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Abstract. We study how many copies of a graph F that another graph G with a

given number of cliques is guaranteed to have. For example, one of our main results

states that for all t ≥ 2, if G is an n vertex graph with kn3/2 triangles and k is

sufficiently large in terms of t, then G contains at least

Ω
(
min

{
ktn3/2, k

2t2

3t−1n
5t−2
3t−1

})
copies of K2,t, and furthermore, we show these bounds are essentially best-possible

provided either k ≥ n1/2t or if certain bipartite-analogues of well known conjectures

for Turán numbers hold.

1. Introduction

In this paper, we shall study a generalised supersaturation problem. Broadly speaking,

‘extremal problems’ ask for the largest ‘size’ N that a combinatorial object can have

before containing at least one structure F , and in turn, ‘supersaturation problems’

ask about how many copies of F are guaranteed to exist if a combinatorial object

has ‘size’ substantially larger than the extremal value N . In addition to being natural

refinements of extremal problems in their own right, supersaturation problems also

arise often in a number of other contexts. For example, supersaturation results were

used by Erdős and Simonovits [7] to obtain upper bounds on the Turán number of

the hypercube. More recently, supersaturation has proven to be a key ingredient

for various asymptotic enumeration results proved using the method of hypergraph

containers developed independently by Balogh, Morris, and Samotij [2] and by Saxton

and Thomasson [19].

Here, we investigate the following problem: how many copies of a graph F can we

guarantee in a graph G with a specified number of copies of another graph H? More

precisely, given two graphs F and G, we define

N (F,G) = # subgraphs of G isomorphic to F,

and our aim then is to prove lower bounds on N (F,G) as a function of N (H,G). We

will informally refer to problems of this form as generalized supersaturation problems.

An immediate obstruction to this problem is the existence of F -free graphs G which

contain a large number of copies of H. To this end, we define the generalized Turán
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number, first introduced by Alon and Shikhelman [1], by

ex(n, F,H) = max{N (H,G) : G is an F -free graph on n vertices},

and we write ex(n, F ) = ex(n, F,K2) to denote the (classical) Turán number of F .

Observe that, by definition, if G is an n vertex graph then

N (H,G) > ex(n, F,H) =⇒ N (F,G) > 0, (1)

and this is best possible since there exist F -free graphs with N (H,G) ≤ ex(n, F,H).

We are interested in quantitative versions of the trivial bound (1). For example,

Halfpap and Palmer [10] proved that if χ(F ) > χ(H) and ε > 0, then any n vertex

graph G with N (H,G) ≥ (1 + ε)ex(n, F,H) has N (F,G) = Ωε(n
v(F )), i.e., G contains

a constant proportion of the copies of F in Kn. Hence, the central interest in the case

χ(F ) > χ(H) is in proving asymptotically tight bounds for N (F,G) as a function of

ε. For example, work of Razborov [17] completely solves this asymptotic problem of

minimizing the number of K3’s in a graph with a given number of edges, and this was

later generalized by Reiher [18] to handle general cliques Kr in place of the triangle K3.

In this paper, we focus on the ‘degenerate’ setting χ(F ) ≤ χ(H) where the focus for

supersaturation centers around proving coarse (i.e., order of magnitude) bounds on

N (F,G). One classical example in this setting is the following conjecture of Erdős and

Simonovits [7].

Conjecture 1.1 ([7]). Let F be a graph with ex(n, F ) = O(nα). If G is an n-vertex

graph with e(G) = knα and k ≥ k0(F ), then

N (F,G) = Ω(ke(F )nv(F )−(2−α)e(F )).

We note that this conjecture, if true, would be best possible by considering G to

be the random graph with knα edges. Conjecture 1.1 is known to hold (possibly with

non-optimal values of α) for a large number of graphs, such as even cycles [15] and all

graphs which satisfy Sidorenko’s conjecture [20, Theorem 9]. One result of particular

importance to us will be the following which confirms Conjecture 1.1 for complete

bipartite graphs when α = 2 − 1/s.

Proposition 1.2 ([8]). For all s ≤ t, there exists a constant C = C(s, t) such that if G

is an n-vertex graph with e(G) = kn2−1/s and k ≥ C , then N (Ks,t, G) = Ω(kstns).

Other generalized supersaturation results in the degenerate setting include work of

Cutler, Nir, and Radcliffe [6] who studied the case when F,H are each either cliques

or stars; as well as Gerbner, Nagy, and Vizer [9] who initiated the systematic study of

generalized supersaturation results and who proved a number of results when F,H are

both bipartite.
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1.1. Our results. In this paper, we focus on generalized supersaturation problems

when H = Kr. That is, we ask how many copies of a given graph F is guaranteed in

another graph G if G has N copies of Kr, and we informally refer to this as the clique

supersaturation problem. For example, we have the following.

Lemma 1.3. If F is a graph with v(F ) ≤ r and if G is a graph with N (Kr, G) = N ,

then N (F,G) = Ω(N v(F )/r). Moreover, the graph G consisting of a clique of size N1/r

satisfies N (Kr, G) = Ω(N) and N (F,G) = O(N v(F )/r).

Lemma 1.3 follows immediately from the Kruskal-Katona theorem, which implies

that any graph with N copies of Kr has at least Ω(N v(F )/r) copies of Kv(F ). Due to

Lemma 1.3, we will only consider F with v(F ) > r throughout this paper.

Returning to the general problem: when r = 2, Conjecture 1.1 predicts that the

solution to the clique supersaturation problem is always achieved by the random graph

Gn,p with N copies of K2, i.e. when p = Nn−2. For larger r, it again makes sense to

look at what happens for Gn,p. To this end, if we want Gn,p to have on the order of N

copies of Kr, then we should take p = (Nn−r)1/(
r
2), which gives

E[N (F,Gn,p)] = Θ
(

(Nn−r)e(F )/(r
2)nv(F )

)
. (2)

Our first main result significantly improves upon this trivial bound for a wide range of

F and r ≥ 3. For this result, we recall that a graph F is 2-balanced if for all F ′ ⊆ F

with v(F ′) ≥ 3, we have

e(F ′) − 1

v(F ′) − 2
≤ e(F ) − 1

v(F ) − 2
.

Theorem 1.4. Let F be a 2-balanced graph with e(F ) ≥ 2 and let 2 ≤ r < v(F ) be an

integer. For all 1 ≤ N ≤
(
n
r

)
, there exists an n-vertex graph G with N (Kr, G) = Ω(N)

and with

N (F,G) = O
(
(Nn−r)e(F )βr(F )nv(F )

)
,

where

βr(F ) =
v(F ) − 2

(r − 2)(e(F ) − 1) + v(F ) − 2
.

Note that this bound is strictly smaller than the bound (2) from Gn,p whenever

βr(F ) >
(
r
2

)−1
, and this is equivalent to having

r + 1

2
>

e(F ) − 1

v(F ) − 2
for r, v(F ) ≥ 3.

