (4), (5), and (6), we find that

P

( ∨
H∈H

XH

)
≤
∑
H∈H

(
15 exp

(
−γe(H)n−1/2

)
+ exp

(
−ε

4
e(H)n−1/2

))
+ o(1)

≤ 16
∑
H∈H

exp
(
−5δe(H)n−1/2

)
+ o(1) < 1

for all n ∈ N sufficiently large, as desired.

We have shown that with positive probability, Γ contains an H-good edge for every

H ∈ H. Thus, with positive probability, any maximal triangle-free subgraph G of Γ

will share an edge with every H ∈ H, as desired. □

3. Large-deviations for closed triangles

Our proof of Lemma 2.1 needs us, amongst other things, to show that for a fixed

graph H on [n] and a random set U ⊂ [n] containing each vertex with probability p,

the number of edges in the induced subgraph H[U ] is concentrated. In particular, we

need the following technical bound on the exponential moment of e(H[U ]) in the case

where H is bipartite.

Lemma 3.1. Let H be a bipartite graph on [n] with m edges, and let U be a random

subset of [n] such that each vertex is chosen independently with the same probability

p ∈ [0, 1]. Let X be the random variable counting the number of edges in H[U ], and let

Z be the indicator random variable of the event |U | ≤ 5pn. Then

E
[
exp

(
ZX

5pn

)]
≤ exp

(pm
n

)
.

Proof. Let VL ∪ VR be a bipartition of the vertex set of H, and let UL = U ∩ VL and

UR = U ∩ VR. We expose the random set U by first exposing the random set UL and

then exposing UR.

For i ∈ VR, let di be the random variable counting the number of neighbours of i in UL,

and let Xi be the indicator random variable of the event i ∈ UR, so that X =
∑

i∈VR
diXi.

Notice that di depends only on UL and not on UR, so conditional on any exposure of

UL, the random variables {diXi : i ∈ VR} are independent. Therefore, taking ZL to

be the indicator of the event |UL| ≤ 5pn, and noting that ZL is {0, 1}-valued and that

Z ≤ ZL, we get

E
[
exp

(
ZX

5pn

)]
≤ E

[
exp

(
ZLX

5pn

)]
= E

[
1 − ZL + ZL exp

(
X

5pn

)]
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= EUL

[
1 − ZL + EUR

[
ZL exp

(
X

5pn

)]]
= EUL

[
1 − ZL + ZLEUR

[
exp

(∑
i∈VR

diXi

5pn

)]]
= EUL

[
1 − ZL + ZL

∏
i∈VR

EXi

[
exp

(
diXi

5pn

)]]

= EUL

[
1 − ZL + ZL

∏
i∈VR

(
1 − p + p exp

(
di

5pn

))]
, (7)

the last equality holding since Xi is a Bernoulli random variable with P(Xi = 1) = p.

We now state a simple estimate that we will use to control (7): for all 0 ≤ x ≤ 1, we

have

ex − 1 ≤ (e− 1)x; (8)

indeed, equality holds at x = 0 and x = 1 and the right hand side is linear, so this

bound follows from convexity of ex − 1.

Returning to (7), if ZL = 1, then di ≤ |UL| ≤ 5pn; thus (8) with x = di/5pn implies

that either ZL = 0 or

exp

(
di

5pn

)
− 1 ≤ (e− 1)di

5pn
≤ di

2pn
.

Therefore,

ZL

∏
i∈VR

[
1 − p + p exp

(
di

5pn

)]
≤ ZL

∏
i∈VR

(
1 +

di
2n

)
≤ ZL exp

(∑
i∈VR

di

2n

)
,

which when plugged into (7) gives

E
[
exp

(
ZX

5pn

)]
≤ EUL

[
1 − ZL + ZL exp

(∑
i∈VR

di

2n

)]
≤ EUL

[
exp

(∑
i∈VR

di

2n

)]
. (9)

Now, for j ∈ VL, let aj = degH(j) and let Yj be the indicator random variable of the

event j ∈ UL, and note that ∑
i∈VR

di =
∑
j∈VL

ajYj

since both sides count the number of edges between UL and VR. As the random variables

{Yj : j ∈ VL} are independent, we get

EUL

[
exp

(∑
i∈VR

di

2n

)]
= EUL

[
exp

(∑
j∈VL

ajYj

2n

)]
=
∏
j∈VL

EYj

[
exp

(
ajYj

2n

)]
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=
∏
j∈VL

(
1 − p + p exp

( aj
2n

))
, (10)

the last equality holding since Yj is a Bernoulli random variable with P(Yi = 1) = p.

