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Figure 2.1: Direction field for Chapter 2.1, Problem 2.
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As t — oo, all solutions increase without bound.
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2.1.8

Standard form: 3’ + thy = (th)s
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Figure 2.2: Direction field for Chapter 2.1, Problem 8.

u(t) = el = — (1 +t2>2 (2.4
W= +t2 : / t2)3dt (2.5)
i t2 5 [arctant + C’] (2.6)

(2.7)

All solutions tend to zero as t — oo.

2.1.22

1,t/3

Standard form: 3’ — %y =1
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The e*/? term will dominate as ¢ gets large. If @ > —3 then lim y(t) = +o0;
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Figure 2.3: Direction field for Chapter 2.1, Problem 22.
a+3
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otherwise lim y(t) = —co.
Chapter 2.2
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Chapter 2.3

2.3.8
dS
dS
=~ rS =k (2.18)
Using methods from 2.1,
p(t) =e " (2.19)
1
St:—/ t)q(t)dt 2.20
)= [ 1O (2:20)
=e" / ke "dt (2.21)
— rt _1 —rt
— ke [ — C} (2.22)
= —é + Cke™ (2.23)
= E(e” —1) (2.24)

where we chose C' to correspond with the “no inital capital” condition. Set-
ting

k
S(40) = 1000000 = ﬁ(e-m'40 —1) (2.25)
(2.26)
k = $3929.68 (2.27)

On the other hand, if & = $2000, then

2000
1000000 = —(e*" — 1) (2.28)
T

Up to two decimal places, the required interest rate is 9.77%.



2.3.14

This DE is separable:

dy

=05+ sint)% (2.29)
d 1
?y = (0.5 +sint) dt (2.30)
1
In|y| = 5(0.5t —cost) +C (2.31)
1
ly| = Cexp(g(0.5t — cost)) (2.32)
1
Yy = Cexp(g(()ﬁt — cost)) (2.33)
where C' > 0. At time ¢t = 0, the population is
1
y(0) = Cexp(g(O — 1)) =Ce 5 (2.34)

hence C' = e!'/® based on the initial condition. The solution for 7 is found by
solving the equation

1
2= exp(g(l —cosT + 0.57)) (2.35)

For the given initial condition, 7 ~ 6.7327. On the other hand, from equation
2.34 we see that

C = y(0)e!/? (2.36)
in general; hence
1
y(t) = y(0) exp(g(l + 0.5t — cost)) (2.37)
in general. But then the solution for 7 reduces to the solution of
1
2y(0) = y(0) eXp(g(l +0.57 — cosT)) (2.38)

which, after division by non-zero y(0), is identical to equation 2.35. Thus
7 does not depend on y(0), except in the spurious case where y(0) = 0 in
which y = 0 for all time.



2.3.16

Let T be the temperature of the cup; then
dT

— =k(70-T
il )
We solve this DE using our tools for separable equations:
dT
0T " k dt
—dT du
— =— | —= [ kdt
/ 70 -T / u(T) /
—In|u| =kt+C
exp(In |u|) = exp(—kt + C)
u=Ce "
200 = u(0) =C

190 = u(1) = 200e™*
0.05129329439 = —1In(.95) = k

So the time 7 at which the coffee cup reaches 150° is

150 = u(7) = 200"
In(.75) = —kr
5.608570789 = T

i.e., about 5bm36s after being poured.

2.3.20

(2.39)

(2.40)

2.42
2.43
2.44
2.45
2.46
2.47
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(2.48)
(2.49)
(2.50)

Let y(t) be the distance above the ground in metres and g = —9.81 m/s?;

then
d?y B
a9
whence
dy
—~Z =20— gt
dt J

y(t) = 30 + 20t — th

10

(2.51)

(2.52)

(2.53)



The maximum height occurs at the time that the ball’s velocity reaches zero.
That time 7 is given by

20
T = — sec (2.54)

9

so the maximum height is given by
y(7) = 50.3873598 m (2.55)

The time at which the ball hits the ground is given by the positive root of
y(t), which is

1 = 5.243833855 sec (2.56)

11
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Figure 2.4: Plot of y(t) and v(t) for Problem 20 of Chapter 2.3.