For example, this inequality holds if F = K2,t when t ≥ 2 and r ≥ 3. More generally,

Theorem 1.4 implies the same result holds when Kr is replaced by any r-vertex graph
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H. In this case, the bound does better than the corresponding bound coming from Gn,p

precisely when

e(H) − 1

v(H) − 2
>

e(F ) − 1

v(F ) − 2

provided v(H), v(F ) ≥ 3.

A crucial part of our proof of Theorem 1.4 will be the following general lower bound

on ex(n,Kr, F ), which may be of independent interest.

Theorem 1.5. If F is a 2-balanced graph with e(F ) ≥ 2, then for all 2 ≤ r < v(F ) we

have

ex(n,Kr, F ) = Ω(n2− v(F )−2
e(F )−1 ).

Theorem 1.5 recovers the classic result ex(n, F ) = Ω(n2− v(F )−2
e(F )−1 ) for 2-balanced graphs,

though we emphasize that the proof for r > 2 is somewhat more involved than the easy

deletion argument which proves the classic r = 2 case. We also note that Theorem 1.5

can be close to best possible. For instance, it is known that ex(n,Kr, K2,t) = Θt(n
3/2)

for t sufficiently large in terms of r [1, 21], and in this case, Theorem 1.5 gives a lower

bound of Ω(n3/2− 1
4t−2 ), which is quite close to tight.

We next turn to bounds for specific choices of F . For this, it will not make sense

to consider an arbitrary number of cliques N , as no copies of F will be guaranteed if

N ≤ ex(n,Kr, F ). As such, we will normalize the N in our results by replacing N with

knα whenever1 ex(n,Kr, F ) = O(nα).

Perhaps the most natural case of F to consider for the clique supersaturation problem

is when F = Kt is itself a clique. The case t ≤ r is completely solved by the Kruskal-

Katona theorem, and the case t > r is solved up to order of magnitude by the result of

Halfpap and Palmer [10].

After cliques, the next simplest case is when F is a tree. This too is relatively easy

to solve.

Proposition 1.6. For all trees T and integers 2 ≤ r < v(F ), there exists a constant

k0 = k0(T ) such that if G is an n-vertex graph with N (Kr, G) = kn and k ≥ k0, then

N (T,G) = Ω(k(v(T )−1)/(r−1)n).

Moreover, the graph G consisting of the disjoint union of k−1/(r−1)n cliques of size

k1/(r−1) satisfies N (Kr, G) = Ω(kn) and N (T,G) = O(k(v(T )−1)/(r−1)n).

1We will specifically normalize our results based off the following bounds: (1) ex(n,Kr, T ) = Θ(n)

whenever T is a tree, (2) ex(n,Kr,K2,t) = O(n3/2), with this result being tight if t is sufficiently large

in terms of r, (3) ex(n,Kr,Ks,t) = O(nr−(r2)/s) whenever r ≤ s, with this result being tight if t is

sufficiently large in terms of r; see [1, 21].
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Alternatively, Theorem 1.4 can be used in Proposition 1.6 instead of the disjoint

union of cliques to get the same bound. Sharper bounds for F = K1,s were obtained

by Cutler, Nir and Radcliffe [6, Theorem 1.9] when N (Kr, G) = (1 + ε)ex(n,K1,s, Kr).

This and the Kruskal-Katona theorem are the only results we are aware of studying

degenerate clique supersaturation problems prior to this work.

We next look at complete bipartite graphs Ks,t. This is a natural case to study

given that Proposition 1.2 is relatively easy to prove and essentially solves the case of

r = 2. However, this problem becomes significantly more complex for r > 2, even in

the simplest (non-tree) case of s = 2.

Theorem 1.7. For all integers t ≥ 2 and 2 < r < 2 + t, there exists a constant

k0 = k0(t) such that if G is an n-vertex graph with N (Kr, G) = kn3/2 and k ≥ k0, then

N (K2,t, G) = Ω(min{k
t

r−2n3/2, k
2t2

(2t−1)(r−2)+tn
(3t−2)(r−2)+2t
(2t−1)(r−2)+t }).

Moreover, if 2 < r < 2 + t, there exists an n vertex graph G with N (Kr, G) = Ω(kn3/2)

and

N (K2,t, G) = O(k
2t2

(2t−1)(r−2)+tn
(3t−2)(r−2)+2t
(2t−1)(r−2)+t ).

Also, conditional on the existence of a bipartite graph B on U ∪ V with |U | =

k−2/(r−2)n3/2, |V | = n, e(B) = Ω(k−1/(r−2)n3/2), and such that every pair of ver-

tices in V has fewer than t paths of length at most 4 between them ; there exists an n

vertex graph G with N (Kr, G) = Ω(kn3/2) and

N (K2,t, G) = O(min{k
t

r−2n3/2, k
2t2

(2t−1)(r−2)+tn
(3t−2)(r−2)+2t
(2t−1)(r−2)+t }).

The bipartite graph B in the conditional portion of this theorem is closely related to a

bipartite analogue of the infamous problem of determining ex(n,C8); see the concluding

remarks for more on this.

One might hope that the methods of Theorem 1.7 could be extended to Ks,t in

general, but there are fundamental obstacles to this. Indeed, every construction in this

paper will turn out to be the union of nearly-disjoint cliques of roughly the same size,

and one can essentially show2 that any construction of this form will fail to do better

than the random graph Gn,p for Ks,t when r ≤ s; see Lemma 4.3 for an exact statement

and the concluding remarks for further discussions.

2. Supersaturation

In this section we prove our supersaturation results, i.e. the lower bounds of Proposi-

tion 1.6 and Theorem 1.7. We begin with two preliminary results that will be useful

2Of course, every graph G is the disjoint union of K2’s, so this exact claim is not quite true. However,

Lemma 4.3 will imply that this claim is true if we further impose that a large portion of the Kr’s in G

lie within the cliques used in its union.
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in our proofs. First, the following shows that if a set of vertices is contained in many

copies of Kr, then they must have many neighbors.

Lemma 2.1. If G is a graph and S ⊆ V (G) is a set of vertices which is contained in

at least ℓ cliques of size r > |S|, then there are at least ℓ1/(r−|S|) vertices adjacent to

every vertex of S.

Proof. Let N(S) denote the set of vertices adjacent to every vertex of S. Observe that

every Kr containing S can be identified by choosing r − |S| vertices from N(S). Thus

we must have

ℓ ≤
(
|N(S)|
r − |S|

)
≤ |N(S)|r−|S|,

from which the result follows. □

To motivate our next lemma, we note that in proving Proposition 1.6, it would be

useful to work with a subgraph G′ ⊆ G which has large minimum degree. Unfortunately,

the standard lemma saying that we can find a G′ ⊆ G of minimum degree comparable

to the average degree of G will be too weak for our purposes, as it could be the case

that G′ has very few vertices (in which case we may not be able to find many copies of

T in G′). We get around this with the following lemma from [14, Lemma 2.5], which

gives substantially stronger bounds on δ(G′) if v(G′) is small. We will in fact need a

slight generalization of this result to hypergraphs, which can be proven with an identical

argument.