To finish, we see that since aj ≤ |VR| ≤ n, the bound (8) with x = aj/2n gives

exp
( aj

2n

)
− 1 ≤ (e− 1)aj

2n
≤ aj

n
.

Substituting this bound into (10), then substituting the result into (9), and using the

fact that
∑

j∈VL
aj = m, we get

E
[
exp

(
ZX

5pn

)]
≤
∏
j∈VL

(
1 − p + p exp

( aj
2n

))
≤
∏
j∈VL

(
1 +

paj
n

)
≤ exp

(
p
∑

j∈VL
aj

n

)
= exp

(pm
n

)
,

completing the proof. □

To prove Lemma 2.1, it will be more convenient to work with random directed graphs.

This model gives us some additional independence that is crucial in proving the directed

analogue of Lemma 2.1 below. We shall subsequently show that Lemma 2.1 follows

from its directed analogue.

We need a little more notation. We write G⃗(n, p) for the random directed graph

(or digraph, for short) on [n], where each directed edge (u, v) appears independently

with probability p, and pairs of anti-parallel edges (u, v) and (v, u) are allowed to be

simultaneously present. For a digraph D, we write ∆(D) for its maximum out-degree,

and D̂ for the undirected graph whose edges are pairs of distinct vertices in D with a

common in-neighbour. The directed analogue of Lemma 2.1 is as follows.

Lemma 3.2. There exist universal γ′, ε′ > 0 such that the following holds for all

sufficiently large m,n ∈ N. Let H be a bipartite graph on [n] with m edges. If

D ∼ G⃗(n, p) with p ≤ ε′n−1/2, then

P
(
e(H ∩ D̂) ≥ m/16

∧
∆(D) ≤ 5pn− 1

)
≤ exp

(
−γ′mn−1/2

)
.

Proof. Let D◦ be the random directed graph generated in the same way as D except

that self-loops are also chosen with probability p. Then in the natural coupling between

D and D◦ given by removing the self-loops of D◦, we have both

e(H ∩ D̂◦) ≥ e(H ∩ D̂)
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and

∆(D◦) ≤ ∆(D) + 1,

whence it follows that

P
(
e(H ∩ D̂) ≥ m/16

∧
∆(D) ≤ 5pn− 1

)
≤ P

(
e(H ∩ D̂◦) ≥ m/16

∧
∆(D◦) ≤ 5pn

)
.

For each v ∈ [n], let Uv be the out-neighbourhood of v in D◦, and let Xv be the

random variable counting the number of edges of H contained in Uv. Since any edge

e ∈ E(D̂◦) is contained in Uv for some v ∈ [n], we have

e(H ∩ D̂◦) ≤
∑
v∈[n]

Xv.

Next, let Z be the indicator random variable of the event that ∆(D◦) ≤ 5pn. For

each v ∈ [n], let Zv be the indicator random variable of the event that |Uv| ≤ 5pn.

Clearly, Z ≤ Zv for all v ∈ [n], so it follows that

P
(
e(H ∩ D̂◦) ≥ m/16

∧
∆(D◦) ≤ 5pn

)
≤ P

Z
∑
v∈[n]

Xv ≥ m/16


≤ P

∑
v∈[n]

ZvXv ≥ m/16

.

Note that the random variables {ZvXv : v ∈ [n]} are independent, as ZvXv only depends

on the out-neighbourhood Uv of v, and all of these are independent; this decoupling is

why we find it crucial to work with random directed graphs.

Now, Uv is a random subset of [n] with each vertex chosen independently with

probability p, so by Lemma 3.1, we have

E
[
exp

(
ZvXv

5pn

)]
≤ exp

(pm
n

)
for every v ∈ [n]. Therefore, using an exponential moment bound, we get

P

∑
v∈[n]

ZvXv ≥ m/16

 = P

(
exp

(∑
v∈[n] ZvXv

5pn

)
≥ exp

(
m

80pn

))

≤
E
[
exp
(∑

v∈[n] ZvXv

5pn

)]
exp
(

m
80pn

)
=

∏
v∈[n] E

[
exp
(

ZvXv

5pn

)]
exp
(

m
80pn

)
10



≤ exp

(
m

pn

(
p2n− 1

80

))
.

