*	Users online: TAMattH
*	Bry joined
Bry	Good morning
TAMattH	Hi! Feel free to ask questions; this is really just a Q&A session.
TAMattH	Good morning!
Bry	Okay I was waiting for anyone else
CAMattH	Yeah, don't worry about that. Attendance isn't mandatory and I'm not going to lecture just answer questions.
Bry	I just would like more of an explanation of Existence and Uniqueness Thm
CAMattH	Can you be a bit more specific? Do you want an example? An explanation of the necessary hypotheses? etc.
Bry	I guess an example would be the best
TAMattH	Do you have Matlab installed?
TAMattH	Or Apple's proprietary grapher?
Bry	No but for next recitation I can have Matlab
TAMattH	Okay. It would be best, just in case I give an example that requires visuals.
CAMattH	<pre>https://bluffton.edu/homepages/facstaff/nesterd/java/slopefields.html << this will do for now</pre>
Bry	Could you review 5-8 in section 1.5 if you have the textbook next to you ?4
TAMattH	OK, do you want the example first?
Bry	yes
TAMattH	Ok
TAMattH	Consider the DE
	$rac{dy}{dt}=\sqrt{ y }$
TAMattH	with initial condition $y(0)=0$
TAMattH	If we call $f(t,y)=\sqrt{ y }$ (cf. page 64) \ldots
'AMattH	Then f is a continuous function of t and y in a rectangle (in fact, ANY rectangle) containing (0,0) \ldots
TAMattH	And so the Existence Thm applies and we have $\epsilon>0$ such that there is a function y from $(-\epsilon,\epsilon) o\mathbb{R}$
'AMattH	that satisfies the differential equation. We did *NOT* say that this solution was unique; there may be more than one
TAMattH	And in fact there are multiple solutions with these initial conditions
TAMattH	QUIZ: How can you tell?
Dru	By looking at the clope field

Bry	?
FAMattH	Yes, and by noticing that $y = 0$ is an equilibrium solution.
TAMattH	If you graph this DE in Matlab or Grapher
TAMattH	you can probably notice that this eqn has two solutions with ics $(0,0)$
TAMattH	One is the equilibrium solution
TAMattH	And the other is $y=xst x $.
FAMattH	(should technically be t s but you get the idea).
FAMattH	QUIZ: Why is the solution not unique? I.e., what part of the Uniqueness Thm fails, and why?
Bry	Because the DE interests the t axis two times and the partial derv is not continuous
Bry	Nvm
Bry	it doesnt intersect twice
Bry	so its because the partial derv is not continuous
TAMattH	That's correct; the PD has a denominator which vanishes at $y = 0$ and thus isn continuous there

't

TAMattH	Okay, now for those questions.
Bry	I understand
TAMattH	But first: any questions over what we've gone over?
Bry	no none so far
TAMattH	I agree that the wording of this question is confusing
TAMattH	All of the solutions will exist & be unique because $f(t,y)$ is a polynomial, thus continuous w/ continuous PD \ldots
TAMattH	The book wants you to think end behaviour what does each solution look like as $x o\infty$ or $x o-\infty$?
TAMattH	How could you make conclusions about the functions at $\pm\infty$ based on the theorems?
Bry	I do not know
Bry	Does it have to do with the equilibrium solutions
TAMattH	Yes
TAMattH	Also think about the sign of the derivative.
TAMattH	Let's do #5 together

Bry	okay
TAMattH	Okay, so first of all our equilibrium solutions are
	y=0,1,3
TAMattH	Also, dy/dt is trivially continuous everywhere w/ trivially continuous PD in $y.$
TAMattH	(b/c it's a polynomial)
TAMattH	Thus, for any set of initial conditions, the sol'n will both exist and be unique by the Existence and Uniqueness theorems.
TAMattH	In particular and this is the key to the problem solutions cannot cross the asymptotes
	y=0,1,3
	If they could then we would not have uniqueness
TAMattH	at the crossing points. Okay, so for #5, since $y=4$ at $t=0$ our derivative is going to be positive \ldots
TAMattH	In fact, it'll be positive at all points of our function since, as we just said, the function cannot cross the $y=4$ horiz. asymptote.
Bry	Isn't the asymptote at y=3
TAMattH	Yes; sorry, that was a typo.
TAMattH	We have, at $(0,4)$, that $dy/dt = 4*3*1 = 12$ \dots
Bry	NpIf the the initial condition is $y(0)=-2$ or and negative the function will only be negative for all points because the asymptote at 0
TAMattH	And so the function is increasing there. Since the derivative is not only positive but also increasing at points with positive values of t , we have that this function will increase without bound
TAMattH	(To answer your question) Yes
TAMattH	IF the hypotheses apply as they do in this case.
Bry	OK, I see time is up.I must get ready for lecture Thank you very much
TAMattH	Ok. Is it OK if I post this conversation to Sakai, incl. your name?
Bry	Yeah it is okay
TAMattH	Great. See you soon!
*	Bry left