Lemma 2.2 ([14]). Let H be an n-vertex hypergraph with ∅ /∈ E(H). For all real b ≥ 1,

there exists a subgraph H ′ ⊆ H with v(H ′) > 0 and minimum degree at least

2−b

(
v(H ′)

n

)1/b
e(H)

v(H ′)
.

With this we can prove our supersaturation result for trees.

Proof of Proposition 1.6. Recall that we wish to show for all trees T and 2 ≤ r < v(T ),

if T is a tree and G is an n-vertex graph with kn copies of Kr, then G contains at least

Ω(k(v(T )−1)/(r−1)) copies of T provided k is sufficiently large in terms of T .

Let H by the r-uniform hypergraph with V (H) = V (G) whose hyperedges are

copies of Kr in G. Let H ′ ⊆ H be the subhypergraph guaranteed by Lemma 2.2 with

b = v(T )−1
v(T )−r

> 1, and let G′ ⊆ G by the induced subgraph with V (G′) = V (H ′). By

unwinding the definitions, we see that every vertex of G′ is contained in at least

ℓ = 2− v(T )−1
v(T )−r

(
v(G′)

n

)(v(T )−r)/(v(T )−1)
kn

v(G′)
= 2− v(T )−1

v(T )−r kn
r−1

v(T )−1v(G′)
1−r

v(T )−1
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copies of Kr, which by Lemma 2.1 implies every vertex of G′ has degree at least

ℓ1/(r−1). Observe that ℓ ≥ 2− v(T )−1
v(T )−r k, so by taking k sufficiently large, we may assume

ℓ1/(r−1) ≥ 2v(T ).

With this in mind, we claim that

N (T,G′) ≥ v(G′) · (ℓ1/(r−1) − v(T ))v(T )−1/v(T )!.

Indeed, because T is a tree, we can order its vertices x1, . . . , xv(T ) in such a way that

every xi with i > 1 has a (unique) neighbor xj with j < i. With this ordering, we

build our copies of T greedily by selecting any vertex of G′ and label it y1, and then

iteratively given that we have chosen y1, . . . , yi−1 and that xi is adjacent to xj with

j < i, we choose yi to be any neighbor of yj that is not equal to any of the already

selected vertices y1, . . . , yi−1. It is not difficult to check that this procedure terminates

with a set of vertices y1, . . . , yv(T ) which forms a copy of T in G′ ⊆ G, and that the

number of ways of going through this procedure is at least v(G′) · (ℓ1/(r−1)− v(T ))v(T )−1.

The same tree can be generated at most v(T )! times by this algorithm, giving the bound

above.

Using ℓ1/(r−1) ≥ 2v(T ) and the definition of ℓ, we obtain

N (T,G) ≥ N (T,G′) = Ω(v(G′)ℓ(v(T )−1)/(r−1)) = Ω(k(v(T )−1)/(r−1)n),

giving the desired result. □

We next prove our supersaturation result for K2,t.

Proof of the lower bound in Theorem 1.7. Recall that we wish to show that for all t ≥ 2

and 2 ≤ r < 2 + t that if G is an n-vertex graph with kn3/2 copies of Kr, then G

contains at least

Ω

(
min

{
k

t
r−2n3/2, k

2t2

(2t−1)(r−2)+tn
(3t−2)(r−2)+2t
(2t−1)(r−2)+t

})
copies of K2,t provided k is sufficiently large in terms of t.

The idea behind our proof is the following: either our graph G has many edges (in

which case it will contain many copies of K2,t by Proposition 1.2), or we can assume

every pair of adjacent vertices has many common neighbors (in which case we can build

copies of K2,t greedily). More precisely, Proposition 1.2 implies there exists a constant

C = C(t) such that the following holds:

if e(G) ≥ Cn3/2, then N (K2,t, G) = Ω(e(G)2tn2−3t). (3)

We use the following when e(G) is small.

Claim 2.3. If e(G) ≤ max{C, k1/2}n3/2 and k is sufficiently large in terms of C , then

N (K2,t, G) = Ω
(
k

t
r−2n

3t
2(r−2) e(G)

r−2−t
r−2

)
. (4)
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Proof. We form copies of K2,t by starting with an edge e = uv and then choosing any t

of the common neighbors of u, v. Note that this process generates each K2,t in at most

2 ways (and in at most 1 way if t > 2).

To estimate the number of copies of K2,t formed in this way, let deg(e) denote the

number of Kr’s containing the edge e. By Lemma 2.1, the two vertices of e have at

least deg(e)1/(r−2) common neighbors. Thus

N (K2,t, G) ≥ 1

2

∑
e∈E(G)

(
deg(e)1/(r−2)

t

)
≥ 1

2

∑
e∈E(G)

(
deg(e)t/(r−2)

tt
− 1

)
,

where this last step used the inequality
(
x
t

)
≥ xt/tt − 1 valid for all x.

Since t > r − 2 by hypothesis, the function xt/(r−2)/tt − 1 is convex, and hence the

expression above is minimized when each deg(e) is equal to the average value

ℓ =

(
r

2

)
kn3/2e(G)−1,

so we find

N (K2,t, G) ≥ 1

2
e(G)

(
ℓt/(r−2)

tt
− 1

)
.

Note that if e(G) ≤ max(C, k1/2)n3/2 then ℓ ≥ 2tt for k sufficiently large, meaning
ℓt/(r−2)

tt
− 1 = Ω

(
ℓt/(r−2)

)
. In total then, we find

N (K2,t, G) = Ω(e(G)ℓt/(r−2)) = Ω
(
k

t
r−2n

3t
2(r−2) e(G)

r−2−t
r−2

)
as desired. □

We now split up our analysis based off of the value of k. Recalling the value of C

defined before (3), we first consider the case that k ≤ C
(2t−1)(r−2)+t

t n
r−2
2t . If e(G) ≥ Cn3/2,

then by (3) we have

N (K2,t, G) = Ω(n2) = Ω
(
k

t
r−2n3/2

)
,

with the last step using our assumption on k, proving the result. If instead e(G) ≤ Cn3/2,

then (4) gives a lower bound of Ω(k
t

r−2n
3
2 ) as desired.