For p ≤ (20
√
n)−1, say, we have p2n− 1/80 ≤ −1/100, so

P

∑
v∈[n]

ZvXv ≥ m/16

 ≤ exp

(
− m

100pn

)
≤ exp

(
− m

5
√
n

)
.

Thus, Lemma 3.2 is seen to hold with γ′ = 1/5 and ε′ = 1/20. □

Finally, the proof of Lemma 2.1 follows from Lemma 3.2 and Markov’s inequality by

constructing a suitable coupling.

Proof of Lemma 2.1. Let H be an arbitrary graph on [n] with m edges. Choose a

bipartite subgraph H ′ of H with m′ ≥ m/2 edges. Let γ′, ε′ > 0 be the constants in

Lemma 3.2, suppose p ≤ ε′n−1/2, and pick p′ such that 2p′−(p′)2 = p. Then p′ ≤ ε′n−1/2

satisfies the conditions of Lemma 3.2, and for m,n ∈ N sufficiently large, Lemma 3.2

applies to H ′ and p′, telling us that if D ∼ G⃗(n, p′), then

P
(
e(H ′ ∩ D̂) ≥ m′/16

∧
∆(D) ≤ 5p′n− 1

)
≤ exp

(
−γ′m′n−1/2

)
.

Let Γ ∼ G(n, p) be an undirected Erdős–Rényi random graph. By our choices of p

and p′, we can couple Γ ∼ G(n, p) and D ∼ G⃗(n, p′) such that two vertices in Γ are

adjacent if and only if there exists at least one directed edge between them in D. In

particular, ∆(D) ≤ ∆(Γ), so

∆(Γ) ≤ 2pn =⇒ ∆(D) ≤ 5p′n− 1.

Since H ′ contains at least m′ ≥ m/2 edges of H, we also have

e(H ∩ Γ2) ≥ 3m/4 =⇒ e(H ′ ∩ Γ2) ≥ m′/2.

Now, if an edge lies in Γ2, then by the coupling above, it has at least a 1/4 chance of

lying in D̂. Thus, for any fixed graph Γ0 on [n] with e(H ′ ∩ Γ2
0) ≥ m′/2, we have

E[e(H ′ ∩ D̂) |Γ = Γ0] ≥ m′/8.

Since e(H ′ ∩ D̂) is a random variable supported on [0,m′], Markov’s inequality applied

to X = m′ − e(H ′ ∩ D̂) yields

P
(
e(H ′ ∩ D̂) < m′/16 |Γ = Γ0

)
= P(X ≥ 15m′/16 |Γ = Γ0) ≤

7m′/8

15m′/16
=

14

15
,

implying that for any Γ0 with e(H ∩ Γ2
0) ≥ 3m/4, we have

P
(
e(H ′ ∩ D̂) ≥ m′/16 |Γ = Γ0

)
≥ 1

15
.
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Summing this estimate over all possible Γ0, it follows that

P
(
e(H ∩ Γ2) ≥ 3m/4

∧
∆(Γ) ≤ 2pn

)
≤ 15P

(
e(H ′ ∩ D̂) ≥ m′/16

∧
∆(D) ≤ 5p′n− 1

)
≤ 15 exp

(
−γ′m′n−1/2

)
= 15 exp

(
−γmn−1/2

)
,

where γ = γ′/2; this completes the proof. □

4. Fractional relaxations

We now turn to the fractional analogue of Theorem 1.4; to state this carefully, we

need some definitions.

Following Talagrand [14, 15] once again, we say an up-set F ⊂ 2X is weakly p-small

if there is a certificate a : 2X → R≥0 such that for each S ∈ F , we have∑
T⊂S

a(T ) ≥ 1,

and ∑
T⊂X

a(T )p|T | ≤ 1/2;

thus, if F is weakly p-small, then we have a simple proof, as before, of the fact that

pc(F) ≥ p. Analogously, we say a down-set F ⊂ 2X is weakly p-small if there is a

certificate a : 2X → R≥0 such that for each S ∈ F , we have∑
T⊃S

a(T ) ≥ 1,

and ∑
T⊂X

a(T )(1 − p)|X\T | ≤ 1/2;

thus, if F is weakly p-small, then we again have a simple proof of the fact that pc(F) ≤ p.