2.3.30

Verifying the equations in (a) is straightforward. Integrating them gives

z(t) = (ucos A) -t +2(0) = (ucos A) - t (2.57)
y(t) = —%tQ + usin At + y(0) = —th + (usin A)t + h (2.58)

We call 7 the time at which the ball reaches, or goes over, the wall; then

(1) = (ucosA) -7 =1L (2.59)

12



and clearing the wall is given mathematically by

y(r) > H (2.60)

The remaining calculations are the domain of algebra/precal.

Chapter 2.4

2.4.1

p(t) = (Int)/(t = 3),
q(t) = (20)/(t = 3)

The largest interval on which both p and ¢ are continuous that contains ¢t = 1
is (0, 3).

2.4.7
t—y
fty) = T
(2t +5y)(=1) = —y)(5)
(=2t —5y) — (5t — 5y)
(2t + 5y)?

___ Tt

(2t + 5y)?

The hypotheses apply at any point not on the line 2¢ + 5y = 0.

2.4.15



Theorem 2.4.2 applies no matter what initial conditions we set because f(¢,y)
and f, are continuous everywhere.

y 3 dy = —dt

If y(t) is a solution and y(c) = 0 for any ¢ = ¢ then y(t) = 0, because y = 0
is a solution and 2.4.2 holds, forbidding any two solutions from intersecting.
Hence we safely divide by y above.

1
———=—t+C
22 +
1
Yy
If y(0) = yo # 0 then
1
—=C
Yo
(1) = £——
==t c
1
= + =
215-1—%
1
=+

%
V2yit +1
We must avoid division by zero or taking the square root of negative numbers,

hence the particular solution exists if and only if

2yot +1>0

1
t>——

23

In sum, the solution to the differential equation given in 2.4.15 is
Yo 0
07 Yo = 0

and the interval in which the solution exists is

_LE) 0 0
y(t)Z{I(R 2 ) z fo
) 0 —




Chapter 2.5

[see separate file in Resources]

Chapter 2.6

2.6.2

Not exact because M, =4 # 2 = N,.

2.6.5

We must exclude the line bx + cy = 0; after doing so, we arrange to obtain
d
(ax + by) + (bx + cy)d—i =0

This function is exact. Integrating,

2

Y(x,y) = % + bxy + h(y)

Partially deriving w/r to y,

5
% =bo + I (y) = N(z,y) =bx +cy

which implies #'(y) = cy. Hence h(y) = % and the solution is:
20(x,y) = ax® + cy® + 2bry = C

(Note that multiplying through by 2 has no effect on the solution and is
merely done to rid it of fractions so it looks nicer.)

2.6.14

We have M, = 1= N, (note that N(z,y) = —4y + x) and so the equation is
exact. Integrating,

U(z,y) = 32" + 2y —  + h(y)

15



Partially deriving,

So

and the solution is
203 4y —x — 20 =1

You can find a function y(x) by using the Quadratic Formula; the interval of
validity will be the interval that yields a non-negative argument under the
radical.

2.6.26

Rewrite the DE as
p(l—y—e*)+puy' =0
The DE is exact iff

(L =y —€*)]y = pta
py(1 =y — ™) = pp = piy

If we restrict u to functions of x only then
— = g
which has solution
p(r) =e”

We then solve the equation multiplied by p(z):

layy) = / (@) M (z,y) dr = / (€)1 —y) — ¢ da
= (e ")y —1)—e"+h(y)

0 a
=N(z,y)=e¢"
h(y) = ¢

16



So the solution is

plry)=e(y—1)—e"=C
Multiplying through allows us to obtain a function y = f(x):

(y —1) —e* = Ce*
y=Ce" +e** +1

Chapter 2.7

[see Chapter 8]

Chapter 2.9

2.9.14

p p )
—1 —1
p—+“n+1=(p7+“n> (1—%)

Pni1 = (2 = p)pvn — PV}

Uni1 = (2= p)vn — pu;
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