From now on we assume k ≥ C
(2t−1)(r−2)+t

t n
r−2
2t . First consider the case

e(G) ≥ k
t

(2t−1)(r−2)+tn
(6t−4)(r−2)+3t
(4t−2)(r−2)+2t ≥ Cn3/2,

where this last inequality holds by our assumption on k. By (3) we find

N (K2,t, G) = Ω

(
k

2t2

(2t−1)(r−2)+tn
(6t2−4t)(r−2)+3t2

(2t−1)(r−2)+t · n2−3t

)
= Ω

(
k

2t2

(2t−1)(r−2)+tn
(3t−2)(r−2)+2t
(2t−1)(r−2)+t

)
,
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giving the desired bound. If instead e(G) ≤ k
t

(2t−1)(r−2)+tn
(6t−4)(r−2)+3t
(4t−2)(r−2)+2t ≤ k1/2n3/2, then

by (4) we have

N (K2,t, G) = Ω

([
ktn

3t
2 · k

(r−2−t)t
(2t−1)(r−2)+tn

(r−2−t)((6t−4)(r−2)+3t)
(4t−2)(r−2)+2t

]1/(r−2)
)

= Ω

([
k

2t2(r−2)
(2t−1)(r−2)+tn

((6t−4)(r−2)+4t)(r−2)
(4t−2)(r−2)+2t

]1/(r−2)
)

= Ω

(
k

2t2

(2t−1)(r−2)+tn
(3t−2)(r−2)+2t
(2t−1)(r−2)+t

)
,

again giving the desired bound. □

3. Constructions

In this section, we construct graphs G with many Kr’s but few copies of K2,t.

Motivated by Proposition 1.6 and Lemma 1.3 whose extremal constructions were unions

of cliques, it is perhaps reasonable to consider G which are union of cliques. And indeed,

our constructions will consist of two different G of this form: one coming from the union

of random cliques, the other from the union of cliques which avoids certain structures.

3.1. Uniform Random Cliques. In this subsection we prove Theorem 1.4 by con-

structing graphs G which contain many copies of Kr and few copies of F when F is

2-balanced. Intuitively, the graph G will be formed by taking the union of roughly u

cliques of size m chosen uniformly at random.

More precisely, given a real number u and integers m,n, define the random clique

graph Gu,m,n as follows. Let C1, . . . , C(n
m) be an enumeration of the m-element subsets

of [n] and let B1, . . . , B(n
m) be i.i.d. Bernoulli random variables with probability of

success u
(
n
m

)−1
. Define Gu,m,n to be the graph on [n] with edge set⋃

i:Bi=1

(
Ci

2

)
. (5)

We will prove two properties about the random clique graph Gu,m,n: that it contains

a relatively large number of Kr’s, and that it contains few copies of other F (provided

u and m are chosen appropriately). We begin with the clique estimate.

Lemma 3.1. For all r ≥ 2, there exists δ = δ(r) > 0 such that if u ≥ 1,m ≥ 2r and

umr ≤ nr, then

Pr(N (Kr, Gu,m,n) > δumr) > δ.
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Proof. We record the following binomial tail bound that will be needed in the proof,

see for example [11, Theorem 2.1]: if X ∼ Bin(n, p), then

Pr(X ≥ np + t) ≤ exp[−t2/(2np + 2t/3)]. (6)

Returning to the main proof, let X =
(
m
r

)
|{i : Bi = 1}| (which counts the number of

r-cliques in G with multiplicity), so X ∼
(
m
r

)
Bin(

(
n
m

)
, u
(
n
m

)−1
). Using the general fact

that Pr(Bin(M, p) ≥ Mp/2) ≥ 1/2 if Mp ≥ 1 (which follows from e.g. [12]), together

with u ≥ 1 and m ≥ 2r gives

Pr

(
X ≥ umr

2r+1r!

)
≥ Pr

(
X ≥ 1

2
u

(
m

r

))
≥ 1

2
. (7)

Similarly, if λ(A) = |{i : Bi = 1, A ⊂ Ci}| counts the multiplicity of a fixed r-clique

A, then λ ∼ Bin(
(
n−r
m−r

)
, u
(
n
m

)−1
). This random variable has expectation

u(m)r/(n)r ≲ umr/nr =: µ.

and this is at most 1 by hypothesis. Note that (6) says that for t ≥ 6,

Pr(λ(A) ≥ 1 + t) ≤ exp[−t2/(2 + 2t/3)] ≤ exp[−t].

Thus, if Yi = |{A : 2i ≤ λ(A) < 2i+1}|, we find that E[Yi] ≤
(
n
r

)
µ exp[−2i−1] for, say

i ≥ 10. By Markov’s inequality, we have

Pr

(
Yi ≥

(
n

r

)
µ exp[−2i−2]

)
< exp[−2i−2] ≤ exp[−i] (8)

for large enough i. Letting L be a large constant to be determined, we have

X =
∑
A

λ(A) <
∑
i

2i+1Yi ≤
L∑
i=1

2i+1Yi +
∑
i>L

2i+1Yi.

By (8), the last sum is at most 2
(
n
r

)
µ
∑

i>L+1(2/e)
i ≤ 4(2e−1)Lumr/r! with probability

at least 1−
∑

i>L exp[−i]. Thus, using (7) and taking L sufficiently large, we have with

probability at least 1/3 that

umr

2r+2r!
≤

L∑
i=1

2i+1Yi ≤ 2L+1
∑
i

Yi = 2L+1N (Kr, G),

which completes the proof. □

We next aim to prove the random clique construction contains few copies of F for

certain ranges of parameters.

Lemma 3.2. Let F be a 2-balanced graph with e(F ) ≥ 2. If u,m, n with m ≤ n are

such that um2 < n2 and u(m/n)2−
v(F )−2
e(F )−1 > 1, then

E[N (F,Gu,m,n)] = O
(
(um2n−2)e(F )nv(F )

)
.
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The condition um2 < n2 intuitively means the cliques of Gu,m,n will be close to edge

disjoint. The condition u(m/n)2−
v(F )−2
e(F )−1 > 1 is best possible for the conclusion to hold,

as otherwise the count u
(

m
v(F )

)
coming from copies of F within a single clique will be

larger.

We need a few technical definitions to prove Lemma 3.2. These definitions are based

off the observation that for a given copy F̃ of F to be present in Gu,m,n, there must

exist some (minimal) set of m-subsets {Ci1 , . . . , Cis} which cover the edges of F̃ and

which are all present as cliques in Gu,m,n.

With this in mind, given a graph F̃ ⊆ Kn, we say that a family C of m-subsets of

Kn is an F̃ -covering if E(F̃ ) ⊆
⋃

C∈C
(
C
2

)
, if each C ∈ C contains at least one edge of

F̃ , and if C ∩ V (F̃ ) ̸= C ′ ∩ V (F̃ ) for all distinct C,C ′ ∈ C. Given Gu,n,n and a family

of m-subsets C = {Ci1 , . . . , Cis} of Kn, we let B(C) denote the event that Bij = 1 for

all 1 ≤ j ≤ s (that is, this is the event that each of the Cij appear in the union of (5)).

