
Chapter 2

Chapter 2.1

2.1.2

Figure 2.1: Direction field for Chapter 2.1, Problem 2.

µ(t) = e�2t (2.1)

y(t) = e2t
ˆ

e�2t · t2e2tdt (2.2)

= e2t
h1
3
t3 + C

i
(2.3)

As t ! 1, all solutions increase without bound.
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2.1.8

Standard form: y0 + 4t
1+t

2y = 1
(1+t

2)3

Figure 2.2: Direction field for Chapter 2.1, Problem 8.

µ(t) = e
´ 4t

1+t2
dt = (1 + t2)2 (2.4)

y(t) =
1

(1 + t2)2

ˆ
(1 + t2)2

1

(1 + t2)3
dt (2.5)

=
1

(1 + t2)2

h
arctan t+ C

i
(2.6)

(2.7)

All solutions tend to zero as t ! 1.

2.1.22

Standard form: y0 � 1
2y = 1

2e
t/3
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Figure 2.3: Direction field for Chapter 2.1, Problem 22.

y(t) = et/2[�3e�t/6 + C] (2.8)

a = y(0) (2.9)

= �3 + C (2.10)

a+ 3 = C (2.11)

y(t) = Cet/2 � 3et/3 (2.12)

The et/2 term will dominate as t gets large. If a > �3 then lim
t!1

y(t) = +1;

otherwise lim
t!1

y(t) = �1.

Chapter 2.2

2.2.8

dy

dx
=

x2

1 + y2
(2.13)

(1 + y2) dy = x2 dx (2.14)

y +
y3

3
=

x3

3
+ C (2.15)

y3 + 3y � x3 = C (2.16)
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Chapter 2.3

2.3.8

dS

dt
= k + rS (2.17)

dS

dt
� rS = k (2.18)

Using methods from 2.1,

µ(t) = e�rt (2.19)

S(t) =
1

µ(t)

ˆ
µ(t)q(t)dt (2.20)

= ert
ˆ

ke�rtdt (2.21)

= kert
h
� 1

r
e�rt + C

i
(2.22)

= �k

r
+ Ckert (2.23)

=
k

r
(ert � 1) (2.24)

where we chose C to correspond with the “no inital capital” condition. Set-
ting

S(40) = 1000000 =
k

.075
(e.075·40 � 1) (2.25)

(2.26)

k = $3929.68 (2.27)

On the other hand, if k = $2000, then

1000000 =
2000

r
(e40r � 1) (2.28)

Up to two decimal places, the required interest rate is 9.77%.
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2.3.14

This DE is separable:

dy

dt
= (0.5 + sin t)

y

5
(2.29)

dy

y
=

1

5
(0.5 + sin t) dt (2.30)

ln |y| = 1

5
(0.5t� cos t) + C (2.31)

|y| = C exp(
1

5
(0.5t� cos t)) (2.32)

y = C exp(
1

5
(0.5t� cos t)) (2.33)

where C > 0. At time t = 0, the population is

y(0) = C exp(
1

5
(0� 1)) = Ce�1/5 (2.34)

hence C = e1/5 based on the initial condition. The solution for ⌧ is found by
solving the equation

2 = exp(
1

5
(1� cos ⌧ + 0.5⌧)) (2.35)

For the given initial condition, ⌧ ⇡ 6.7327. On the other hand, from equation
2.34 we see that

C = y(0)e1/5 (2.36)

in general; hence

y(t) = y(0) exp(
1

5
(1 + 0.5t� cos t)) (2.37)

in general. But then the solution for ⌧ reduces to the solution of

2y(0) = y(0) exp(
1

5
(1 + 0.5⌧ � cos ⌧)) (2.38)

which, after division by non-zero y(0), is identical to equation 2.35. Thus
⌧ does not depend on y(0), except in the spurious case where y(0) = 0 in
which y ⌘ 0 for all time.
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2.3.16

Let T be the temperature of the cup; then

dT

dt
= k(70� T ) (2.39)

We solve this DE using our tools for separable equations:

dT

70� T
= k dt (2.40)

�
ˆ �dT

70� T
= �
ˆ

du

u(T )
=

ˆ
k dt (2.41)

� ln |u| = kt+ C (2.42)

exp(ln |u|) = exp(�kt+ C) (2.43)

u = Ce�kt (2.44)

200 = u(0) = C (2.45)

190 = u(1) = 200e�k (2.46)

0.05129329439 = � ln(.95) = k (2.47)

So the time ⌧ at which the co↵ee cup reaches 150� is

150 = u(⌧) = 200e�k⌧ (2.48)

ln(.75) = �k⌧ (2.49)

5.608570789 = ⌧ (2.50)

i.e., about 5m36s after being poured.

2.3.20

Let y(t) be the distance above the ground in metres and g = �9.81 m/s2;
then

d2y

dt2
= �g (2.51)

whence

dy

dt
= 20� gt (2.52)

y(t) = 30 + 20t� g

2
t2 (2.53)
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The maximum height occurs at the time that the ball’s velocity reaches zero.
That time ⌧ is given by

⌧ =
20

g
sec (2.54)

so the maximum height is given by

y(⌧) = 50.3873598 m (2.55)

The time at which the ball hits the ground is given by the positive root of
y(t), which is

t = 5.243833855 sec (2.56)
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Figure 2.4: Plot of y(t) and v(t) for Problem 20 of Chapter 2.3.

