Quiz 1 Solutions

Question 1 Suppose G is a connected graph of order n. What are the greatest and least possible sizes of G? Fully justify both answers.

Solution Recall that the size of G is the size of |E(G)|. Since |E(G)| is a subset of the 2-subsets of V(G), of which there are $\binom{n}{2}$, the largest possible size of G is $\binom{n}{2}$.

Finding the least possible size is trickier. The graph P_n has size n - 1, for example, but it may not be immediately clear how to show that the bound is *sharp* - *i.e.*, that **any** graph of size n - 2 must be disconnected.

Multiple approaches are possible: one example that does not use induction is the following. Suppose G is connected. Fix some $x \in G$ and write the x - u geodesic, for $x \neq u$, as

$$xx_1...x_{k-1}x_k$$

where $x_k = u$ and k is the distance between x and u, possibly 1.

By connectivity, each of the n-1 vertices u of G other than x has an x-u geodesic, each of which has a terminal edge $x_{k-1}x_k$.

Suppose two geodesics have the same terminal edge $\{uv\}$: *i.e.*, one geodesic terminates

and the other terminates

...*vu*

Then neither u nor v equals x (otherwise the geodesic would have length 0). If d(x, v) = k, then d(x, u) = k - 1 from the position of u in the first geodesic. But then the position of u in the second geodesic implies d(x, v) = k - 2, contradiction. Thus no two x - u geodesics have the same terminal edge, and since there are n - 1 x - u geodesics, any connected graph must have at least n - 1 edges.

We combine the two facts proved above – namely, that

- 1. there exists a connected graph of order n and size n 1, and
- 2. no connected graph of order n can have size strictly less than n-1

to conclude that the minimum size for a graph of order n is n-1.

Question 2 Prove that every graph G has a path of length at least $\delta(G)$.

HINT: Let $P = x_1 x_2 \dots x_k$ be the **longest path** in G. Combine an inequality between $\delta(G)$ and $|\Gamma(x_k)|$ with the fact that P cannot be extended.

Solution Every element of $\Gamma(x_k)$ is on the path P. To see why, suppose that this were not so and let y be a vertex adjacent to x_k but not on P. Then P could be extended to $x_{k+1} = y$, forming a path of length k+1 and contradicting the assumption that P was the longest path.

This last statement shows that $\Gamma(x_k)$ is a subset of P, which implies that $|\Gamma(x_k)| \leq k$. Since $\delta(G) \leq |\Gamma(x_k)|$, by transitivity we obtain the inequality

 $\delta(G) \le k$

Since k is the length of the *longest* path in G, it follows that at least one path has length at least $\delta(G)$.