Given a graph F , we let Z(F,Gu,m,n) denote the set of pairs (F̃ , C) such that F̃ ⊆ Kn

and C is an F̃ -covering with B(C) occurring.

The crucial observation is the following.

Lemma 3.3. For all graphs F , we have N (F,Gu,m,n) ≤ Z(F,Gu,m,n).

Proof. Observe that if F̃ ⊆ Gu,m,n is isomorphic to F , then there exists an F̃ -covering

C such that B(C) occurs; namely by taking a minimal set of m-subsets Cij with Bij = 1

that contain the set of edges of F̃ (which must exist if F̃ ⊆ Gu,m,n). Thus for each

subgraph F̃ ⊆ Gu,m,n counted by N (F,Gu,m,n), there exists at least one pair (F̃ , C)

counted by Z(F,Gu,m,n), proving the bound. □

With Lemma 3.3 in hand, we see that Lemma 3.2 will immediately be implied by the

following result.

Lemma 3.4. Let F be a 2-balanced graph with e(F ) ≥ 2. If u,m, n with m ≤ n are

such that um2 < n2 and u(m/n)2−
v(F )−2
e(F )−1 > 1, then

E[Z(F,Gu,m,n)] = O
(
(um2n−2)e(F )nv(F )

)
.

Proof. Fix any F̃ ⊆ Kn isomorphic to F . Since there are at most nv(F ) choices for F̃ ,

we see that it suffices to prove that the expected number of F̃ -coverings C for which

B(C) occurs is at most O((um2n−2)e(F )). For this we need a few more definitions.

Given a family A of subsets of V (F̃ ), we say that an F̃ -covering C has type A if

{C ∩ V (F̃ ) : C ∈ C} = A.

We say that a family A is valid if F̃ ⊆
⋃

A∈A
(
A
2

)
and if each A ∈ A contains at least

one edge of F̃ . Observe that by definition, if C is an F̃ -covering, then C is of type A for
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some valid A with |A| = |C|. Given a valid A, we define

w(A) = u|A|(m/n)
∑

A∈A |A|.

Claim 3.5. For any family A, let T (A) denote the number of F̃ -coverings C of type A
such that B(C) occurs. Then

E[T (A)] ≤ w(A). (9)

Proof. Let A = {A1, . . . , As}, and let S be the set of F̃ -coverings C of type A. Since

|S| is at most the number of tuples (Ci1 , . . . , Cis) such that each Cij is an m-subset

containing Aj, we find that

|S| ≤
s∏

j=1

(
n− |Aj|
m− |Aj|

)
=

s∏
j=1

(
n

m

)(
m

|Aj|

)
/

(
n

|Aj|

)
≤

s∏
j=1

(
n

m

)
(m/n)|Aj |,

Now, any fixed set C = {Ci1 , . . . , Cis} of distinct m-subsets has B(C) occurring with

probability us
(
n
m

)−s
, so by a union bound we see that

E[T (A)] ≤ us

(
n

m

)−s

|S| ≤
s∏

j=1

u(m/n)|Aj | = w(A),

proving the claim. □

With this claim, we see that the expected number of F̃ -coverings for which B(C)

occurs is at most ∑
A

E[T (A)] ≤ 22v(F ) · max
A

w(A),

where the sum and the maximum range over all valid families A. Thus to prove the

result, it suffices to show

max
A

w(A) ≤ (um2n−2)e(F ), (10)

where the maximum ranges over all valid families A. We will call any A achieving the

maximum in (10) a maximizer, and our goal will be to show that the only maximizers

are those with A ∈ E(F ) for all A ∈ A. We do this through the following two claims.

Claim 3.6. Every maximizer A has |A ∩B| ≤ 1 for all distinct A,B ∈ A.

Proof. Let A be a maximizer and assume for contradiction that |A ∩B| ≥ 2 for some

distinct A,B ∈ A. In this case, the set A′ = (A \ {A,B}) ∪ {A ∪B} is a valid family

which satisfies |A′| = |A| − 1 and∑
D∈A′

|D| = −|A ∩B| +
∑
D∈A

|D|,

since |A ∪B| = |A| + |B| − |A ∩B|. Thus

w(A′) = u−1(m/n)−|A∩B|w(A) > w(A),
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where the inequality used |A ∩ B| ≥ 2 together with um2 < n2 and m ≤ n applied

|A ∩B| − 2 times. This contradicts A being a maximizer, giving the result. □

Claim 3.7. Every maximizer A has A ∈ E(F ) for all A ∈ A.

Proof. Assume for contradiction that A is a maximizer with |A| > 2 for some A ∈ A. Let

E denote the set of edges of F ′ = F [A], noting that
∑

e∈E |e| = 2e(F ′) and |A| = v(F ′).

Let A′ = (A\{A})∪E . Observe that A′ is also a valid family with |A′| = |A|+e(F ′)−1

(noting that we have E∩A = ∅ by the previous claim since A ∈ A and A is a maximizer).

Thus,

w(A′) = ue(F ′)−1(m/n)2e(F
′)−v(F ′)w(A) > w(A),

where the last step used

u(m/n)
2− v(F ′)−2

e(F ′)−1 ≥ u(m/n)2−
v(F )−2
e(F )−1 > 1,

with the first inequality using that F is 2-balanced (and m ≤ n) and the last inequality

using the hypothesis of the lemma. This contradicts A being a maximizer, so we must

have |A| ≤ 2 for all A ∈ A. Moreover, each A ∈ A must contain an edge of F by

definition of A being valid, giving the result. □

The claims above imply A = E(F ) is the only maximizer, in which case w(A) =

ue(F )(m/n)2e(F ), giving (10) and hence the result. □

In addition to proving Lemma 3.2, Lemma 3.4 can be used to derive our general

lower bound on ex(n,Kr, F ).

Proof of Theorem 1.5. Recall that we aim to prove that if F is a 2-balanced graph with

e(F ) ≥ 2 and 2 ≤ r < v(F ) an integer, then

ex(n, F,Kr) = Ω(n2− v(F )−2
e(F )−1 ).

Let m = r and u = 2(n/m)2−
v(F )−2
e(F )−1 = Ω(n2− v(F )−2

e(F )−1 ). Given a constant α > 0, we

let Gα = Gαu,m,n. Note that the conditions of Lemma 3.4 apply to G1 (though not

necessarily for Gα). We aim to show that for small α, we can alter Gα to make it F -free

by removing a small portion of its Kr’s.

Let Zα = Z(F,Gα). Since v(F ) > r = m, any F̃ -covering C = {Ci1 , . . . , Cis} of some

F̃ ∼= F must have s ≥ 2, so by definition of Z we find E[Zα] ≤ α2E[Z1]. By Lemma 3.4

we see

E[Z1] = O((um2n−2)e(F )nv(F )) = O(n2− v(F )−2
e(F )−1 ) = O(u),

and thus

E[Zα] = O(α2u).

