**Question 1** Classify the following statements as TRUE (T) or FALSE (F). No justification is necessary.

Note that true means true without further conditions.

- 1. \_\_\_\_\_ Every walk is a path. False: a path is a walk with distinct vertices.
- 2. \_\_\_\_\_ Every path is a trail. **True**: a path is a trail with distinct vertices.
- 3. \_\_\_\_\_ A graph is a forest if and only if each of its edges is a bridge. **True**. A bridge is an edge e of a *component* K such that K e is disconnected. An edge is a bridge if and only if it lies on no cycle. So all edges of a graph are bridges if and only if the graph contains no cycles i.e., is a forest.
- 4. \_\_\_\_\_ If a statement is false, then its contrapositive is false. **True**.
- 5. \_\_\_\_\_ A graph is bipartite if and only if it contains at least one odd cycle.

False. The opposite is true: a graph is bipartite iff it *lacks* odd cycles.

- 6. \_\_\_\_\_ Every tree is bipartite. **True** because trees are acyclic and therefore contain no odd cycles.
- 7. \_\_\_\_\_ Every bipartite graph is connected. **False**. Counterexample:  $P_2 \cup P_2$ .

# Question 2

(a) Use Kruskal's algorithm to find a minimal spanning tree of the following graph, listing the edges of the spanning tree in the order you add them to the tree:



### Answer

- 1.  $\{a, b\}$
- 2.  $\{b, c\}$
- 3.  $\{c, d\}$
- 4.  $\{c, e\}$

(b) Use Prim's algorithm, starting at vertex b, to find a minimal spanning tree of the following graph, listing the edges of the spanning tree in the order you add them to the tree:



#### Answer

- 1.  $\{a, b\}$
- 2.  $\{a, d\}$
- 3.  $\{a, c\}$

(c) Repeat part (b), except starting at vertex d.

#### Answer

- 1.  $\{a, d\}$
- 2.  $\{a, b\}$
- 3.  $\{a, c\}$

**Question 3** Consider the following theorem and its proof:

**Theorem** Let G be a graph with more than one vertex. If  $\delta(G) = 0$  then G is disconnected.

PROOF Let u be the vertex of degree zero and v any other vertex. If there were a u - v path then there would be an initial u - w edge for some  $w \neq u$  in the path, but u is incident to no edges. Contradiction.

State the *converse* of the above theorem, and then prove that the converse is FALSE.

**Converse** If G is disconnected for G such that |G| > 1 then  $\delta(G) = 0$ .

**PROOF** The following graph is disconnected and of order four, yet contains no vertices of degree zero:



## Question 4

(a) For a tree T, let  $\rho(T)$  be defined as follows:

$$\rho(T) := \frac{|\{v \in T : d(v) = 1\}|}{|T|}$$

- Find (and justify) maximum and minimum values for  $\rho(T)$  over the set of all trees. (We assume, as always, that no graph has order zero.)
- Find two sequences,  $\{S_n\}$  and  $\{T_n\}$ , of trees with the property that, as  $n \to \infty$ ,  $|S_n| \to \infty$  and  $|T_n| \to \infty$  yet  $\rho(S_n) \to 0$  and  $\rho(T_n) \to 1$ .

**Answer** In plain English, the numerator is the number of leaves of T and the denominator is the order of T. In other words,  $\rho$  gives the proportion of the vertices in T that are leaves, thus certainly

$$0 \le \rho\left(T\right) \le 1$$

Note that this inequality is not good enough standing alone. We have to find actual minimum and maximum values and justify them; it turns out, however that those values are 0 and 1 respectively.

Indeed, the minimum is attained with a tree of order 1 (the trivial graph), the only tree with fewer than two leaves: this tree  $T_1$  has a single vertex of degree zero – hence zero leaves – and thus  $\rho(T_1) = 0$ . On the other hand, drawing from the fact that all trees of order at least two have two or more leaves, we take  $T_2$  to be the tree of order 2 and observe that  $\rho(T_2) = 1$ .