2.3.30

Verifying the equations in (a) is straightforward. Integrating them gives

x(t) = (u cosA) · t+ x(0) = (u cosA) · t (2.57)

y(t) = �g

2
t2 + u sinAt+ y(0) = �g

2
t2 + (u sinA)t+ h (2.58)

We call ⌧ the time at which the ball reaches, or goes over, the wall; then

x(⌧) = (u cosA) · ⌧ = L (2.59)
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and clearing the wall is given mathematically by

y(⌧) > H (2.60)

The remaining calculations are the domain of algebra/precal.

Chapter 2.4

2.4.1

p(t) = (ln t)/(t� 3),

q(t) = (2t)/(t� 3)

The largest interval on which both p and q are continuous that contains t = 1
is (0, 3).

2.4.7

f(t, y) =
t� y

2t+ 5y

f
y

(t, y) =
(2t+ 5y)(�1)� (t� y)(5)

(2t+ 5y)2

=
(�2t� 5y)� (5t� 5y)

(2t+ 5y)2

= � 7t

(2t+ 5y)2

The hypotheses apply at any point not on the line 2t+ 5y = 0.

2.4.15

y0 = �y3
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Theorem 2.4.2 applies no matter what initial conditions we set because f(t, y)
and f

y

are continuous everywhere.

y�3 dy = �dt

If y(t) is a solution and y(c) = 0 for any t = c then y(t) = 0, because y ⌘ 0
is a solution and 2.4.2 holds, forbidding any two solutions from intersecting.
Hence we safely divide by y above.

� 1

2y2
= �t+ C

1

y2
= 2t+ C

If y(0) = y0 6= 0 then

1

y20
= C

y(t) = ± 1p
2t+ C

= ± 1q
2t+ 1

y

2
0

= ± 1
1

|y0|

p
2y20t+ 1

=
y0p

2y20t+ 1

We must avoid division by zero or taking the square root of negative numbers,
hence the particular solution exists if and only if

2y20t+ 1 > 0

t > � 1

2y20

In sum, the solution to the di↵erential equation given in 2.4.15 is

y(t) =

(
y0p

2y20t+1
, y0 6= 0

0, y0 = 0

and the interval in which the solution exists is

y(t) =

(
(� 1

2y20
,1) y0 6= 0

R, y0 = 0
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Chapter 2.5

[see separate file in Resources]

Chapter 2.6

2.6.2

Not exact because M
y

= 4 6= 2 = N
x

.

2.6.5

We must exclude the line bx+ cy = 0; after doing so, we arrange to obtain

(ax+ by) + (bx+ cy)
dy

dx
= 0

This function is exact. Integrating,

 (x, y) =
ax2

2
+ bxy + h(y)

Partially deriving w/r to y,

� 

�y
= bx+ h0(y) = N(x, y) = bx+ cy

which implies h0(y) = cy. Hence h(y) = cy

2

2 and the solution is:

2 (x, y) = ax2 + cy2 + 2bxy = C

(Note that multiplying through by 2 has no e↵ect on the solution and is
merely done to rid it of fractions so it looks nicer.)

2.6.14

We have M
y

= 1 = N
x

(note that N(x, y) = �4y+ x) and so the equation is
exact. Integrating,

 (x, y) = 3x3 + xy � x+ h(y)
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Partially deriving,

� 

�y
= x+ h0(y) = x� 4y = N(x, y)

So
h(y) = �2y2

and the solution is
2x3 + xy � x� 2y2 = 1

You can find a function y(x) by using the Quadratic Formula; the interval of
validity will be the interval that yields a non-negative argument under the
radical.

2.6.26

Rewrite the DE as
µ(1� y � e2x) + µy0 = 0

The DE is exact i↵

[µ(1� y � e2x)]
y

= µ
x

µ
y

(1� y � e2x)� µ = µ
x

If we restrict µ to functions of x only then

�µ = µ
x

which has solution

µ(x) = e�x

We then solve the equation multiplied by µ(x):

 (x, y) =

ˆ
µ(x)M(x, y) dx =

ˆ
(e�x)(1� y)� ex dx

= (e�x)(y � 1)� ex + h(y)

� 

�y
= e�x + h0(y)

= N(x, y) = e�x

h(y) = c
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So the solution is

�(x, y) = e�x(y � 1)� ex = C

Multiplying through allows us to obtain a function y = f(x):

(y � 1)� e2x = Cex

y = Cex + e2x + 1

Chapter 2.7

[see Chapter 8]

Chapter 2.9

2.9.14

⇢� 1

⇢
+ v

n+1 = ⇢
⇣⇢� 1

⇢
+ v

n

⌘⇣1
⇢
� v

n

⌘
(2.61)

⇢� 1

⇢
+ v

n+1 =
⇣⇢� 1

⇢
+ v

n

⌘⇣
1� ⇢v

n

⌘
(2.62)

⇢� 1 + ⇢v
n+1 = (⇢� 1 + ⇢v

n

)
⇣
1� ⇢v

n

⌘
(2.63)

= ⇢� 1 + (2� ⇢)⇢v
n

� ⇢2v2
n

(2.64)

⇢v
n+1 = (2� ⇢)⇢v

n

� ⇢2v2
n

(2.65)

v
n+1 = (2� ⇢)v

n

� ⇢v2
n

(2.66)
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