Now, we define the fractional expectation-threshold qf (F) of a monotone F as follows:

for an up-set F , this is the largest value p ∈ [0, 1] for which F is weakly p-small, and

for a down-set F , this is the smallest value p ∈ [0, 1] for which F is weakly p-small.

The statement that qf (Tn) = Ω(1/
√
n) is equivalent to the following modification of

Theorem 1.4.

Theorem 4.1. There exists a universal δ > 0 such that the following holds for all

sufficiently large n ∈ N. If H is the collection of all graphs on [n] and a : H → R≥0

12



satisfies ∑
H∈H

a(H) exp
(
(−δe(H))/

√
n
)
<

1

2
,

then there is a triangle-free graph G on [n] such that∑
H∈G(G)

a(H) < 1,

where G(G) = {H ∈ H : G ∩H = ∅}.

Proof. This can be proved in a manner similar to Theorem 1.4. In particular, let

Γ = G(n, p), let G be any maximal triangle-free subgraph of Γ, and define XH , YH , and

Z as in the proof of Theorem 1.4. Recall that if XH holds, then G ∩H ̸= ∅. Thus

E

 ∑
H∈G(G)

a(H)

∣∣∣∣∣∣Z
 =

∑
H∈H

a(H)P
(
G ∩H = ∅ |Z

)
≤
∑
H∈H

a(H)P
(
XH |Z

)
=
∑
H∈H

a(H)
P
(
XH ∧ Z

)
P
(
Z
) .

By the bounds on P(XH ∧ YH) and P(YH ∧ Z) in the proof of Theorem 1.4, we have

P
(
XH ∧ Z

)
≤ 16 exp

(
−ce(H)n−1/2

)
for some absolute constant c > 0. Of course, this probability is bounded above by 1, so

since P(Z) = 1 − o(1), we get

E

 ∑
H∈G(G)

a(H)

∣∣∣∣∣∣Z
 ≤ (1 + o(1))

∑
H∈H

a(H) min
(
16 exp

(
−ce(H)n−1/2

)
, 1
)
.

Putting δ = c/8, we then have

min
(
16 exp

(
−ce(H)n−1/2

)
, 1
)
≤

√
2 exp

(
−δe(H)n−1/2

)
,

as the right hand side is the geometric mean of one copy of 16 exp
(
−ce(H)n−1/2

)
and

seven copies of 1. Thus, if∑
H∈H

a(H) exp
(
(−δe(H))/

√
n
)
<

1

2
,

then

E

 ∑
H∈G(G)

a(H)

∣∣∣∣∣∣Z
 ≤

(√
2 + o(1)

)∑
H∈H

a(H) exp
(
(−δe(H))/

√
n
)
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≤ 1√
2

+ o(1) < 1,

proving that there is some triangle-free graph G on [n] for which∑
H∈G(G)

a(H) < 1,

as required. □

5. Uniform covers

Our goal in this section is to collect together some constructions that yield good

upper bounds on the expectation-threshold of Tn (and consequently, its fractional

expectation-threshold as well, since qf (Tn) ≤ q(Tn)).

For 0 ≤ m ≤
(
n
2

)
− n2/4, let f(m,n) be the smallest integer k such that there exists

a family H of k graphs on [n] with e(H) =
(
n
2

)
− m for all H ∈ H such that every

triangle-free graph is contained in some H ∈ H.

Notice that f(m,n) exists for all m in the given range, as all triangle-free graphs

have at most n2/4 edges. The relationship between the expectation-threshold q(Tn)

and the function f is as follows.

Proposition 5.1. For all 0 ≤ m ≤
(
n
2

)
− n2/4, we have q(Tn) ≤ log(2f(m,n))/m.

Proof. Take a family H of f(m,n) graphs, each with
(
n
2

)
− m edges, that covers Tn.

The probability that G(n, p) is contained in one of these graphs is (1 − p)m. Setting

p = q(Tn), we must have

f(m,n)(1 − p)m ≥ 1/2

by the minimality of the expectation-threshold; noting that (1 − p)m ≤ e−pm, the

conclusion follows. □

We now collect together estimates for f(m,n) that hold in various regimes.

Proposition 5.2. We have the following bounds on f(m,n) for all sufficiently large

n ∈ N.