Define  $S_n$  and  $T_n$  as follows:

$$V(S_n) := V(T_n) := \{v_1, ..., v_n\}$$
  

$$E(S_n) := \{\{v_i, v_{i+1}\} : i \in \{1, ..., n-1\}\}$$
  

$$E(T_n) := \{\{v_1, v_i\} : i \in \{2, ..., n\}\}$$

In the below,  $a \mid b$  signifies "a divides b."

(b) A modified version of *Euclid's lemma*, which you are not required to prove, reads as follows:

Let p and  $p_1, ..., p_k$  be prime numbers; also let  $p \mid (p_1 \cdot ... \cdot p_k)$ . Then  $p = p_i$  for some  $i \in \{1, ..., k\}$ .

Complete the following proof by contradiction that infinitely many prime numbers exist:

PROOF Suppose that there were finitely many (say, a total of k) prime numbers. Then we could enumerate them as  $2 = p_1 < p_2 < ... < p_k$ . Take the product of these k prime numbers and call it N.

HINT: You may assume that if  $p \mid n$  then  $p \nmid (n+1)$ (*i.e.*, p does not divide ...).

**Answer** Then, by the modified version of the Fundamental Theorem of Arithmetic we learned in class, N + 1 can be expressed as a product of solely prime numbers (i.e., , can be decomposed into a product of primes), thus  $p_i \mid (N + 1)$  for some  $i \in \{1, ..., k\}$ . On the other hand, this same  $p_i$  divides N by Euclid's lemma. This fact poses a contradiction because a prime cannot divide two consecutive natural numbers.

(c) Categorize each of the following degree sequences as *graphical* or *non-graphical*. Draw a graph corresponding to each graphical sequence; for each non-graphical sequence, explain how you know that the sequence is not graphical.

• 2, 2, 3, 3, 4, 4 **Graphical**. Using a theorem from the course and setting this sequence equal to s, the sequence s' is

and the sequence s'' is

1, 1, 1, 1

The sequence s'' yields



whence we find a graph for s':



and finally s:



- 4, 3, 4, 3, 2, 1 **Non-graphical** by the Handshake Lemma (odd number of odd vertices).
- 1, 2, 3, 2, 5, 5

**Non-graphical**. For example, this graph of order 6 has two vertices of order 5, so any vertex not equal to these two must have degree at least two. Yet there is a vertex of degree 1.

# Question 5

- (a) For G and H as pictured below, draw the following graphs:
  - $G \times H$
  - G + H



Figure 1: Graph G



Figure 2: Graph H







Figure 4: G + H

(b) Prove or disprove that the following relations R are equivalence relations:

- In a connected graph G, uRv if and only if u and v are adjacent.
- In an arbitrary graph G, uRv if and only if u and v are connected by a path.

#### Answer

- No; reflexivity fails because no vertex is adjacent to itself.
- Yes. Indeed, the relation is
  - reflexive because every vertex is connected to itself by the empty path;
  - trivially **symmetrical**; and
  - **transitive** by virtue of the fact that if uRv and vRw then there certainly exists a u w walk, and therefore a u w path by a theorem of Chapter 1.

- (c) Find the *sizes* of the following graphs:
  - A forest with a single component and no vertices of degree exactly one **Answer**: 0. The forests with a single component are precisely the trees, and every tree of order greater than one has two or more leaves. Thus this forest is simply the trivial graph.
  - The complete graph  $K_n$ , for  $n \ge 3$ **Answer**:  $\binom{n}{2}$ , because every possible 2-subset of [n] is an edge.
  - The complement of  $C_n$  (i.e., the cycle on n vertices labelled 1, ..., n). **Answer**:  $\binom{n}{2} - n$ .
  - A connected graph G of order 100, all of whose edges are bridges **Answer**: 99, because a connected graph all of whose edges are bridges is acyclic and therefore a tree.
  - A graph G with degree sequence 0, 2, 2, 2, 1, 2, 1
     Answer: 5, by the Handshake Lemma.