Recall that B1, B2, . . . are the Bernoulli random variables associated to Gα such that

the ith clique Ci is included in the union (5) for Gα if Bi = 1. Let Y (Gα) denote the
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number of i such that Bi = 1, noting that N (Kr, Gα) ≥ Y (Gα) and that E[Y (Gα)] = αu.

Thus we find E[Y (Gα)] −E[Zα] > αu−O(α2u), so for all α there is a realization G′
α of

Gα with

Y (G′
α) − Z(G′

α) > αu−O(α2u).

Taking α sufficiently small and removing one clique from each pair (F̃ , {Ci1 , . . .}) in G′
α

counted by Z(F,G′
α) (meaning we remove the clique from the union (5), which does

not necessarily remove any edges from G′
α) results in an F -free graph G′′

α with

N (Kr, G
′′
α) ≥ Y (G′′

α) = Ω(u) = Ω(n2− v(F )−2
e(F )−1 ). □

With this all established, we can now prove our main result for this subsection.

Proof of Theorem 1.4. Recall that we wish to prove that if F is a 2-balanced graph

with e(F ) ≥ 2 and 2 ≤ r < v(F ) is an integer, then for all 1 ≤ N ≤
(
n
r

)
, there exists an

n-vertex graph G with N (Kr, G) = Ω(N) and with

N (F,G) = O
(

(Nn−r)
e(F )(v(F )−2)

(r−2)(e(F )−1)+v(F )−2nv(F )
)
.

We first consider some trivial cases. If F is the disjoint union of K2’s, then one can

check that the bound above is achieved by taking G to be a clique on N1/r vertices. If

F has an isolated vertex x, then F ′ = F − x has at least 3 vertices (since e(F ) ≥ 2)

and e(F ′)−1
v(F ′)−2

> e(F )−1
v(F )−2

, contradicting F being 2-balanced. Thus we can assume F has no

isolated vertices and at least one component which is not a K2, from which it follows

that

2e(F ) > v(F ) ≥ 3,

where here we used that no isolated vertices implies 2e(C) ≥ v(C) for all components

C, and the component which is not a K2 gives a strict inequality.

The result is also trivial if N ≤ ex(n,Kr, F ), as in this case there exist F -free graphs

with the desired number of copies. Thus by Theorem 1.5 we can assume

N ≥ cn2− v(F )−2
e(F )−1

for some c ≤ 1. Similarly the result is trivial if N = Ω(nr) by taking G = Kn, so we

can assume N is at most a small constant times nr (with this constant depending on

F, r, c).

With all these assumptions above in mind, we set

C = 2rc−
e(F )−1

(r−2)(e(F )−1)+v(F )−2 ,

u = 2(Nn−r)
v(F )−2e(F )

(r−2)(e(F )−1)+v(F )−2 and

m = C(Nn−r)
e(F )−1

(r−2)(e(F )−1)+v(F )−2 · n.
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The lower bound N ≥ cn2− v(F )−2
e(F )−1 immediately gives m ≥ 2r. Observe that v(F ) −

2e(F ) < 0 and (r − 2)(e(F ) − 1) + v(F ) − 2 > 0 due to the bound 2e(F ) > v(F ) ≥ 3

above and r ≥ 2, which in particular implies C ≥ 1 since c ≤ 1. With this and our

assumption that N is at most a small constant times nr, we observe that m < n, that

u ≥ 2,

1 ≤ umr = 2CN ≤ nr,

u(m/n)2−
v(F )−2
e(F )−1 = 2C2− v(F )−2

e(F )−1 > 1,

and

um2n−2 = 2C2(Nn−r)
v(F )−2

(r−2)(e(F )−1)+v(F )−2 < 1.

Now consider G = Gu,m,n and let δ be the constant from Lemma 3.1. By applying

Markov’s inequality to Lemma 3.2, we find that

N (F,G) = O
(

(Nn−r)
e(F )(v(F )−2)

(r−2)(e(F )−1)+v(F )−2nv(F )
)

with probability at least 1 − δ/2. By Lemma 3.1, we see N (Kr, G) = Ω(N) with

probability at least δ. In particular, G satisfies the desired properties with positive

probability, showing such a graph exists. □

3.2. Cliques from Bipartite Graphs. Throughout this subsection we work with

bipartite graphs B with ordered bipartitions (U, V ).

The intuition for our construction is as follows. We again consider a graph G formed

by taking the union of roughly u cliques of size m for some parameters u,m. We can

not have m larger than what it was in the proof for Theorem 1.4, as otherwise the

number of copies of K2,t contained within the m cliques will be too large. Thus we

must take m to be smaller and u to be larger. If we put the u cliques down uniformly at

random, then G would contain too many copies of K2,t which have each edge contained

in a distinct clique (intuitively because G behaves locally like Gn,p). Ideally then, we

want to place our cliques down so that there exists no K2,t with each edge contained in

a distinct clique. For this the following will be useful.

Definition 3.8. Given a bipartite graph B with ordered bipartition (U, V ), we define

the clique graph K(B) to be the graph with vertex set V such that v, v′ ∈ V are adjacent

if and only if v, v′ have a common neighbor in U . Equivalently, K(B) is formed by

taking the union3 of the cliques NB(u) with u ∈ U .

Unwinding the intuition from above; we want to find a bipartite B which avoid

subdivisions of K2,t (as these correspond to edges belonging to distinct cliques in K(B)),

or equivalently, to avoid having t paths of length 4 between any two vertices of V in B.

And indeed, the following shows that this is essentially all we need.

3A helpful mnemonic is that U is the set of cliques that we Union over.
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Lemma 3.9. If B is a bipartite graph with bipartition (U, V ) such that every vertex of

U has degree at most d and such that there are at most ℓ ≥ 2 distinct paths of length at

most 4 between any two vertices of V , then for all t > ℓ we have

N (K2,t, K(B)) ≤ ℓ2td2+t|U |.

Note that the number of K2,t’s within any of the NB(u) cliques of K(B) is at most

d2+t|U |, so the lemma says that this trivial count is essentially correct.

Proof. We first claim that if v1, v2, w1, . . . , wt form a K2,t in K(B) with v1, v2 adjacent

to all of the wj vertices, then v1v2 ∈ E(K(B)) (i.e. they have a common neighbor in

B). Indeed, for each edge viwj ∈ E(K(B)) there exists a ui,j ∈ U which is adjacent to

both of these vertices. If u1,j = u2,j for any j then we are done, so we assume this is

not the case. Thus v1u1,jwju2,jv2 is a path of length 4 from v1 to v2 in B, and each of

these t > ℓ paths are distinct since the wj vertices are distinct. This is impossible by

our condition on B, so the claim follows.

