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1 Existence and Uniqueness Theorems

Both theorems pertain to an initial value problem (IVP):

dy

dt
= f(t, y) (1)

y(t0) = y0 (2)

1.1 Existence

All mathematical expressions (such as f) in this subsection refer to those in the
IVP above.

Technical definition If f is continuous in any rectangle R around (t0, y0)
then there exist ε > 0 and y(t) such that y(t) solves the IVP for t ∈ (t0−ε, t0+ε).

Intuitive definition If f is continuous near (t0, y0) then IVP has a solution
in a small time interval around t0.

1.2 Uniqueness

Technical definition If f and δf
δy are continuous in any rectangle R around

(t0, y0) and there exists some ε > 0 and two solutions y1(t) and y2(t) of the
IVP on t ∈ (t0 − ε, t0 + ε), then y1 = y2 on t ∈ (t0 − ε, t0 + ε).

Intuitive definition If f is well-behaved near (t0, y0) then any two solutions
to the IVP are identical near (t0, y0).
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1.3 Important notes

• Do not worry about the size of the rectangle R as long as one exists that
strictly contains the point.

• Recall from geometry that the inverse (equivalent to the converse) of a
true statement need not be true; for example, while the statement

If a polygon is a square, then the same polygon is a rectangle.

is obviously correct, its inverse statement,

If a polygon is not a square, then the same polygon is not a rectangle.

is false.

Likewise, the fact that the Existence Theorem (resp., the Uniqueness The-
orem) fails to apply at a point does not necessarily mean that no solutions
exist coinciding with that point (resp., that a solution coinciding with the
point is non-unique). To see this fact for yourself, try solving the following
IVP:

dy

dt
= − t

y
; y(2) = 0

• Consider the DE
dy

dt
= y/t2

and confirm that the function family

yc(x) =

{
0 t ≤ 0

c · e−1/t t > 0

forms a set of solutions to the DE, where c ∈ R. (If it will not sidetrack
you, also confirm that these functions are continuous.)

Let T− = {(t0, 0) : t0 < 0}. Since f(t, y) = y/t2 and fy = 1/t2, the
Uniqueness Theorem applies at every point in T ′. However, we have just
built infinitely many distinct functions all of which will pass through any
point t′ we choose from T−. How is this fact consistent with the Uniqueness
Theorem? Have we done something wrong? Think about it – carefully
re-reading the text of the theorem if you are stuck – and then check the
next paragraph to see if you are correct.

Answer: The Uniqueness Theorem applies to a neighborhood of the point
it is given: it says that its two given solutions are identical near that
point but says nothing about what happens further on. There is no
contradiction because every negative number has a bit of “breathing room”
between itself and the t = 0 axis, where the solutions diverge.
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2 Bifurcation Values

2.1 Drawing a bifurcation diagram

The diagram below corresponds to dy
dt = (y − 1)(y2 − µ2).

Steps

1. Draw a µy-plane.

2. Draw curves where dy/dt = 0. I have drawn those curves in red above;
they are y = 1, y = µ, and y = −µ. (Graph the curves as if the plane were
the ordinary xy-plane, with µ substituted for x in the function names).

3. Use sign analysis to shade in regions by sign of dy/dt (suggested legend:
shade = negative, no shade = positive)

(a) In particular, what sign does dy/dt take when y is very large and
positive? very large and negative? etc.

(b) Shade in the other regions by substituting estimated values and visu-
alizing polynomials for fixed values of µ. For example, in the bounded
triangular region containing (0, ε) for small ε can be shaded because
(ε−1) will be negative and ε2−µ2 will be positive. The region lower
on the y-axis can also be shaded, either by the fact that dy/dt de-
creases w/o bound as y does or the fact that y = 0 is a double root
of (y − 1)y2 (and therefore does not cause the polynomial to change
sign as y decreases).
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4. Find bifurcation values based on changes in the nature of phase lines (cross
sections).

The diagram reveals that our bifurcation points are µ = 0,±1 .

3 First-order linear non-homogeneous equations

3.1 FAQ

• Will I be graded on my ability to derive the integrating factor?

No.

• Should I know – by heart – how to derive the integrating factor?

Yes.

• When should I use the integrating factor instead of lucky guess? And v.v.?

You may use lucky guess only if both of the following are true:

1. the coefficients of your DE are constants, and

2. your non-homogeneous part (b(t)) is a polynomial, an exponential, a
sine/cosine, or a sum of these three functions.

It’s usually more efficient and less error-prone to use lucky guess for those
DEs to which it applies. However, you may use any legal method to solve
a problem if none is prescribed by the exam, and for DEs with easily-
integrable b(t) using both may be a good way of checking your answer if
you finish with spare time.

3.2 Lucky guess method

Suppose we are given the following differential equation:

L[y] = f(t) (3)

where L[y] is just shorthand for the function of derivatives of y on the LHS and
f(t) is a non-zero function of t. Then the general solution to this equation is

y = yh + yp

where yh is the general solution to the homogeneous equation

L[yh] = 0

and yp is one particular solution to (3).
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Example
L[y] = y′ − y = t

The homogeneous equation is
y′ − y = 0

whose solution is
yh = c · et

Our lucky guess for a particular solution is

yp = At+B

We take the derivative and substitute into the LHS

(yp)
′ = A

t = L[yp] = (yp)
′ − yp

= A− (At+B)

= −At+ (A−B)

and finally compare coefficients:

= 1 · t+ 0

A = −1

B = −1

Thus we obtain yp = −t− 1 , and therefore a general solution of

y(t) = c · et − (t+ 1)

3.3 One other note

If a lucky guess yp already solves the homogeneous equation 3.2 then it cannot
satisfy the DE for any f(t): this is because, by definition,

L[yp] = 0 6= f(t)

In such a situation, multiply your lucky guess by t; for example, if our original
DE had been

y′ − y = et

then our lucky guess would have been

yp = Atet

resulting in a derivative of

(yp)
′ = A(t+ 1)et
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a particular solution

yp = tet

and the general solution

y(t) = (t+ c)et
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