(1) For all 0 ≤ m ≤
(
n
2

)
− n2/4, we have

f(m,n) = exp
(
Ω
(
max

(
m/

√
n,

√
m
)))

.

(2) There exists a universal c > 0 such that if m < cn log n, then

f(m,n) ≤ exp
(
2
√
m log n

)
.

(3) For all 0 < c < 1/4, there exists C = C(c) > 0 such that

f
(
cn2, n

)
≤ exp

(
Cn3/2 log n

)
.
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Before turning to the proof of these estimates, notice that Proposition 5.1 and Item 2

in the above proposition combine to show that

qf (Tn) ≤ q(Tn) = O

(√
n log n log n

n log n

)
= O

(√
log n

n

)
,

as was earlier claimed.

Proof of Proposition 5.2. We start with Item 1. The first inequality here, i.e., f(m,n) =

exp(Ω(m/
√
n)), comes from Proposition 5.1, and our proof of the fact that q(Tn) =

Ω(1/
√
n). For the other bound, consider a random complete bipartite graph G in which

each vertex is independently sent to either partition class of G with probability 1/2. For

any graph H with e(H) =
(
n
2

)
−m, let T be a spanning forest of Hc (i.e. the union of

spanning trees of each connected component), and note that e(T ) ≥ v(T )/2 = Ω(
√
m).

It is not difficult to see that the edges of T are contained in G with independent

probabilities of 1/2, so

P(G ⊂ H) ≤ P(G ∩ T = ∅) = 2−e(T ) = exp
(
−Ω
(√

m
))
.

Since such a G is always triangle-free, if H is a family of graphs, each with
(
n
2

)
−m edges,

that covers Tn, a union bound yields |H| = exp(Ω(
√
m)), and the second inequality

follows.

Next, we turn to Item 2. Ajtai, Komlós and Szemerédi [1] showed that r(3, n) =

O(n2/ log n), i.e., there is a universal c > 0 such that r(3, 2
√
m) ≤ n for all m < cn log n.

This implies that we can cover Tn by taking all graphs of the form Kn − B where B

is a clique of size 2
√
m. There are

(
n

2
√
m

)
such graphs, and they each have

(
2
√
m

2

)
≥ m

non-edges, so this shows that

f(m,n) ≤
(

n

2
√
m

)
≤ exp

(
2
√
m log n

)
.

Finally, for Item 3, a standard application of the machinery of hypergraph containers

(as in [12], for example) shows that for all ε > 0, there exists C > 0 such that for all

n ∈ N, there is a family of exp(Cn3/2 log n) graphs on [n], each with at most (1
4

+ ε)n2

edges, that collectively contain all triangle-free graphs on [n]; the claimed bound follows

by adding edges to each of these graphs until each of them has exactly
(
n
2

)
− cn2

edges. □

6. Further Questions

Our results leave open the problems of determining the asymptotic growth rates

of q(Tn) and qf(Tn). We have shown that both these thresholds are Ω(1/
√
n) and

O(
√

log n/n), but getting more precise estimates remains an interesting open problem.

Problem 6.1. What are the asymptotic growth rates of q(Tn) and qf (Tn)?
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Towards Problem 6.1, notice that Proposition 5.2 effectively bounds f(m,n) when

m = O(n log n) and m = Θ(n2), i.e., up to a logarithmic factor in the exponent, f(m,n)

behaves like exp(
√
m) when m = O(n log n), and like exp(n3/2) when m = Θ(n2). This

motivates the following question.

Problem 6.2. What is the behaviour of f(m,n) for n log n ≪ m ≪ n2? Is the bound

f(m,n) = exp(Ω(m/
√
n)) sharp in this regime (possibly up to a logarithmic factor in

the exponent)?

Another natural question, whose answer might help resolve Problem 6.1, is as follows.

Problem 6.3. For m = O(n log n) and m = Θ(n2), can we eliminate the logarithmic

gaps from our bounds on f(m,n)?

Finally, we remark that our machinery is specialised to the case of triangle-free graphs,

and does not prove analogous results for larger cliques; this prompts the following

question.

Problem 6.4. For r ≥ 4 and Fr,n the down-set of all Kr-free graphs on [n], what are

the asymptotic growth rates of q(Fr,n) and qf (Fr,n)?
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