For any pair of vertices v1, v2 ∈ K(B), we claim that there are at most ℓ(d+1) vertices

w which are adjacent to both v1, v2 in K(B). Indeed, for any such vertex w there

must exist two (possibly non-distinct) vertices uw
1 , u

w
2 ∈ U such that w, vi ∈ NB(uw

i ). If

uw
1 = uw

2 = u, then in particular u is a common neighbor of v1, v2 in B. By assumption

there are at most ℓ such vertices u, and each of them have at most d neighbors w. Thus

the number of common neighbors with uw
1 = uw

2 is at most ℓd. On the other hand, for

each distinct w with uw
1 ̸= uw

2 , there exists a distinct path v1u
w
1 wu

w
2 v2 of length 4 from

v1 to v2 in B. By assumption, at most ℓ such vertices can exist, giving the claim.

By these two claims, every K2,t in K(B) can be formed by first choosing v1, v2
adjacent in K(B) (i.e. with a common neighbor in U) and then choosing some t of the

at most ℓ(d + 1) ≤ 2ℓd common neighbors they have in K(B). In total the number of

ways of doing this is at most

d2|U | ·
(

2ℓd

t

)
≤ ℓ2td2+t|U |. □

It remains to find graphs B avoiding the structures in Lemma 3.9 which are “dense”

(so that K(B) will have many Kr’s). To this end, we define ex(m,n,Pℓ+1
≤4 ) to be

the maximum number of edges that a bipartite graph B with bipartition (U, V ) and

|U | = m, |V | = n can have if there are at most ℓ distinct paths of length at most 4

between any two vertices of V , and in this case we say B avoids Pℓ+1
≤4 . It is relatively

easy to upper bound this extremal number by adapting an argumenent of Bukh and

Conlon [3, Lemma 1.1].

Lemma 3.10.

ex(m,n,Pℓ+1
≤4 ) < 4ℓ1/4n3/4m1/2 + 10m + 10n.
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Proof. Let B = (U, V,E) be a bipartite graph with |U | = m, |V | = n, and |E| = e

which avoids Pℓ+1
≤4 . If e < 10m or e < 10n then the result follows, so assume this is not

the case.

Let U ′ ⊆ U be the set of vertices with minimum degree at least e/(2m). For v ∈ V ,

let d′v = |N(v) ∩ U ′|, and note
∑

v∈V d′v ≥ e/2, as at most e/2 edges can be incident to

vertices in U − U ′. Let X denote the number of labelled copies of P4 in U ′ ∪ V with

endpoints in V . One can lower bound X by greedily embedding copies of P4 starting

with the middle vertex to get

X ≥
∑
v∈V

(
d′v
2

)
(e/(2m) − 1)(e/(2m) − 2) ≥ n

(
e/(2n)

2

)( e

4m

)2
≥ e4

28m2n
,

where the second and third inequalities use that e ≥ 10m and e ≥ 10n respectively. On

the other hand, there are
(
n
2

)
choices for the endpoints of each path, and each pair may

appear at most ℓ times as endpoints, so

X ≤ ℓn2/2.

Comparing the lower and upper bounds gives

e4 ≤ 27ℓn3m2,

which implies the lemma. □

The next result shows that whenever ex(m,n,Pℓ+1
≤4 ) is close to the upper bound of

Lemma 3.10 we can find a graph with many Kr’s and few K2,t’s.

Lemma 3.11. Fix r ≥ 3, ℓ ≥ 2 and t > ℓ, r − 2. Assume there exists a c > 0 such

that for all ε with 0 ≤ ε ≤ r−2
2t

we have ex(n3/2−2ε, n,Pℓ+1
≤4 ) > 2cn3/2−ε. Then for

all 0 ≤ ε ≤ r−2
2t

there exists an n-vertex graph G with Ωc(n
3/2+(r−2)ε) r-cliques and

Oc(n
3/2+tε) K2,t’s.

Proof. We may assume n is sufficiently large in terms of c, as otherwise we can take

G = Kn to give the result. Let B = (U, V,E) be a bipartite graph with |U | = m =

n3/2−2ε and |V | = n showing ex(n3/2−2ε, n,Pℓ+1
≤4 ) > 2cn3/2−ε. Let W ⊆ U be the set of

vertices w with degB(w) > Dℓnε for some large D to be determined.

Claim 3.12. e(B[U \W,V ]) > e(B)/2.

Proof. Consider the bipartite graph BW induced by W ∪ V . We are done if e(BW ) ≤
cn3/2−ε. Suppose this is not the case, and set s = |W |. Using n sufficiently large in

terms of c and that ε < 1/2, we find

e(BW ) > cn3/2−ε > 100s + 100n,

so Lemma 3.10 gives

s1/2 >
e(BW )

5ℓ1/4n3/4
>

cn3/2−ε

5n3/4ℓ1/4
,
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i.e. s > c2n3/2−2ε/(25ℓ1/2). Therefore,

e(BW ) > s ·Dℓnε >
n3/2−2ε

25ℓ1/2
·Dℓnε = ℓ1/2n3/2−ε(D/25),

which is more than 4ℓ1/4n3/4m1/2 + 10(m + n) for large enough D, contradicting

Lemma 3.10. □

Let U ′ = U \W , B′ = B[U ′ ∪ V ], and |U ′| = m′. By the claim, e(B′) > e(B)/2. Let

G = K(B′) (recalling the definition of K(B′) above Lemma 3.9). We claim G satisfies

the conclusion of the lemma.

Because B′ avoids Pℓ+1
≤4 , every r-set in V is contained in at most ℓ neighborhoods, so

the number of Kr’s in G is at least∑
u∈U ′

(
degB′(u)

r

)
ℓ−1 ≥ m′

(
e(B)/(2m′)

r

)
ℓ−1 ≥ crn3/2+(r−2)ε

2rr!ℓ

for sufficiently large n, with this last step using m′ ≤ m = n3/2−2ε. Note that

Lemma 3.9 with the assumption that B′ avoids Pℓ+1
≤4 implies G contains at most

O((2ℓ)2t(Dℓnε)2+tn3/2−2ε) = O(n3/2+tε) copies of K2,t. □

With this we can prove our upper bound result for K2,t.

Proof of Theorem 1.7 Upper Bound. Recall that we wish to prove if t ≥ r − 1 ≥ 2

and either k ≥ n
r−2
2t or if there exists a bipartite graph B on U ∪ V such that |U | =

k−2/(r−2)n3/2, |V | = n, e(B) = Ω(k−1/(r−2)n3/2), and such that every pair of vertices

in V has less than t paths of length at most 4 between them; then there exists an n

vertex graph G with N (Kr, G) = Ω(kn3/2) and with

N (K2,t, G) = O(min{k
t

r−2n3/2+o(1), k
2t2

(2t−1)(r−2)+tn
(3t−2)(r−2)+2t
(2t−1)(r−2)+t }).

