
Complexification

Complexification is a strategy for calculating integrals and applying the
Method of Undetermined Coefficients. It relies on Euler’s Formula, namely

eit = cos t + i sin t (1)

and the observation that if

a + bi = c + di (2)

with a, b, c, d real, then a = c and b = d; i.e., we can match real and
imaginary parts of complex numbers.

1 Integrals

A good place to start is by calculating

ˆ
cos(3t) dt (3)

Note that

ei3t = cos(3t) + i sin(3t) (4)

and so

ˆ
ei3t dt =

ˆ
cos(3t) dt + i

ˆ
sin(3t) dt (5)

Thus

ˆ
cos(3t) dt = Re(

ˆ
ei3t dt) (6)

where Re signifies the real part. In this section we are going to omit arbitrary
constants for brevity and let equality signify equality up to an arbitrary scalar
constant.
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Integrals and derivatives of exponential functions follow the same rules with
complex arguments as with real ones, so

ˆ
ei3t dt =

1

3i
ei3t (7)

=
1

3i

(
cos(3t) + i sin(3t)

)
(8)

=
1

3
sin(3t) +

1

3i
cos(3t) (9)

=
1

3
sin(3t) − i

3
cos(3t) (10)

So

ˆ
cos(3t) dt =

1

3
sin(3t) (11)

which is what we would obtain from taking the integral using Cal I/II meth-
ods.

Now consider a more complicated example, also possible – though tedious –
with first-year calculus methods:

ˆ
t sin2 t dt (12)

The laws for adding and multiplying exponents continue to apply to complex-
valued exponents, a fact that, incidentally, allows us to prove two trig iden-
tities:

ei2t = (eit)2 (13)

cos(2t) + i sin(2t) =
(

cos t + i sin t
)2

(14)

=
(

cos2 t− sin2 t
)

+ i
(
2 sin t cos t

)
(15)

∴ cos(2t) = cos2 t− sin2 t (16)

∴ sin(2t) = 2 sin t cos t (17)

We use one more identity to obtain

cos(2t) = (1 − sin2 t) − sin2 t (18)

= 1 − 2 sin2 t (19)

2



So

ˆ
t
(
1 − 2 sin2 t

)
dt =

ˆ
t cos(2t) dt (20)

= Re
(ˆ

tei2t dt
)

(21)

It takes only one step of integration by parts to show that

ˆ
tei2t dt =

ei2t

4

(
1 − 2it

)
(22)

=
1

4

(
cos(2t) + i sin(2t)

)
(1 − 2it) (23)

=
1

4

(
cos(2t) + 2t sin(2t) + i

(
sin(2t) − 2t cos(2t)

))
(24)

ˆ
t
(
1 − 2 sin2 t

)
dt =

1

4

(
cos(2t) + 2t sin(2t)

)
(25)

t2

2
− 1

4

(
cos(2t) + 2t sin(2t)

)
= 2

ˆ
t sin2 t dt (26)

yielding ˆ
t sin2 t dt =

t2

4
− 1

8

(
cos(2t) + 2t sin(2t)

)
(27)

Note that step (26) treats the value of an indefinite integral like a variable:
this step is valid because equality up to a constant is preserved by addi-
tion and multiplication of scalars (Challenge: would the same be true for
addition/multiplication of functions?)

In general, if f(t) is a real function then

ˆ
f(t) cos(bt) = Re

( ˆ
f(t)eibt dt

)
(28)

ˆ
f(t) sin(bt) = Im

( ˆ
f(t)eibt dt

)
(29)

(30)

where Im signifies the imaginary part.
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2 Method of Undetermined Coefficients

When solving a linear DE of the form

L[y] = g(t)

where g(t) is the product of a polynomial p(t) of degree n (possibly 0), an
exponential eat (where a is possibly 0), and a sin(bt) or cos(bt), it can be
easier to complexify for purposes of finding a particular solution. There are
four steps:

1. Replace g(t) with p(t)e(a+bi)t

2. Find ỹ of the form c · P (t)e(a+bi)t, where c is complex and P (t) is ts

times a polynomial of degree n (s the least non-negative integer such
that ỹ is not a solution to the homogeneous version of the equation)

3. Apply Euler’s formula and FOIL ỹ into real and imaginary parts.

4. Set yp to be the real (cos) or imaginary (sin) part.

Example: 3.5 #18

Find yp for
L[y] = y′′ + 2y′ + 5y = 4e−t cos(2t)

1. Replace g(t):
y′′ + 2y′ + 5y = 4e(−1+2i)t

2. Setting z = −1 + 2i, find ỹ = ctezt (s = 1):

5ỹ = 5ctezt

2ỹ′ = 2c(zt + 1)ezt

ỹ′′ = c(z2t + 2z)ezt

L[ỹ] = cezt
(
(z2 + 2z + 5)t + (2 + 2z)

)
= c(2 + 2z)ezt = 4ezt

∴ c(2 + 2z) = 4

∴ c = −i
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3. Apply Euler and FOIL:

ỹ = ctezt (31)

= −ie−tt
(

cos(2t) + i sin(2t)
)

(32)

= e−tt
(

sin(2t) − i cos(2t)
)

(33)

4. Conclude that
yp = te−t sin 2t
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