If k ≥ n
r−2
2t then the second term achieves the minimum, and in this case the general

bound of Theorem 1.4 gives the result.

It remains to show that if k ≤ n
r−2
2t and if bipartite graphs B as above exists, then

there exist graphs with N (Kr, G) = Ω(kn3/2) and N (K2,t, G) = O(k
t

r−2n3/2). And

indeed, this follows from the previous lemma. □

As an aside, we note that the constructions considered here are similar to the

constructions used in the recent breakthrough of Mattheus and Verstraëte [13] for

off-diagonal Ramsey numbers. Indeed, as is made more explicit in [5], the construction

of [13] comes from taking a bipartite graph B which avoids certain subgraphs, forming

the clique graph K(B), and then taking a random bipartition of each of its cliques.
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4. Conclusion

In this paper we studied how many copies of a graph F another graph G is guaranteed

to have if G contains a given number of Kr’s. While our general result Theorem 1.4

gives effective bounds on many F , it would be desirable to get a better understanding of

the problem for specific choices of F . Below we outline two such directions for problems,

and for this we recall the notation N (F,G) which denotes the number of copies of F in

G.

Tight Bounds for K2,t. Theorem 1.7 solved the clique supersaturation problem

when F = K2,t and G has kn3/2 copies of Kr with k ≥ n(r−2)/2t. We believe Theorem

1.7 should give tight bounds even when k < n(r−2)/2t, and in particular we conjecture

the following.

Conjecture 4.1. There exists t0 such that for t ≥ t0 and 1 ≤ k ≤ n1/2t, there exists

an n-vertex graph G with Ω(kn3/2) triangles and with

N (K2,t, G) ≤ ktn3/2+o(1).

Note that the second half of Theorem 1.7 shows such G exists provided there exist

bipartite graphs B with parts of sizes k−2n3/2 and n which have e(B) = Ω(k−1n3/2),

and which have fewer than t paths of length 4 between any two vertices in the part

of size n. For example, if t = 2 and k = n1/4, then this is equivalent to finding an

n-vertex bipartite graph with Ω(n5/4) edges and which is C4 and C8-free, which is a

notoriously open and difficult problem. More generally, the t = 2 case requires finding

C8-free unbalanced bipartite graphs of the largest possible density; see for example [16]

for more on this.

The above suggests using Theorem 1.7 to solve Conjecture 4.1 with t0 = 2 is quite

difficult, but there is some hope that one can do this for t0 sufficiently large. In

particular, it is known at k = n1/4 that (explicit) bipartite graphs B of this form exist

for t ≥ 3 due to an algebraic construction of Verstraëte and Williford [22], and it is

plausible that one could modify their argument to construct B for additional values of

k.

Another potential avenue is through random polynomial graphs. This approach was

used by Conlon [4] to show that at k = n1/4, there is a t0 such that bipartite graphs B

of this form exist for t ≥ t0. By adapting his argument, it is possible to show that for

any rational 0 ≤ q ≤ 1/4, there exists tq such that at k = nq bipartite graphs B of this

form exist for t ≥ tq.

While the k = nq result above might be of independent interest, it does not suffice

for our purposes. Indeed, the tq we obtain will typically have q > 1/2tq, and hence the

range k = nq falls outside the scope of Conjecture 4.1. Still, it might be possible to

prove Conjecture 4.1 with a more sophisticated approach using random polynomials.
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General Graphs. We believe the bounds of Theorem 1.7 for K2,t should extend to

all theta graphs F with a similar argument. However, the situation for general Ks,t is

entirely unclear, and we leave this as an open problem.

Problem 4.2. Solve the Kr clique supersaturation problem for Ks,t with r, s, t ≥ 3.

One can check that Theorem 1.4 gives better bounds for Ks,t compared to the bound

(2) coming from Gn,p if and only if

r >
2st− s− t

s + t− 2
= s +

(s− 1)(t− s)

s + t− 2
= 2s− 1 − 2(s− 1)2

s + t− 2
.

In particular, Theorem 1.4 never gives effective bounds when r ≤ s, and for r ≥ 2s− 1

it always gives a non-trivial bound. Theorem 1.4 used cliques placed uniformly at

random, and one might hope that by placing cliques in a more careful way (say with the

aid of a bipartite graph B which avoids certain structures), one could obtain bounds

better than (2) for smaller values of r. Unfortunately, the following shows that this is

essentially impossible.

Lemma 4.3. Let 2 ≤ s ≤ t be integers and r ≤ 2st−s−t
s+t−2

. There exists a constant

k0 = k0(r, s, t) such that if G is an n-vertex graph which is the union of u cliques of

size m with umr = knr−(r
2)/s where k ≥ k0, and with every edge contained in at most

O(1) of the u cliques, then

N (Ks,t, G) = Ω
(
kst/(r

2)ns
)
.

We note that the quantity umr is roughly the number of copies of Kr within one of

the u cliques making up G.

Proof Sketch. If m ≪ k
1

r(r−1)n
2s−r−1

2s , then a small computation together with the fact

that each edge is in at most O(1) cliques shows e(G) ≫ k1/(r
2)n2−1/s, from which the

result follows by Proposition 1.2. Otherwise, counting copies of Ks,t within each of the

u cliques gives

N (Ks,t, G) = Ω(ums+t) = Ω(knr−(r
2)/s ·ms+t−r) = Ω(kst/(r

2)ns),

where this last step implicitly uses the upper bound on r. □

Lemma 4.3 shows that any non-trivial construction for Problem 4.2 when r ≤ s must

look substantially different from all the constructions used throughout this paper. We

feel like such constructions should not exist, and as such we conjecture the following.

Conjecture 4.4. If 2 ≤ r ≤ s ≤ t, then there exists a constant k0 such that if G is an

n-vertex graph with N (Kr, G) = knr−(r
2)/s and k ≥ k0, then

N (Ks,t, G) ≥ kst/(r
2)ns−o(1).
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That is, if r ≤ s, then we predict every graph G with a given number of Kr’s contains

at least as many Ks,t’s as the random graph with the same number of Kr’s. It is perhaps

natural to extend this conjecture to all r ≤ 2s−s−t
s+t−2

since this is the full range for Lemma

4.3, but we find this quantity too strange to make any statements with confidence.

Note that Proposition 1.2 implies Conjecture 4.4 for r = 2. Thus the next open case

is r = s = 3, which we restate below.

Conjecture 4.5. For all t ≥ 3 there exists a constant k0 such that if G is an n-vertex

graph with kn2 triangles and k ≥ k0, then

N (K3,t, G) ≥ ktn3−o(1).

We believe we can adapt the argument of Theorem 1.7 for this problem to prove a

lower bound of roughly n7/3 when k is a large constant, but it seems like new ideas are

needed to improve upon this.
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